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Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on
the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing
shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous
nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase
and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear
energy-density functional, SkM∗, SLy4, NRAPR, and SQMC700, which span a range of saturation-density
symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions
we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities
where the nuclear pasta phases are expected to exist, 0.02–0.12 fm−3, temperatures 2–8 MeV, and a proton
fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by
the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases
is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order
phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the
same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell
effects included in our model leads to the pasta phases existing at densities up to 0.01 fm−3 above the spinodal
boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density
is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained
by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.
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I. INTRODUCTION

The modeling of core-collapse supernovae (CCSN) en-
compasses a large variety of physics, from the macroscopic
description of the gravitational collapse to the microscopic
properties of atomic and subatomic particles. One of the key
physical inputs bridging the macro- and microphysics in CCSN
simulations is the equation of state (EoS), connecting the
pressure of stellar matter to its energy density and temperature
and composition, determined by the underlying interactions
between the constituent particles.

The essential physical ideas of the CCSN scenario are
the rebound of the central region of the core upon reaching
nuclear matter densities, the development and stalling of a
shock wave as the rebounding material encounters material
further out, and the revival of the shock wave by neutrino
pressure. These processes occur in hot matter (temperatures
up to T ∼ 20 MeV) that bridges a density region in which
inhomogeneous matter consisting of heavy nuclei, nucleons,
and light clusters (deuterium, tritium, helions, α particles)
transitions to uniform nuclear matter [1–3]. This transition
region is expected to be mediated by heavy quasinuclei
structures termed nuclear “pasta” after their exotic geometries:
rods, slabs, cylindrical holes, bubbles, and more complex
networks of shapes [4]. The formation of these phases is
driven by the competition between the surface tension and
the Coulomb repulsion of closely spaced heavy nuclei, and
their phase diagram in density and temperature space has been

thoroughly explored in the context of both CCSN and neutron
star crust matter [4–10] using a variety of theoretical apparatus.
The pasta phases appear in a well established density range
0.01–0.1 fm−3 and temperature range T � 10 MeV.

The equation of state throughout the transition region, and
the exact nature of the phase transitions between the different
shape phases of nuclear pasta, and from the pasta phases to
uniform nuclear matter, all have an important bearing on the
evolution of the shock. A stiffer EoS acts against gravity to
slow the collapse, causing a greater infall of material from the
mantle, increasing the radius at which the shock forms, and
weakening the shock. Any phase transition in the collapsing
matter will absorb heat, disrupt the homology, and again
weaken the shock. Establishing the nature and strength of
these phase transitions is essential to a physically realistic
description of CCSN energetics.

The timescale for CCSN is believed to be of order of
seconds and matter does not have enough time to reach
β-equilibrium throughout the rapid changes [11,12]. Trapped
neutrinos have the effect of freezing the lepton fraction,
and simulations show that this leads to proton fractions that
are approximately constant throughout the imploding core at
yp ∼ 0.3 [12,13].

The nuclear pasta phases can be thought of as arising due
to unstable collective modes in uniform matter [14], with
the transition to uniform matter being studied by analyzing
the dynamical and thermodynamical spinodals in density and
temperature space [15–18]. To study the details of the pasta
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phases themselves, modeling of the inhomogeneous phases is
required. A number of early works studying the pasta phases
within semiclassical liquid drop (LD) and Thomas-Fermi (TF)
formalisms predicted that the transitions between pasta phases
and the transition to uniform nuclear matter were first order,
accompanied by discontinuities in the pressure with increasing
density [12,19–21]. In such studies and similar ones, however,
the nuclear pasta shapes expected to appear have to be specified
a priori, with the ground state phase chosen to be the one that
gives the minimum free energy at a particular density. Many
recent studies using these methods and modern relativistic and
nonrelativistic nuclear energy density functionals have been
conducted [9,10,22–24].

In contrast to the above studies, statistical models in which
free nucleons are treated within a mean-field approximation
and nuclei are considered to form a loosely interacting cluster
gas tend to give a continuous phase transition [25], although
such models do not take into account the pasta phases.

