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Equation of state and thickness of the inner crust of neutron stars
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The cell structure of β-stable clusters in the inner crust of cold and warm neutron stars is studied within the
Thomas–Fermi approach by using relativistic mean-field nuclear models. The relative size of the inner crust and
the pasta phase of neutron stars is calculated, and the effect of the symmetry energy slope parameter L on the
profile of the neutron star crust is discussed. It is shown that, while the size of the total crust is mainly determined
by the incompressibility modulus, the relative size of the inner crust depends on L. It is found that the inner crust
represents a larger fraction of the total crust for smaller values of L. Finally, it is shown that, at finite temperature
the pasta phase in β-equilibrium matter essentially melts above 5 to 6 MeV, and that the onset density of the
rod-like and slab-like structures does not depend on the temperature.
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I. INTRODUCTION

Nowadays, the existence of the so-called pasta phase [1–10]
in the inner crust of a neutron star close to the crust-core
transition is generally accepted. Constituted by several types of
complex structures such as, e.g., rods and slabs, the pasta phase
is a frustrated system formed as a result of the competition
between the strong and the electromagnetic interactions.

The effect of the density dependence of the symmetry
energy on the pasta phase has been discussed in several
works [11–14]. In particular, it has been shown that, for
very large values of the symmetry energy slope parameter
L = 3n0[∂Esym(n)/∂n]n0 , nonspherical structures (e.g., rod
like or slab like) are not expected in β-equilibrium matter,
and that the number of nucleons in the clusters as well as the
cluster proton fraction and the size of the Wigner–Seitz (WS)
cell are sensitive to this quantity. It has been also discussed
that L may have quite dramatic effects on the cell structure if
its value is very large or small [9,12,13].

One of the present issues in the study of neutron stars is the
determination of its crust properties, which is possible from
the observations of crust cooling [15]. Understanding the crust
properties is essential since it acts as a filter for any information
coming from the neutron star core. Since the timescale of
cooling of the neutron star crust is proportional to the square
of the crust thickness [16], the calculation of this quantity may
allow us to set constraints on the equation of state (EoS) of
the crust. Also in the determination of the crustal moment of
inertia, an essential quantity to interpret pulsar glitches [16],
the thickness of the crust plays an important role. In particular,
it has been recently discussed whether the crustal moment of
inertia is large enough to describe the pulsar glitches [17–19].

The cooling of proto-neutron stars is mostly driven by
neutrino diffusion during the first seconds. The existence of
nonhomogeneous matter will affect the evolution of a super-
nova or proto-neutron star matter; in particular, the diffusion
of neutrinos out of the star [3,20–22]. A phenomena such
as critical opalescence may occur at the melting temperature
during the cooling process due to the trapping of neutrinos. In

Ref. [21] it was shown that nonspherical pasta phases decrease
the opacity at low energies and, at finite temperature, the
static structure factor that defines the neutrino cross section
decreases, leading to a faster cooling.

In the present work the effect of L on the size of the
inner crust will be discussed within a Thomas–Fermi (TF)
formalism in the WS approximation in the framework of
relativistic mean-field (RMF) nuclear models [6–9]. The
Tolman–Oppenheimer–Volkov equations (TOV) [23] will be
integrated and the size of the inner crust as well as the
localization of the pasta structures identified. In particular,
it is shown that smaller values of L favor a wider slab phase
and a larger relative size of the inner crust with respect to the
total crust, and a steeper crust profile.

We also study the effect of temperature on the size of the
inner crust. It is shown that pasta clusters in β equilibrium
completely melt for temperatures above 5 to 6 MeV. These
results agree partially with the predictions obtained within a
dynamical spinodal (DS) approach [24–26]. A similar calcula-
tion was done with Skyrme forces in Ref. [27]. The melting of
the pasta phase was previously studied in Refs. [28,29], where
the effect of thermal fluctuations was taken into account. It
is expected that, if thermal fluctuations are larger than the
radius of the WS cell, the WS approximation breaks down.
However, thermal fluctuations are not considered in the present
calculation and, therefore, the reader must interpret our results
just as upper limits.

Some preliminary results of the present study have been
published in Ref. [14].

