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Abstract

In this paper we describe the possible numbers of Kronecker indices of the pencilsxA+ B,
whereA and B run over two prescribed similarity classes,A andB, respectively. © 2000
Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

This paper is about matrices over an arbitrary fieldF. The script lettersA andB
denoten× n similarity classes. So if, say,A ∈A, thenA is n× nmatrix overF and
A is the set of all matrices overF similar to A. The invariant factors, eigenvalues,
rank, etc, ofA are defined as the corresponding concepts of anyA ∈A. There exists
a matrix inA of the formA1⊕N , whereA1 is nonsingular andN is nilpotent;
the similarity classes ofA1 andN are well defined and called thenon-singularand
nilpotent partsof A. A Jordan block ofA with eigenvalueλ is called aJordan
λ-block. Througout the paper, the symbolrA denotes the rank (of any element) of
A.

An interesting though extremely difficult problem is the following:
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Problem 1. Given twon-square similarity classes, sayA andB, describe the pos-
sible Kronecker invariants of the pencilsxA+ B, whereA andB run overA andB,
respectively.

Herex denotes a variable overF, and by ‘Kronecker invariants’ we mean the in-
variant factors of the polynomial matrixxA+ B together with itsKronecker minimal
row [column] indices(see, e.g., [1, chapter XII]).

In caseA [or B] is non-singular the above problem is equivalent to what we
may call theproduct problem, namely, the determination of the similarity invariant
factors ofA−1B [or AB−1, respectively] withA ∈A andB ∈ B, respectively, in
this special case Kronecker indices do not occur, but the problem is still hopelessly
difficult (see, e.g., [3,6]). IfA andB are both singular, then things get much worse,
for Kronecker row and column indices occur, for certain choices ofA ∈A and
B ∈ B – precisely the choices for which det(xA+ B) is the zero polynomial. This
suggests an easier problem than the first one:

Problem 2. Describe the possible Kronecker row and/or column indices ofxA+ B,
whereA andB run overA andB, respectively.

In this paper, the two problems above are left open, but a related, simpler one
is completely solved, namely, we describe the possible numbers of Kronecker row
[column] indices ofxA+ B, whereA andB run overA andB, respectively.

Recall that the number of Kronecker row [column] indices of a pencilxA+ B
(even in the non-square case) is the dimension of the left [right] kernel ofxA+ B as
a matrix over the rational fieldF(x). So, as our pencils are square, there are as many
Kronecker row indices as Kronecker column indices. Moreover, the problem we are
adressing below is equivalent to the description of all possible ranks ofxA+ B,
whereA andB run overA andB, respectively.

It is essential for the understanding of the paper the fact that the rank of a mat-
rix over an integral domainD, defined, say, as the maximum number ofD-linearly
independent rows of the matrix, equals the maximum of the orders of the non-zero
minors of the given matrix. So, as ranks and nullities are concerned, it does not matter
whether we considerxA+ B as a polynomial matrix, or as a matrix overF(x), or
over any other field extendingF[x].

2. Results

Theorem 2.1. For anyA ∈A andB ∈ B we have

max{rA, rB} 6 rank(xA+ B) 6 min{rA + rB, n} . (1)

In our main result we show that inequalities (1) characterize all possible ranks of
our matricesxA+ B.
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Theorem 2.2. If t is an integer satisfying

max{rA, rB} 6 t 6 min{rA + rB, n} , (2)

then there existA ∈A andB ∈ B such thatxA+ B has rank t.

According to our previous comments, we may summarize the previous theorems
as follows.

Theorem 2.3. When A and B run overA andB, respectively, the number of Kro-
necker column[row] indices ofxA+ B describes the set of all integers in the interval

[max{0, κA + κB − n} , min{κA, κB}] ,
whereκA [κB] denotes the dimension of the kernel of anyA ∈A[B ∈ B].

3. Proofs

Clearly we only have to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1.The right-hand side inequality in (1) follows from rankxA =
rankA and from a well-known elementary inequality.