More recently, the application of quantum and classical
molecular dynamics (QMD, CMD respectively) and three-
dimensional Skyrme-Hartree-Fock (3DSHF) approaches have
allowed energetically preferred pasta phases to emerge bias-
free during calculations [5,26–34], resulting in a number
of previously unconsidered phases to be studied [35]. The
molecular dynamics methods trade a complete model of
the nuclear interactions and quantum shell effects for the
modeling of a very large number of nucleons in a large
computational domain. The 3DSHF method self-consistently
includes quantum shell effects and a relatively sophisticated
nuclear model but is limited to computational cell sizes
containing no more than a few thousand nucleons [36].

Uncertainties in the nuclear matter EoS around saturation
density are dominated by uncertainties in the nuclear symmetry
energy, that component of the nuclear matter binding energy
that describes the energy cost decreasing the proton fraction
of matter. Much progress has been made in constraining the
symmetry energy S0 and its density dependence L around
saturation density [37,38], with a current concordance of
experimental probes of S0 ∼ 32 MeV, 40 � L � 60 MeV. In
the light of the most up-to-date set of nuclear constraints on
nuclear matter properties in the vicinity of saturation density,
coupled with constraints from the maximum mass of neutron
stars [39,40], Dutra et al. [41] tested the capabilities of 240
Skyrme interaction parameter sets, finding that only 5 of these
forces satisfied such constraints. Given the sensitivity of the
outcomes of CCSN simulations to the nuclear matter EoS, the
best models of nuclear matter drawn from such studies should
be used.

The work in this paper follows previous work [36,42,43] in
which the pasta phases of CCSN matter were studied using
the 3DSHF method. The goal of this work is to use the
latest constraints on the Skyrme energy-density functional to
characterize the phase transition between the pasta phases and
the uniform phase, where all phases are allowed to emerge
self-consistently using a number of thermodynamic quantities.
We seek to compare the resulting phase transitions with those
that arise from studying the thermodynamic spinodal with
the same underlying nuclear interactions, in order to assess
the impact of a consistent description of the pasta phases on

the density and temperature range of stability of the uniform
phase. We selected four different interactions, SkM* [44],
SLy4 [45], NRAPR [46], and SQMC700 [47], based on their
overall performance in modeling of a wide variety of nuclear
matter properties [41].

In Sec. II we briefly define phase transition and describe
its possible characters, and in Sec. III the numerical method
is explained. In Sec. IV we present and discuss the results
obtained, and finally in Sec. V some conclusions are drawn.

II. THE PHASE TRANSITION

The equilibrium state of a homogeneous body is determined
by specifying any two thermodynamic quantities, for example
the volume V and the energy E. There is, however, no reason
to suppose that for every given pair of values of V and E
the state of the body corresponding to thermal equilibrium
will be homogeneous. It may be that for a given volume and
energy in thermal equilibrium the body is not homogeneous,
but separates into two homogeneous parts in contact which
are in different states. Such states of matter that can exist
simultaneously in equilibrium with one another and in contact
are described as different phases [48].

A. First- and second-order phase transitions

Phase transitions which are connected with an entropy
discontinuity are called discontinuous or phase transitions of
first order. On the other hand, phase transitions across which
the entropy is continuous are either continuous or of second or
higher order.

For a first-order phase transition, at least one of the first
derivatives of the free energy with respect to one of its variables
is discontinuous [49]: S = − ∂F

∂T
|N,V,...P = − ∂F

∂V
|N,T ,.... This

discontinuity produces a divergence in the higher derivatives
such as the specific heat CV = T ∂S

∂T
|V = −T ∂2F

∂2T
|V , or the

incompressibility K(ρ0) = 9ρ2
0

∂2ESNM (ρ)
∂2ρ

|ρ=ρ0 , where ESNM is
the energy per particle of symmetric nuclear matter [50].

For a phase transition of second (or nth order), the first
derivatives of the free energy are continuous; however, second
(or nth-order) derivatives, such as the specific heat or the
susceptibility, are discontinuous or divergent. The transition
to superconductivity without an external magnetic field is
an example of phase transitions of this kind [49]. In this
paper we will examine the mediation of the transition between
inhomogeneous and homogeneous of nuclear matter at finite
temperature by the nuclear pasta phases.