The paper is organized as follows: The formalism is briefly
reviewed in Sec. II. Section III is devoted to the presentation
and discussion of the results while the main conclusions are
given in Sec. IV.

II. FORMALISM

To describe the inner crust at zero and finite temperatures
we apply the self-consistent TF formalism presented in
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Refs. [7–9]. We recall that the description of hot nuclei within
a generalization of the liquid-drop model has already been
applied in the framework of the statistical formulation of the
multifragmentation of finite nuclei with nonrelativistic nuclear
models in the mid eighties [30]. We use relativistic mean-
field nuclear models with constant couplings and nonlinear
terms [31], and with density-dependent couplings [32]. Within
the first class of models, which we designate by nonlinear
Walecka models, we consider the following ones: NL3 [33]
with nonlinear σ terms, TM1 [34] with nonlinear σ and ω
terms, NL3ωρ including also nonlinear ωρ terms which allow
the modulation of the density dependence of the symmetry
energy [35], FSU [36], and IU-FSU [37] with nonlinear σ ,
ω, and ωρ terms. NL3 and FSU have been chosen because
they are frequently applied in the description of nuclear matter
and stellar hadronic matter; see, e.g., Refs. [18,38,39]. The
results obtained with them have to be taken into account
according to their limitations: NL3 is too hard at high densities
and has a too large symmetry energy slope, and FSU is too
soft and does not describe a 2M� neutron star; however, we
expect it describes well the crust EoS. Within the second class
of models with density-dependent couplings we consider the
models DD-ME2 [40] and DD-MEδ [41]. The latter, among
the parametrizations considered, is the only one including the
δ meson.

All the equations that allow the performance of the TF
calculation are derived from the Lagrangian density

L =
∑

i=n,p

Li + Le + Lσ + Lω + Lρ + Lδ + Lγ + Lnl, (1)

where the nucleon Lagrangian reads

Li = ψ̄i[γμiDμ − M∗]ψi, (2)

with

iDμ = i∂μ − 
ωωμ − 
ρ

2
τ · ρμ − e

1 + τ3

2
Aμ, (3)

M∗ = M − 
σσ − 
δτ · δ, (4)

and the electron Lagrangian is given by

Le = ψ̄e[γμ (i∂μ + eAμ) − me]ψe. (5)

The meson and electromagnetic Lagrangian densities are

Lσ = 1
2

(
∂μσ∂μσ − m2

σ σ 2
)
,

Lω = 1
2

(− 1
2�μν�

μν + m2
ωωμωμ

)
,

Lρ = 1
2

(− 1
2 Rμν · Rμν + m2

ρρμ · ρμ
)
,

Lδ = 1
2

(
∂μδ∂μδ − m2

δδ
2),

Lγ = − 1
4FμνF

μν,

Lnl = − 1
3!κσ 3 − 1

4!λσ 4 + 1
4!ξ
4

ω(ωμωμ)2

+�ω
2
ω
2

ρωνω
νρμ · ρμ,

where �μν = ∂μων − ∂νωμ, Rμν = ∂μρν − ∂νρμ − 
ρ(ρμ ×
ρν), and Fμν = ∂μAν − ∂νAμ. The four coupling parameters

σ , 
ω, 
ρ , and 
δ of the mesons to the nucleons are
density dependent in the relativistic density-dependent models
considered; namely, DD-ME2 [40] and DD-MEδ [41]. The

TABLE I. Nuclear matter properties at saturation: density (n0),
energy (E0), incompressibility (K0), skewness (Q0), symmetry
energy (Esym), and symmetry energy slope parameter (L).

Model n0 E0 K0 Q0 Esym L

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

NL3 0.148 −16.24 270.7 203 37.3 118.3
TM1 0.145 −16.26 280.4 −295 36.8 110.6
FSU 0.148 −16.30 230.0 −523 32.6 60.5
NL3ωρ 0.148 −16.30 272.0 203 31.7 55.2
DD-MEδ 0.152 −16.12 219.1 −741 32.4 52.9
DD-ME2 0.152 −16.14 250.8 478 32.3 51.4
IU-FSU 0.155 −16.40 231.2 −288 31.3 47.2

nonlinear term Lnl is absent in these models. In all the other
models, NL3 [33], TM1 [34], NL3ωρ [35], FSU [36], and
IU-FSU [37], the couplings are constant and at least some
of the nonlinear terms of Lnl are included. In the above
Lagrangian density τ is the isospin operator. For reference,
we give in Table I the main properties of the above models at
saturation density. We will discuss how sensitive the structure
of the nonhomogeneous inner crust of a neutron star is to the
properties of the equation of state (EoS).