The determinantal characterization of the rank impliesxA+ B, (x/y)A+ B and
xA+ yB all have the same rank (wherey is a new variable commuting withx) as
well as

rank(αA+ βB) 6 rank(xA+ yB)
for anyα andβ in F [or in any field containingF]. The left inequality in (1) follows
as a particular case.�

Proof of Theorem 2.2.By induction we assume the theorem holds for matrices of
sizes smaller thann. In caset = max{rA, rB} the theorem follows easily: just take
A0 ∈A andB0 ∈ B of the form

A0 = [A′0] and B0 = [B ′0],
whereA′ is n× rA andB ′ is n× rB, obviously, rank(xA0+ B0) 6 max{rA, rB},
and equality must hold because of (1).

In view of this we assume, from now on, that our integert satisfies

max{rA, rB} < t 6 min{rA + rB, n}.
In particular,A andB are non-zero. We chooseA ∈A andB ∈ B exhibiting

the Jordan form of the nilpotent parts, say

A = Jp1 ⊕ · · · ⊕ Jpu ⊕ A1 and B = Jq1 ⊕ · · · ⊕ Jqv ⊕ B1,

where thep’s andq’s are in non-increasing order, andA1 andB1 are non-singular.
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Case1: When one of the Jordan0-blocks ofA has order> 3, and one of the
Jordan0-blocks ofB has order> 2, that is,p1 > 3 andq1 > 2. Let νA andρA
[νB andρB ] be, respectively, the order and the rank of the nilpotent part ofA [B],
thusn− νA = rA − ρA = the order ofA1. Let ν := min{νA, νB}. For 16 s 6 ν we
partitionA andB as

A =
[
As Xs
0 A′s

]
and B =

[
Bs Ys
0 B ′s

]
,

whereAs andBs ares × s. We associate withA its superdiagonal sequence, (a1, a2,

. . . , aνA), which is defined as follows:a1 := 0 anda2, . . . , aνA are the 1’s and 0’s
that occur, from top down, along the superdiagonal ofA. We let

āk := a1+ · · · + ak.
With the conventionaνA+1 := 0, we clearly havēaνA = āνA+1 = ρA. Moreover

rankAs = ās and rankA′s = rA − ās+1.

For 16 k 6 νB , definebk andb̄k in the same manner, relative to matrixB. We are
going to consider only those values ofs ∈ {1, . . . , ν} such that rankAs + rankBs >
s. With the notations so far considered we state and prove:

Lemma 3.1. Assume the conditions of Case1 hold. Let m be the maximums 6 ν
such thatās + b̄s > s. Assume thatm < ν. Then

ās + b̄s > s, if 26 s 6 m, (3)

ām + b̄m = m, (4)

ās + b̄s < s, if m < s 6 ν, (5)

ām = ām+1, (6)

b̄m = b̄m+1, (7)

ām = ρA or b̄m = ρB. (8)

Moreover, if ām = ρA [b̄m = ρB ], then m is the sum of the orders of the greatest
ρA [ρB] nilpotent Jordan blocks of B[ofA].

Proof of Lemma 3.1.First we point out that if there are two consecutive terms,
ai, ai+1 [bi, bi+1] equal to zero, then all other terms after these are zero as well, and
so āi−1 = ρA [b̄i−1 = ρB ].

In Case 1 we havēa2+ b̄2 = 2, andā3+ b̄3 > 3. Asm < ν, there iss such that
1< s 6 ν and ās + b̄s < s. Let σ be the smallest suchs. Clearly σ > 4, āσ−1+
b̄σ−1 = σ − 1, andaσ = bσ = 0. We now get a contradiction from the assumption
aσ−1 = bσ−1 = 1; in fact, if this holds,aw−1 = 0 [bw−1 = 0] impliesaw = 1 [bw =
1], for 1< w < σ , because in the interval[0, σ − 1] there are no two consecutiveaw
[bw] equal to zero; but the number of 0’s in the sequencea1, . . . , aσ−1, b1, . . . , bσ−1
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is equal to the number of 1’s; therefore, this sequence takes alternate values 0,1,0,1,
. . .; this is impossible, becausea2 = a3 = 1. This proves thataσ−1 = aσ = 0 or
bσ−1 = bσ = 0. Therefore

āσ−1 = ρA or b̄σ−1 = ρB. (9)

Assume the former alternative holds (the latter has a similar treatment). Then
aw = 0 forw > σ , and therefore

āw + b̄w = σ − 1+ b̄w − b̄σ 6 σ − 1+w − σ < w

for w > σ . This shows thatm = σ − 1. Therefore (9) is nothing but (8), and the
other properties (3)–(7) are as obvious.