B. Thermodynamical instabilities

In order to analyze the impact of the existence of the
pasta phases on the stability of uniform matter, we will
calculate the thermodynamical spinodals for the Skyrme
interactions used following the method outlined in Ref. [17]
and references therein. Matter is stable to fluctuations in
density and composition, under conditions of constant volume
and temperature, when the free energy density F is a convex
function of the proton and neutron densities. These densities
are associated with the chemical potentials μn = ∂F

∂ρn
and
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μp = ∂F
∂ρp

, and the free energy curvature is given by

C =
(

∂2F
∂2ρp

∂2F
∂ρp∂ρn

∂2F
∂ρn∂ρp

∂2F
∂2ρn

)
=

( ∂μp

∂ρp

∂μn

∂ρp

∂μp

∂ρn

∂μn

∂ρn

)

The eigenvalues of this matrix are given by

λ± = 1
2 (Tr(C) ±

√
Tr(C)2 − 4 Det(C))

and the eigenvectors by

δρ±
p

δρ±
n

=
λ± − ∂μn

∂ρn

∂μp

∂ρn

.

The thermodynamical spinodal region is then defined to
be that region of (ρp,ρn) space for which λ− < 0. Matter
in the spinodal region will separate into two phases: a low
density gas phase and a higher density liquid phase. The higher
density boundary of the spinodal gives an estimate for the
transition density to uniform matter; given that the spinodal
analysis neglects the competition between the Coulomb energy
and surface energies of the two-phase system, that estimate
is expected to provide a low limit on the transition density.
By comparing the spinodal region with a fully microscopic
calculation of the pasta phases up to the transition density, we
will be able to evaluate the difference between that lower limit
and the actual transition density.

III. COMPUTATIONAL METHOD

As stated in Sec. I, we use a 3DSHF approximation with
a phenomenological Skyrme model for the nuclear force.
In the calculation, it is assumed that, at a given density
and temperature, matter is arranged in a periodic structure
throughout a sufficiently large region of space for a unit cell
to be identified, in which the microscopic and bulk properties
of the matter are calculated. The calculation is performed in
cubic cells with periodic boundary conditions and assuming
reflection symmetry across the three Cartesian axes. The
required reflection symmetry allows us to obtain solutions
only in one octant of the unit cell, which reduces significantly
the computer time. The only effect of confining ourselves to
1/8 of the cell is that we can only consider triaxial shapes.

It is expected that the absolute minimum of the free
energy of a cell containing A nucleons is not going to be
particularly pronounced and there will be a host of local
minima separated by relatively small energy differences.

TABLE I. Nuclear matter properties at saturation density ρ0

(energy per particle B/A, incompressibility K , symmetry energy
Esym, and symmetry energy slope L) for the models studied. All the
quantities are in MeV, except for ρ0, given in fm−3.

Model ρ0 B/A K Esym L

NRAPR 0.16 −15.85 226 33 60
SQMC700 0.17 −15.49 222 33 59
SkM* 0.16 −15.77 217 30 46
SLy4 0.16 −15.97 230 32 46
LS 0.155 16 220 29.3 74
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FIG. 1. (Color online) Pressure versus density for the NRAPR
interaction (blue dashed line) and the Lattimer-Swesty EoS (red
points) for (a) T = 2 MeV, (b) T = 4 MeV, and (c) T = 6 MeV.
The transition to uniform matter happens at different densities due to
differences in the underlying nuclear interaction model used.

In order to systematically survey the “shape space” of all
nuclear configurations of interest, the quadrupole moment of
the neutron density distributions has been parametrized, and
those parameters constrained. It is expected that the proton
distribution follows closely that of the neutrons.

The minimum of the free energy in a cell at a given particle
number density, temperature, and proton fraction is sought as
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a function of three free parameters: the number of particles in
the cell (determining the cell size) and the parameters of the
quadrupole moment of the neutron distribution, β and γ . Each
minimization takes approximately 12 hours on a single CPU
core in computers like the National Center for Computational
Sciences (NCCS) Cray XT5/XK6 machine at ORNL and is
performed in a trivially parallel mode: typically using 45 000
processors in one run to perform separate minimizations over
a range of densities 0.02–0.12 fm−3, temperatures 0–10 MeV,
and a fixed proton fraction of yp = 0.3, where we have spent
approximately 2.3 × 106 CPU hours. We shall refer generally
to this implementation and computation as the 3DSHF model.
Full computational details can be found in Refs. [36,42,43].