We use the Thomas–Fermi approximation to describe the
nonuniform npe matter inside the Wigner–Seitz unit cell,
which is taken to be a sphere, a cylinder, or a slab in three, two,
and one dimensions [7,9]. In this approximation npe matter
is assumed to be locally homogeneous and, at each point,
its density is determined by the corresponding local Fermi
momenta. In three dimensions (3D) we consider spherical
symmetry and in two-dimensional (2D) symmetry we assume
axial symmetry around the z axis. In the TF approximation
of nonuniform npe matter, fields are assumed to vary slowly
so that baryons can be treated as moving in locally constant
fields at each point [6,7]. The calculation starts from the grand
canonical potential density,

ω = ω ({fi+} , {fi−} , σ,ω0,ρ30,δ0)

= E − T S −
∑

i=n,p,e

μini, (6)

where {fi+} ({fi−}) with i = n,p,e stands for the neutron,
proton, and electron positive (negative) energy distributions,
and S and E are the total entropy and energy densities,
respectively [9]. The equations of motion for the meson fields
(see, e.g., Ref. [7] for details) follow from the variational
conditions

δ�

δσ (r)
= δ�

δω0 (r)
= δ�

δρ30 (r)
= δ�

δδ0 (r)
= 0, (7)

where � = ∫
d3rω. The numerical algorithm for the de-

scription of the neutral npe matter at finite temperature is
a generalization of the T = 0 case which is discussed in
detail in Refs. [7,9]. The Poisson equation is always solved by
using the appropriate Green’s function according to the spatial
dimension of interest, and the Klein–Gordon equations are
solved by expanding the meson fields in a harmonic oscillator
basis with one, two, or three dimensions based on the method

045803-2



EQUATION OF STATE AND THICKNESS OF THE INNER . . . PHYSICAL REVIEW C 90, 045803 (2014)

presented in Refs. [7,9]. The interested reader is referred to
these works for details of the calculation.

III. RESULTS

In this section we present and discuss the results obtained
for the different models considered. The section is divided
into three parts. In the first part our attention is focused on
the sensitivity of the thickness and structure of the inner crust
to the properties of the EoS. In the second part we discuss

TABLE II. Central density ρc and energy density Ec, distance to
the center of the star at the phase transitions: homogeneous matter-
slab phase Rh-s, slab-phase–rod-phase Rs-r, rod-phase–droplet-phase
Rr-d, droplet-phase–outer-crust Rd-BPS, and radius of a 1M�, 1.44M�,
1.6M� and maximum-mass neutron star for the all the RMF models
considered. For NL3 and TM1 there are neither slabs nor rods:
the values marked with an asterisk correspond to the homogeneous
matter-droplet phase transition.

M ρc Ec Rh-s Rs-r Rr-d Rd-BPS R

(M�) (fm−3) (fm−4) (km) (km) (km) (km) (km)

NL3
1.00 0.226 1.121 12.568∗ 13.516 14.543
1.44 0.276 1.390 13.341∗ 13.980 14.637
1.60 0.293 1.489 13.534∗ 14.094 14.663
2.78 0.669 4.415 12.978∗ 13.141 13.292

TM1
1.00 0.243 1.208 12.425∗ 13.411 14.408
1.44 0.328 1.674 13.012∗ 13.648 14.267
1.60 0.366 1.893 13.089∗ 13.639 14.158
2.18 0.851 5.345 11.937∗ 12.169 12.381

FSU
1.00 0.353 1.774 11.081 11.146 11.230 11.940 12.818
1.44 0.543 2.865 11.342 11.382 11.432 11.855 12.346
1.60 0.688 3.770 11.147 11.179 11.219 11.554 11.943
1.73 1.151 7.047 10.320 10.342 10.370 10.600 10.866