For the last part of the lemma note thats − b̄s [s − ās] is the number of nilpotent
Jordan blocks of the submatrixBs [As]. If ām = ρA, thenBm hasm− b̄m, that is,ρA
nilpotent Jordan blocks; by (7) these are precisely the greatestρA nilpotent Jordan
blocks ofB. The casēbm = ρB has a similar treatment. The lemma is proved.�

Continuing the proof of the theorem, still in Case 1, for a fixeds ∈ {2, . . . ,m} we
consider matrices̃B similar toB of the form

B̃ =
[
B̃s Ỹs

0 B̃ ′s

]
,

whereB̃s [B̃ ′s ] is similar toBs [B ′s]. By [2, Theorem 3.1], we may fix̃Bs such that
xAs + B̃s is non-singular. By induction, as̃B ′s takes all values similar toB ′s , the rank
of xA′s + B̃ ′s covers the interval

T ′s :=
[
max{rA − ās+1, rB − b̄s+1} min{rA + rB − ās+1− b̄s+1, n− s}

]
.

Therefore, for any fixeds ∈ {2, . . . ,m}, the rank ofxA+ B covers the interval
Ts = s + T ′s whose lower and upper bounds are

ls :=s +max{rA − ās+1, rB − b̄s+1},
us =min{rA + rB + s − ās+1− b̄s+1, n}.

It is obvious thatls−1 6 ls 6 ls−1+ 1 for 2< s 6 m; therefore all ranks in the
interval [l2, um] are attained. To determineum we consider two subcases: (i) when
m = ν, and (ii) whenm < ν. In subcase (i), we have eitherm = νA, or m = νB ;
assumem = νA (for ν = νB the argument is analogous); asrA + νA − ρA = n, we
have

um = min{rA + rB + νA − ρA − b̄m+1, n} = min{n+ rB − b̄m+1, n} = n.
In subcase (ii), Lemma 3.1 applies: we haveām+1 + b̄m+1 = m, and therefore

um = min{rA + rB, n}. So, in both subcases, the upper bound is

um = min{rA + rB, n}.
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As ā3 andb̄3 are positive, our lower boundl2 satisfies

l2 6 max{rA, rB} + 1.

So we are done with Case 1.
Case2: When the nilpotent parts ofA andB are zero. That means thatp1 =

q1 = 1. Without loss of generality we may assumerA > rB. Lets := t − rB. Choose
A ∈A andB ∈ B of the form

A = A1⊕ 0 and B = 0s ⊕ B1⊕ 0n−t ,
whereA1 andB1 are non-singular, 0k denotes a square zero block of orderk, and the
principal submatrix ofB1 of the lastt − rA rows and columns is non-singular. It is
easy to see thatxA+ B has rankt.

Case3: When the nilpotent part ofA is non-zero and the nilpotent part ofB is
zero, that is to say,p1 > q1 = 1. We use an argument close to [4, p. 57]. Choose
A ∈A andB ∈ B of the formA = J ⊕ A′′ andB = 0⊕ B ′, with J a nilpotent,
upper-triangular, Jordan block of order> 2, andB ′ of ordern− 1. LetA′ be the
principal submatrix of the lastn− 1 rows and columns ofA. As

min{rA′ , rB ′ } 6 t − 16 max{rA′ + rB ′ , n− 1},
the induction hypothesis allows us to chooseB ′ in such a way thatxA′ + B ′ has rank
t − 1. Now letC(x) := xP−1AP + B, whereP denotes the matrix[

1 0
1 1

]
⊕ In−2.

If we add the first row ofC(x) to the second row, and then subtract the first column
from the second, we obtain[x] ⊕ (xA′ + B ′). SoC(x) has rankt.

Case4: When bothA andB have a2-by-2 nilpotent Jordan block.There exist
A ∈A andB ∈ B of the form

A =
[
0 0
1 0

]
⊕ A′ and B =

[
0 1
0 0

]
⊕ B ′.

By induction, we may chooseA′ andB ′, such thatxA′ + B ′ has any prescribed
rankt ′ in the interval

T ′ := [max{rA′ , rB ′ }, min{rA′ + rB ′ , n− 2}] . (10)

Therefore,t ′ + 2 may be given any value in the interval

T ′ + 2= [max{rA, rB} + 1 min{rA + rB, n}] .
So we are done with this case, and the proof of the theorem is complete.�
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