IV. NUMERICAL RESULTS AND DISCUSSIONS

We show in Table I the nuclear matter properties for the
four Skyrme models we use in this study: NRAPR, SQMC700,
SkM∗, and SLy4. We chose two traditional forces, SkM* and
SLy4, and two forces, NRAPR and SQMC700, which suc-
cessfully satisfied up-to-date experimental and observational
constraints on properties of nuclear matter [41]. These four
forces span the range of saturation-density symmetry energy
slope L, obtained from the concordance of a variety of exper-
imental probes, 40 � L � 60 MeV. We also show the nuclear
matter properties of another model to which we will compare
our results: the widely used Lattimer-Swesty (LS) EoS [12].

When the EoS of supernova matter is assembled from
separate treatments of the inhomogeneous and homogeneous
phases, the Maxwell or Gibbs construction is needed to connect
the two phases in a thermodynamically consistent way. In our
3DSHF model, the two phases are treated consistently with
no need for such a construction. We contrast the results of our
3DSHF model using the NRAPR Skyrme parametrization with
the LS EoS in Fig. 1, where the density dependence of pressure
at T = 2,4,6 MeV is plotted. Since the LS EoS employs a
Maxwell construction, they obtain a range of densities where
the pressure is constant, removing, as a result, the pressure
discontinuity that accompanies a first-order phase transition. In

-0.4

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

P
b 

(M
eV

 fm
-3

)

ρ (fm-3)

NRAPR

T = 2 MeV
T = 4 MeV
T = 6 MeV

FIG. 2. (Color online) Baryonic pressure versus density for the
NRAPR interaction and T = 2 MeV (red), T = 4 MeV (yellow),
and T = 6 MeV (blue). The lines were calculated with the uniform
matter code, the points with the 3DSHF code.
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FIG. 3. (Color online) Pressure as a function of the number
density for the Skyrme interactions for (a) T = 2 MeV, (b) T =
4 MeV, and (c) T = 6 MeV. The points circled are the onset densities
of homogeneous matter (see Ref. [43]).

our model, we see a clear pressure discontinuity at the density
where the results of our simulations yield uniform matter. We
thus obtain a clear indication of a first-order phase transition.
Note that the underlying nuclear interaction is different, so we
should not expect an exact match for the uniform matter EoS.

In Fig. 2, we plot the baryonic pressure as a function of
the density for the NRAPR model and some temperatures. We
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FIG. 4. (Color online) Chemical potential as a function of the
number density for the Skyrme interactions for (a) T = 2 MeV,
(b) T = 4 MeV, and (c) T = 6 MeV. The points circled are the
onset densities of homogeneous matter (see Ref. [43]).

show the results obtained with the 3DSHF code (points). The
jump in the pressure occurs when the transition to uniform mat-
ter happens. Of course, in the Skyrme-Hartree-Fock scheme,
analytic expressions for the uniform matter EoS are obtained,
and the EoS is calculated exactly. A test of the accuracy of
the 3DSHF code is provided by comparing its predictions for
uniform matter EoS against the analytic result, shown as the
continuous lines. In practice, owing to the finite computational
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FIG. 5. (Color online) Baryonic entropy per particle as a function
of the density. All the Skyrme interactions are shown. The range of
temperatures is (a) T = 2 MeV, (b) T = 4 MeV, and (c) T = 6 MeV.
The points circled are the onset densities of homogeneous matter (see
Ref. [43]).

volume of the 3DSHF implementation, spurious shell effects
arising from the discretization of single-particle states prevent
an exact match. Here we calibrate the 3DSHF model by
adding a small correction factor to the predicted thermo-
dynamical quantities such that agreement with the analytic
results is obtained. All results shown include this correction
factor.
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FIG. 6. (Color online) Thermodynamical spinodals for the Skyrme interactions, and 2 � T � 8 MeV. The black line that crosses the
spinodals is the EOS for uniform matter with yp = 0.3. The points shown in the spinodals are the maximum (liquid phase) and minimum (gas
phase) values for the neutron density and the correspondent proton density, for each equilibrium configuration obtained with the 3DSHF code.

To further explore the fingerprint of the first-order phase
transition on the predicted thermodynamic quantities, we plot
as a function of density the pressure (Fig. 3), baryonic chemical
potential (Fig. 4), and the baryonic entropy per baryon (Fig. 5)
at temperatures of 2, 4 and 6 MeV. In all cases the transition
to uniform matter is highlighted by a circle, and the pressure,
chemical potentials, and entropies exhibit the characteristic
discontinuity of a first-order phase transition. In Fig. 5, the
baryonic entropy per particle decreases with the density.