NL3ωρ

1.00 0.255 1.259 11.394 11.469 11.578 12.452 13.421
1.44 0.296 1.483 12.393 12.447 12.525 13.135 13.779
1.60 0.312 1.574 12.666 12.714 12.783 13.325 13.891
2.76 0.686 4.486 12.643 12.659 12.681 12.851 13.011

DD-MEδ

1.00 0.405 2.040 10.550 10.602 10.684 11.423 12.099
1.44 0.552 2.890 10.913 10.945 10.996 11.442 11.837
1.60 0.627 3.360 10.901 10.927 10.969 11.341 11.661
1.96 1.214 7.938 9.843 9.855 9.876 10.052 10.194

DD-ME2
1.00 0.289 1.435 11.177 11.217 11.297 12.198 13.005
1.44 0.347 1.755 12.021 12.049 12.104 12.716 13.234
1.60 0.371 1.895 12.232 12.256 12.305 12.844 13.291
2.49 0.817 5.345 11.717 11.725 11.743 11.931 12.073

IU-FSU
1.00 0.333 1.665 10.931 11.014 11.082 11.777 12.616
1.44 0.448 2.312 11.529 11.583 11.628 12.076 12.595
1.60 0.508 2.676 11.586 11.634 11.672 12.053 12.482
1.94 1.026 6.353 10.763 10.785 10.807 11.015 11.242

the effect of L on the density profile of the crust. Finally, in
the last part we analyze the effect of finite temperature on the
crust and the pasta phase. The discussion is done for neutron
stars with masses M = 1M�, 1.44M�, and 1.6M�. The first
two values have been chosen as representative masses since
1M� is smaller than the smallest neutron star mass detected
until now and 1.44M� is the mass of the famous Hulse–Taylor
pulsar. The value of 1.6M� is chosen to be slightly smaller
than the maximum mass predicted by the FSU model. Results
for the maximum neutron star mass configuration have also
been obtained for all the models.

A. Thickness and structure of inner crust

We present here results for the pasta phase of β-equilibrium
nonhomogeneous matter obtained within our TF calculation
at T = 0. As done by many authors, we assume that, for
some given conditions (temperature, density, proton fraction,
or chemical equilibrium), only a single geometry will be
the physical one, i.e., the one with smaller free energy in
comparison with homogeneous β-stable matter. At least five
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FIG. 1. (Color online) (top panel) Crust (full symbols) and inner-
crust (empty symbols) thickness. (bottom panel) Thickness of
the nondroplet pasta (ndpasta; full symbols) and the slab (empty
symbols) phases. The symbol shape identifies the star mass: 1M�
(upward triangles), 1.44M� (circles), 1.6M� (downward triangles),
and maximum mass (squares).
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FIG. 2. (Color online) (top panel) Fraction of the crust occupied
by the the inner crust. (middle panel) Fraction of the inner crust
occupied by the nondroplet pasta (ndpasta) phase. (bottom panel)
Fraction of the nondroplet pasta phase occupied by the slab phase.
The symbol shapes have the same meaning as in Fig. 1.

different geometries could in principle occur: droplets, rods,
slabs, tubes, and bubbles. However, due to the β equilibrium
the proton fraction is very small and only three of them are
found to be energetically favorable: droplets, rods, and slabs.
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FIG. 3. (Color online) Correlation between the inner crust thick-
ness and the ratio Esym/K0 for star with M = 1M�, 1.44M�, 1.6M�.
The slope of the three straight lines is similar ∼ − 7.6 ± 1.95 km.

These structures form a regular lattice that we study in the
WS approximation. The TF approach is semiclassical and
does not include shell effects. Nevertheless, it was recently
shown [12] that the main properties of the WS cells obtained
within a TF calculation agree with Hartree–Fock (HF) [42] and
Hartree–Fock–Boguliobov (HFB) [43] calculations, which
allow the inclusion of shell effects. For a comparison of HFB
and TF results the interested reader is referred to Ref. [12].

