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Abstract

In this paper we describe the possible numbers of Kronecker indices of the peheilsB,
whereA and B run over two prescribed similarity classeg, and 4, respectively. © 2000
Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

This paper is about matrices over an arbitrary fleld’he script letters7 and %
denote: x n similarity classes. So if, say, € .7, thenAisn x n matrix overF and
</ is the set of all matrices ovér similar to A. Theinvariant factors eigenvalues
rank, etc, of.oZ are defined as the corresponding concepts offary.</. There exists
a matrix in.«/ of the form A1 & N, where A is nonsingular andN is nilpotent;
the similarity classes ofl; andN are well defined and called thmn-singularand
nilpotent partsof 7. A Jordan block of</ with eigenvalue: is called aJordan
A-block Througout the paper, the symbg) denotes the rank (of any element) of
o .

An interesting though extremely difficult problem is the following:
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Problem 1. Given twon-square similarity classes, say and#%, describe the pos-
sible Kronecker invariants of the pencilgl + B, whereA andB run over.«Z and4%,
respectively.

Herex denotes a variable ovétr, and by Kronecker invariantswe mean the in-
variant factors of the polynomial matrixA + B together with its&ronecker minimal
row [columr indices(see, e.g., [1, chapter XII]).

In case.«/ [or #4] is non-singular the above problem is equivalent to what we
may call theproduct problemnamely, the determination of the similarity invariant
factors of A™1B [or AB™1, respectively] withA € ../ and B € 4, respectively, in
this special case Kronecker indices do not occur, but the problem is still hopelessly
difficult (see, e.g., [3,6]). IfeZ and# are both singular, then things get much worse,
for Kronecker row and column indices occur, for certain choicesiaf .o/ and
B € % — precisely the choices for which defA 4+ B) is the zero polynomial. This
suggests an easier problem than the first one:

Problem 2. Describe the possible Kronecker row and/or column indicastof B,
whereA andB run over.e/ and4%, respectively.

In this paper, the two problems above are left open, but a related, simpler one
is completely solved, namely, we describe the possible numbers of Kronecker row
[column]indices ofx A + B, whereA andB run over.«Z and 4, respectively.

Recall that the number of Kronecker row [column] indices of a pendil- B
(even in the non-square case) is the dimension of the left [right] kernelof B as
a matrix over the rational fielH(x). So, as our pencils are square, there are as many
Kronecker row indices as Kronecker column indices. Moreover, the problem we are
adressing below is equivalent to the description of all possible ranksAcf B,
whereA andB run over.e/ and4, respectively.

It is essential for the understanding of the paper the fact that the rank of a mat-
rix over an integral domaib, defined, say, as the maximum numbeDsfinearly
independent rows of the matrix, equals the maximum of the orders of the non-zero
minors of the given matrix. So, as ranks and nullities are concerned, it does not matter
whether we considerA + B as a polynomial matrix, or as a matrix ove¢x), or
over any other field extendirfgx].

2. Results

Theorem 2.1. Forany A € .« andB € % we have
max{r.,, r»} <rankxA + B) < min{r, +ry, n}. 1)

In our main result we show that inequalities (1) characterize all possible ranks of
our matricest A + B.
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Theorem 2.2. If tis an integer satisfying
max{r.,rz} <t <minfry +rg, n}, (2)
then there exisA € .o/ and B € % such thattA + B hasrank t.

According to our previous comments, we may summarize the previous theorems
as follows.

Theorem 2.3. When A and B run ove#/ and 4, respectivelythe number of Kro-
necker columirow] indices oft A + B describes the set of all integers in the interval

[max{oa Ko/ + Kp — n} ) mln {K,,O/a K,@}] 9

wherex ., [kz] denotes the dimension of the kernel of @ng .</[B € %4].

3. Proofs
Clearly we only have to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1.The right-hand side inequality in (1) follows from ramnk =
rank A and from a well-known elementary inequality.