These results are in qualitative agreement with statistical
models; see, e.g. Fig. 20 of Ref. [25], except for the important
difference that in our calculation, we obtain a discontinuity in
the entropies, pressure, and chemical potentials with respect to
density, indicating the first-order phase transition, whereas in,
for example, Ref. [25], their results vary continuously with the
density (see Figs. 12, 20, and 23 of Ref. [25]), thus obtaining
a continuous phase transition. In such a statistical model,
matter at sub-saturation densities is modeled as a continuous
fluid mixture between free nucleons and massive nuclei. Their
model does not take into account the pasta phases, however.
Within our model, we obtain unambiguously a first-order phase
transition.

In Figs. 3–5, we also see small jumps in the thermodynamic
properties at lower temperatures between different phases of

pasta. Williams et al. [20] found first-order phase transitions
between the various pasta phases and to uniform matter marked
by discontinuities in the pressure and chemical potential. In
our model, the discontinuities in the first derivatives of the
free energy density at lower densities are too small to be
unambiguously identified. These jumps are smoothed out at
higher temperatures, pointing to an origin in quantum shell
effects. In addition, the excitation energies of pasta structures
are of order MeV [51]; a statistical model taking into account
such excitations is beyond the scope of the current work, but
might lead to additional smoothing of the thermodynamic
quantities through the densities at which the pasta phases exist.

A. Comparison with thermodynamic spinodal

In Fig. 6 we plot the thermodynamic spinodals for
the Skyrme interactions and a range of temperatures T =
2–8 MeV. Inside the spinodals, matter is unstable to density
and composition fluctuations, and is predicted to decompose
into coexisting gas and liquid phases; physically, this is
expected to result in the nuclear pasta phases. The unstable
region decreases as temperature increases [52]. In order to
estimate the transition density to uniform matter, we need
to add to these thermodynamical spinodals the equation of
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TABLE II. Onset density ρtrans (in fm−3) of homogeneous
matter for the four models and temperatures considered. For more
explanations see text.

T (MeV) NRAPR SQMC700 SkM* SLy4

3D TS 3D TS 3D TS 3D TS

2 0.110 0.099 0.114 0.105 0.109 0.100 0.111 0.099
4 0.108 0.097 0.113 0.103 0.107 0.098 0.110 0.097
6 0.100 0.094 0.105 0.100 0.100 0.094 0.102 0.094
8 0.091 0.088 0.099 0.094 0.089 0.088 0.094 0.089

state. The lines shown are for a proton fraction of 0.3.
One can estimate the transition density to uniform matter
by taking it to be the point at which the yp = 0.3 EOS
crosses the spinodal on the high density side (these transition
values will later be labeled as TS). Then nonhomogeneous
phases in supernova matter correspond to the EOS inside the
spinodal [53]. For matter with a proton faction of 0.3 (the
case for CCSN matter), the nonhomogeneous phase will still
exist for T = 10 MeV. Within the range of EoS parameters
considered here, motivated by experimental constraints, the
spinodals are almost coincident except for SQMC700, and
the transition densities to uniform matter can be taken with
confidence to be well defined; these are given in Table II.

Given that the main difference between the SQMC700 and the
other Skyrme parametrizations is the higher saturation density,
we can conclude that variations of the transition density with
respect to the symmetry energy within its uncertain range at
saturation density are small.

Neglecting short-range correlations, if uniform matter finds
itself at such a density and composition such that it lies inside
the spinodal, it will undergo phase separation into a low density
gas phase, lying to the left of the spinodal, and a high density
liquid phase, to the right of the spinodal. Physically, the liquid
phase would correspond to the pasta phases. In actuality, the
effect of short-range Coulomb and surface correlations stabi-
lize the pasta at higher densities as manifest in the transition
densities discussed above. To probe this further, we estimate
the proton and neutron densities inside and outside the pasta
phases that result from our 3DSHF calculations by simply
taking the highest proton or neutron density found in the unit
cell to represent the density in the liquid phase, and the lowest
density to represent the gas phase. These obviously constitute
an upper limit to the liquid density and a lower limit to the gas
density. We plot these points in Fig. 6 overlaid on the spinodals.