The complete stellar matter EoS is built by properly joining
the inner-crust part with the outer-crust and the core parts. In
this work, we assume that the core of the star is made only
of nucleons, electrons, and muons, and its EoS is obtained
also in the RMF approach imposing both β equilibrium and
charge neutrality. For the outer crust we consider the well-
known Baym–Pethick–Sutherland (BPS) EoS [44]. The TOV
equations are then solved to determine the density profile of
the neutron stars with the masses M = 1M�, 1.44M�, 1.6M�,
and Mmax mentioned before.

In Table II we show for the different models some of the
features of the inner-crust structure. All the models have a slab
and a rod phase which together define the thickness of the
nondroplet pasta, except for the NL3 and TM1 models. For
these two models the inner crust is only formed by droplets in
a neutron gas background. This is, as shown in Ref. [11], due
to the high value of L for these two models, 118 and 110 MeV,
respectively.

In order to help the discussion, the results of Table II are
also plotted in Figs. 1 and 2. In Fig. 1, the thickness of the total
crust (full symbols) and inner crust (empty symbols) are shown
in the top panel, and the thickness of the total nondroplet pasta
phase (full symbols) and the slab phase (empty symbols) are
plotted in the bottom panel. In Fig. 2 we plot the ratios of
these quantities: the fraction of the inner crust with respect
to the total crust (top panel), the fraction of the nondroplet
pasta extension with respect to the total inner crust (middle
panel) and the fraction of slab phase size with respect to the
total nondroplet phase (bottom panel). The different models
are ordered according to the magnitude of the slope L, which
increases from left to right.
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TABLE III. Density transitions in the pasta phase at T = 0 and
melting temperature of the different pasta phases. For the transition
to uniform matter we also show the values obtained with a dynamical
spinodal calculation (DS).

Model ρh-s ρs-r ρr-d Ts Tr Tm

(fm−3) (fm−3) (fm−3) (MeV) (MeV) (MeV)

TF DS
NL3 0.0579 0.0550 4.7
TM1 0.0626 0.0602 5.1
FSU 0.0751 0.0745 0.0673 0.0580 2.5 3.5 6.5
NL3ωρ 0.0835 0.0838 0.0751 0.0642 3.0 3.5 5.8
DD-MEδ 0.0766 0.0720 0.0626 2.0 3.0 6.6
DD-ME2 0.0735 0.0688 0.0611 1.0 2.0 5.4
IU-FSU 0.0894 0.0855 0.0626 0.0471 9.0 9.5 9.8

From Fig. 1 we see that no clear trend is found in
the thickness of the different parts as a function of L.
Instead, we found (see Fig. 3) that the size of the total
crust is mainly defined by the incompressibility of the EoS

(cf. Table I). In particular, the models NL3, NL3ωρ, TM1,
followed by DDME2, have the largest crusts and the largest
incompressibilities. This is at variance with the results of
Ref. [45] where, within the same model, the crust is calculated
changing the isovector properties of the EoS; in particular,
Esym and L. In this calculation the largest crusts occur
for L = 70 to 80 MeV. In general, a systematic behavior is
observed with the mass of the star: the larger the mass, the
thinner the crust and its sublayers. For instance, in all cases
for M = 1 M� the crust thickness lies between 1.5 and 2
km, while for the maximum mass configurations it is mainly
below 0.5 km.

The top panel of Fig. 2 shows that the inner crust occupies
∼50% to 60% of the total crust size. The lower values were
obtained with IUFSU, FSU, TM1, and NL3 with the smallest
inner crust, ∼50%, while the largest values occur with the
density-dependent parametrizations. Once more, a systematic
dependence upon the star mass is found: the fraction of the
crust occupied by the inner crust increases with the star mass
and there is a difference of ∼ + 2% between a star with 1M�
and 1.6M�.
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GRILL, PAIS, PROVIDÊNCIA, VIDAÑA, AND AVANCINI PHYSICAL REVIEW C 90, 045803 (2014)

TABLE IV. Equation of state of the inner crust for the seven models considered. The energy density is given in units of 10−1 fm−4, while
the pressure is in units of 10−3 fm−4.