The determinantal characterization of the rank imptids+ B, (x/y)A + B and
xA + yB all have the same rank (wheyds a new variable commuting witk) as
well as

rankaA + BB) < rankxA + yB)

foranywa andg in F [or in any field containind-]. The left inequality in (1) follows
as a particular case. [

Proof of Theorem 2.2.By induction we assume the theorem holds for matrices of
sizes smaller than. In caser = max{r.,, r»} the theorem follows easily: just take
Ag € o andBg € % of the form

Ao=[A'0] and Bo=[B'0],

whereA’ isn x r., and B’ is n x ry, obviously, rankx Ag + Bo) < max{r.,, ry},
and equality must hold because of (1).
In view of this we assume, from now on, that our integsatisfies

maxXr.,, ry} <t < minfry, + ry, n}.

In particular,.«Z and % are non-zero. We choost € .7 and B € # exhibiting
the Jordan form of the nilpotent parts, say

A=Jp® - ®Jy, ®A1 and B=J, ® - @ J,, & B1,
where they's andd's are in non-increasing order, aid andB; are non-singular.
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Casel: When one of the Jorda®-blocks of.e/ has order> 3, and one of the
Jordan0-blocks of # has order> 2, that is,p1 > 3 andq1 > 2. Letv, and py
[vp andpp] be, respectively, the order and the rank of the nilpotent pa# [#],
thusn — vs =ra — pa =the order ofA1. Letv := min{va, vg}. For1<s < vwe
partitionA andB as

Ay X _|Bs ¥s
A:[O A;:| and B_[O B/}’

S

whereA; andB; ares x s. We associate witl its superdiagonal sequeng@, a2,
..., ay,), Which is defined as followsi; := 0 anday, ..., a,, are the 1's and 0’s
that occur, from top down, along the superdiagonai.ofVe let

ag:=ay+---+ a.
With the conventiom, 41 := O, we clearly have,,, = a,,+1 = pa. Moreover
rankA; = a; and rankd| =r4 — asy1.

For 1< k < vg, defineb; andby, in the same manner, relative to matBx\We are
going to consider only those valuesso€ {1, ..., v} such that ranld; 4+ rankB; >
s. With the notations so far considered we state and prove:

Lemma 3.1. Assume the conditions of Caséhold. Let m be the maximum< v
such thatz, + b, > 5. Assume thair < v. Then

as+bs >s, if 2<s<m, 3
am + by =m, (4)
as +bs <s, ifm<s<v, (5)
dm = Gma1, (6)
b = bpy1, )
dm = pa OF by = pp. (8)

Moreover if @, = pa [bm = ps], then m is the sum of the orders of the greatest
o4 [pg] nilpotent Jordan blocks of Bof A].

Proof of Lemma 3.1.First we point out that if there are two consecutive terms,
ai, aij+1 [bi, bi+1] equal to zero, then all other terms after these are zero as well, and
S0a;—1 = pa [bi—1 = ps]. _ )

In Case 1 we haves + b = 2, andas + bz > 3. Asm < v, there iss such that
1<s<vandas+bs <s. Leto be the smallest such Clearlyo > 4, a,_1+
by—1 =0 — 1, anda, = b, = 0. We now get a contradiction from the assumption
ay-1 = by—1 = 1;infact, if this holdsg,,—1 = 0 [b,,—1 = O] impliesa,, = 1[by, =
1],for1 < w < o, because in the intervgd, o — 1] there are no two consecutivg
[bw] equal to zero; but the number of 0's in the sequence. ., ay—1, b1, ..., by—1
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is equal to the number of 1's; therefore, this sequence takes alternate vauésl)
...; this is impossible, because = a3 = 1. This proves thati,—1 = a, = 0 or
by_1 = by, = 0. Therefore
do—1=pa OF by_1=pg. ()
Assume the former alternative holds (the latter has a similar treatment). Then
a, = 0 forw > o, and therefore

y+by=0—-14by,—b,<o—-14+w—-0<w

for w > o. This shows thain = o — 1. Therefore (9) is nothing but (8), and the
other properties (3)—(7) are as obvious.

For the last part of the lemma note that by [s — a,] is the number of nilpotent
Jordan blocks of the submatrB[A]. If @, = pa, thenB,, hasm — b,,, thatis,pa
nilpotent Jordan blocks; by (7) these are precisely the greajestlpotent Jordan
blocks ofB. The casé,, = pp has a similar treatment. The lemma is proved.