In the simple coexisting phases picture, one would see the
densities in the liquid phases reach down to the upper spinodal
boundary. Noticeably for temperatures up to T = 6–8 MeV,
the liquid phase in the 3DSHF calculations exist at densities
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FIG. 7. (Color online) Transition densities as a function of the temperature, for yp = 0.3, and all the interactions considered. The points
correspond to the values shown in Table II.
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higher by around 0.01 fm−3 than the upper spinodal boundary.
This means the effective boundary between the uniform matter
phase and past phases is larger by ∼0.01 fm−3 compared
to the simple thermodynamic spinodal picture, leading to
the higher transition densities found above. This is in broad
agreement with the results obtained using the Thomas-Fermi
formalism [54].

The transition densities estimated by the TS calculation
should constitute a lower limit on the transition density [55].
In Table II and Fig. 7 we compare the transition densities
obtained from the spinodal analysis with those from the
3DSHF calculations, and find that for temperatures T �
10 MeV that indeed the spinodal transition densities are lower
(by ∼0.01 fm−3 for temperatures T � 5 MeV.) At higher
temperatures, the difference decreases as temperature effects
come to dominate over the short-range Coulomb and surface
energies which lend stability to matter at lower temperatures.

V. CONCLUSIONS

A self-consistent 3D-Hartree-Fock calculation which in-
cludes Coulomb, surface, and quantum finite size effects and
allows for an unbiased exploration of all possible triaxial
nuclear pasta structures has been performed for proton frac-
tions yp = 0.3 and temperatures T = 2–8 MeV relevant to
core-collapse supernovae. Using this model, we have studied
the transitions between the pasta phases and to uniform matter.

We see a clear indication of a first-order phase transition to
uniform matter, manifesting itself as discontinuities in thermo-
dynamic quantities such as the pressure, entropy and chemical
potentials. We were able to identify jumps (of the order of
μb = 1 MeV) in all the first derivatives of the free energy.
The inclusion of the pasta phase in our model hence does
not remove the first-order phase transition to uniform matter.
Discontinuities in the first derivatives of the free energy density
at lower densities are also present, indicating possible small
first-order transitions between the pasta phases, but are too
small to be identified unambiguously owing to the numerical
accuracy of the computational framework. However, we can
observe that they happen gradually, with increasing density,
and that first-order phase transitions between the pasta phases
are likely weak at most.

We find that the current range of uncertainty in the
symmetry energy at saturation density has only a small effect
on the transition density to uniform matter, which otherwise
can be taken to be well determined. The difference between
the transition densities for all Skyrmes, at all temperatures
considered here, is around 0.005 fm−3. However, a comparison
of the results of our 3DSHF calculations with the spinodal
analysis leads us to conclude that short-range Coulomb

correlations and quantum shell effects stabilize structures that
would otherwise be unstable. This leads to a modification
in the transition density compared with that obtained using
the spinodals, with the spinodal method underestimating the
densities by up to ∼0.01 fm−3 at the lowest temperatures.
This difference becomes progressively smaller at higher
temperatures, becoming negligible at T ∼ 8 MeV.

It is possible that degrees of freedom not taken into
count in the mean-field 3DSHF calculations can modify our
conclusions. Particularly, the fact that we see a decrease in
the chemical potential with the density indicates that our
description of the pasta phase, with heavy clusters and a
background gas, may be missing some degrees of freedom
that will maximize the entropy (see [25]), and that such a
continuous mixture may soften the first-order phase transition
we observe.

The results of this work, extended to relevant temperatures
and proton/neutron ratios, can be used to construct four EoS for
supernova simulation models, augmented by 1D calculation at
densities below and above the pasta region. Neutron and proton
density distributions in the unit cell, obtained in this work, can
also be employed in the modeling of neutrino transport through
the pasta formations. At low momentum transfers the static
structure factor is found to be small because of ion screening.
In contrast, at intermediate momentum transfers the static
structure factor displays a large peak due to coherent scattering
from all the neutrons in a cluster. This peak moves to higher
momentum transfers and decreases in amplitude as the density
increases [29]. A large static structure factor at zero momentum
transfer, indicative of large density fluctuations during a
first-order phase transition, may increase the neutrino opacity.
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