ρ (fm−3) NL3 TM1 FSU NL3ωρ DD-MEδ DD-ME2 IU-FSU

E P E P E P E P E P E P E P

0.0860 4.13948 1.60166
0.0840 4.04284 1.57348
0.0820 3.94154 2.52403 3.94621 1.54348
0.0800 3.84480 2.41543 3.84959 1.50902
0.0780 3.74809 2.30744 3.75297 1.47400
0.0760 3.65141 2.20122 3.65126 2.04088 3.65637 1.43842
0.0740 3.55475 2.11172 3.55465 1.93136 3.55977 1.40239
0.0720 3.45832 1.86234 3.45812 2.01229 3.45807 1.82398 3.45856 2.06135 3.46319 1.36591
0.0700 3.36175 1.76038 3.36151 1.91484 3.36152 1.73271 3.36193 1.95675 3.36661 1.32916
0.0680 3.26521 1.66110 3.26494 1.81906 3.26500 1.63419 3.26533 1.86477 3.27005 1.29192
0.0660 3.16870 1.57890 3.16839 1.72541 3.16850 1.53902 3.16875 1.76524 3.17350 1.25411
0.0640 3.07221 1.48951 3.07187 1.63348 3.07203 1.44694 3.07221 1.66744 3.07696 1.21646
0.0620 2.97575 1.40336 2.97537 1.54804 2.97559 1.35825 2.97570 1.57160 2.98043 1.17734
0.0600 2.87932 1.31999 2.87891 1.46017 2.87918 1.27656 2.87922 1.48170 2.88391 1.15722
0.0580 2.77736 1.48251 2.78292 1.24043 2.78247 1.37452 2.78280 1.19477 2.78276 1.39043 2.78740 1.11951
0.0560 2.67959 1.36758 2.68110 1.33925 2.68654 1.16654 2.68607 1.29055 2.68644 1.11632 2.68634 1.30149 2.69090 1.08100
0.0540 2.58343 1.24190 2.58489 1.20460 2.59019 1.09281 2.58969 1.20876 2.59011 1.04117 2.58995 1.21468 2.59442 1.04177
0.0520 2.48731 1.10988 2.48873 1.07826 2.49387 1.02186 2.49334 1.12899 2.49381 0.96925 2.49359 1.13056 2.49795 1.00189
0.0500 2.39124 0.98623 2.39262 0.96135 2.39757 0.95359 2.39703 1.05140 2.39753 0.90079 2.39727 1.04932 2.40150 0.96104
0.0480 2.29522 0.87140 2.29656 0.85336 2.30130 0.88792 2.30074 0.97589 2.30129 0.83526 2.30097 0.97047 2.30506 0.91959
0.0460 2.19925 0.76548 2.20053 0.75398 2.20505 0.82493 2.20448 0.90271 2.20506 0.77288 2.20471 0.89456 2.20864 0.88260
0.0440 2.10332 0.66838 2.10455 0.66326 2.10884 0.76421 2.10826 0.83187 2.10887 0.71384 2.10848 0.82153 2.11224 0.83977
0.0420 2.00743 0.57990 2.00861 0.58036 2.01265 0.70583 2.01207 0.76345 2.01270 0.65749 2.01228 0.75175 2.01586 0.79629
0.0400 1.91158 0.49988 1.91270 0.50581 1.91648 0.65009 1.91591 0.69757 1.91656 0.60433 1.91612 0.68485 1.91950 0.75215
0.0380 1.81577 0.42802 1.81683 0.43892 1.82035 0.59632 1.81978 0.63438 1.82044 0.55375 1.81999 0.62125 1.82316 0.70710
0.0360 1.71999 0.36366 1.72099 0.37922 1.72424 0.54503 1.72368 0.57417 1.72435 0.50611 1.72389 0.56110 1.72684 0.66164
0.0340 1.62425 0.30710 1.62519 0.32641 1.62816 0.49573 1.62762 0.51660 1.62828 0.46111 1.62782 0.50414 1.63055 0.61573
0.0320 1.52854 0.25764 1.52941 0.27974 1.53211 0.44880 1.53159 0.46202 1.53224 0.41839 1.53179 0.45077 1.53429 0.56936