Continuing the proof of the theorem, still in Case 1, for a fixed {2, ..., m} we
consider matrice® similar toB of the form

D Bs Ys
B = S
5 3

where B, [B!] is similar to B,[ B.]. By [2, Theorem 3.1], we may fi8; such that
x Ay + By is non-singular. By induction, a&/ takes all values similar t8, the rank
of xA/ + B! covers the interval

T, := [maXra — ds11, 78 — byy1} Min{ra + rp — as11 — byy1,n — s}].

Therefore, for any fixed € {2, ..., m}, the rank ofxA + B covers the interval
T, = s + T, whose lower and upper bounds are

lg:=s +MaxX{ra — ds4+1, 7B — by11},

us =min{rp +rp +s — as41 — bs+1, n}.

It is obvious thaty,_1 <[y <[;_1+ 1 for 2 < s < m; therefore all ranks in the
interval[l2, u,,] are attained. To determing, we consider two subcases: (i) when
m = v, and (ii) whenm < v. In subcase (i), we have either = v4, or m = vp;
assumen = v, (for v = vg the argument is analogous); 88+ v4 — pa = n, we
have

U = MiN{ra +rg +v4 — pa — l;m+1, n}=min{n +rpg — l;m+1, n} =n.

In subcase (i), Lemma 3.1 applies: we hayg 1 + b,1 = m, and therefore

u, = min{ra + rp, n}. So, in both subcases, the upper bound is

Um = Min{ra +rg, n}.
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As a3 andbz are positive, our lower bourd satisfies
Ip <max{ra,rp}+ 1L

So we are done with Case 1.

Case2: When the nilpotent parts of/ and # are zero. That means thay =
g1 = 1. Without loss of generality we may assume> ry4. Lets := ¢t — r». Choose
A € o/ andB € % of the form

A=A190 and B=0,®B190,_;,

whereA1 and B are non-singular,j0denotes a square zero block of oréeand the
principal submatrix ofB; of the lastr — r., rows and columns is non-singular. It is
easy to see thatA + B has rank.

Case3: When the nilpotent part of7 is non-zero and the nilpotent part &f is
zero, that is to sayp; > g1 = 1. We use an argument close to [4, p. 57]. Choose
Ac .o/ andB € % of the formA =J @ A" and B = 0@ B/, with J a nilpotent,
upper-triangular, Jordan block of order2, andB’ of ordern — 1. Let A’ be the
principal submatrix of the last — 1 rows and columns d&. As

min{ra, rp} <t —l<maxXra +rp,n— 1},

the induction hypothesis allows us to cho@en such away that A’ + B’ has rank
t — 1. Now letC(x) := x P"1AP + B, whereP denotes the matrix

1 0
[1 1i| ® I—2.

If we add the first row of” (x) to the second row, and then subtract the first column
from the second, we obtaifx] ® (xA’ + B"). SoC(x) has rank.

Case4: When bothe and % have a2-by-2 nilpotent Jordan blockThere exist
A € o/ andB € % of the form

|0 o0 , 10 1 ,
A_[l O]GBA and B_[O 0}@3.

By induction, we may choosé’ and B’, such thatc A’ + B’ has any prescribed
rankt’ in the interval

T’ :=[max{ru, rg:}, min{ry +rg,n—2}]. (20)
Therefore;’ + 2 may be given any value in the interval
T' +2=[max{r.,ry}+1 minfr, +rg, n}].

So we are done with this case, and the proof of the theorem is compléte.

References

[1] F.R. Gantmacher, The Theory of Matrices, vol. 2, Chelsea, New York, 1960.
[2] E.M. S4, Y.-L. Zhang, Ranks of submatrices and the off-diagonal indices of a square matrix, Linear
Algebra Appl. 305 (2000) 1-14.



E.M. de & Y.-L. Zhang / Linear Algebra and its Applications 305 (2000) 15-21 21

[3] F.C. Silva, The eigenvalues of the product of matrices with prescribed similarity classes, Linear and
Multilinear Algebra 34 (1993) 269-277.

[4] F.C. Silva, The rank of the difference of matrices with prescribed similarity classes, Linear and
Multilinear Algebra 24 (1988) 51-58.

[5] F.C. Silva, Spectrally complete pairs of matrices, Linear Algebra Appl. 108 (1988) 239-262.

[6] Y.L. Zhang, On the number of invariant polynomials of the product of matrices with prescribed
similarity classes, Linear Algebra Appl. 277 (1998) 253-269.