0.0300 1.43286 0.21487 1.43366 0.23935 1.43609 0.40395 1.43560 0.41054 1.43623 0.37826 1.43578 0.40065 1.43805 0.52279
0.0280 1.33721 0.17828 1.33793 0.20443 1.34009 0.36143 1.33963 0.36219 1.34024 0.34020 1.33981 0.35413 1.34185 0.47616
0.0260 1.24158 0.14742 1.24223 0.17453 1.24413 0.32094 1.24370 0.31724 1.24428 0.30452 1.24388 0.31080 1.24568 0.42990
0.0240 1.14597 0.12168 1.14655 0.14904 1.14819 0.28293 1.14781 0.27538 1.14835 0.27072 1.14797 0.27102 1.14955 0.38403
0.0220 1.05038 0.10070 1.05089 0.12750 1.05229 0.24695 1.05194 0.23687 1.05244 0.23894 1.05210 0.23433 1.05345 0.33888
0.0200 0.95481 0.08382 0.95525 0.10921 0.95642 0.21340 0.95611 0.20175 0.95656 0.20879 0.95625 0.20094 0.95740 0.29484
0.0180 0.85925 0.07034 0.85962 0.09385 0.86058 0.18198 0.86032 0.16967 0.86071 0.18046 0.86044 0.17033 0.86138 0.25222
0.0160 0.76371 0.05970 0.76401 0.08068 0.76478 0.15294 0.76455 0.14068 0.76489 0.15360 0.76467 0.14261 0.76542 0.21158
0.0140 0.66817 0.05118 0.66842 0.06917 0.66901 0.12598 0.66883 0.11489 0.66910 0.12837 0.66892 0.11747 0.66950 0.17301
0.0120 0.57265 0.04399 0.57284 0.05873 0.57327 0.10120 0.57313 0.09162 0.57335 0.10445 0.57321 0.09461 0.57364 0.13703
0.0100 0.47714 0.03760 0.47697 0.04799 0.47758 0.07870 0.47748 0.07095 0.47764 0.08210 0.47754 0.07389 0.47783 0.10429
0.0095 0.45327 0.03608 0.45310 0.04561 0.45366 0.07338 0.45357 0.06618 0.45372 0.07673 0.45362 0.06897 0.45389 0.09659
0.0090 0.42939 0.03451 0.42923 0.04318 0.42975 0.06816 0.42966 0.06157 0.42980 0.07145 0.42971 0.06421 0.42995 0.08909
0.0085 0.40552 0.03289 0.40536 0.04074 0.40584 0.06309 0.40576 0.05706 0.40588 0.06624 0.40581 0.05955 0.40602 0.08184
0.0080 0.38165 0.03132 0.38149 0.03836 0.38193 0.05818 0.38186 0.05270 0.38197 0.06122 0.38190 0.05504 0.38209 0.07485
0.0075 0.35777 0.02970 0.35763 0.03588 0.35802 0.05336 0.35796 0.04840 0.35806 0.05620 0.35800 0.05058 0.35816 0.06806
0.0070 0.33390 0.02797 0.33376 0.03340 0.33412 0.04870 0.33407 0.04429 0.33415 0.05139 0.33410 0.04632 0.33424 0.06152
0.0065 0.31003 0.02630 0.30990 0.03096 0.31022 0.04414 0.31017 0.04024 0.31025 0.04657 0.31021 0.04211 0.31033 0.05529
0.0060 0.28617 0.02453 0.28604 0.02853 0.28633 0.03978 0.28629 0.03639 0.28635 0.04196 0.28631 0.03801 0.28642 0.04916
0.0055 0.26230 0.02270 0.26218 0.02605 0.26243 0.03552 0.26240 0.03264 0.26246 0.03750 0.26242 0.03406 0.26251 0.04338
0.0050 0.23843 0.02088 0.23832 0.02351 0.23855 0.03137 0.23852 0.02899 0.23856 0.03309 0.23854 0.03015 0.23861 0.03791
0.0045 0.21457 0.01895 0.21447 0.02108 0.21466 0.02742 0.21464 0.02544 0.21468 0.02889 0.21466 0.02645 0.21471 0.03269
0.0040 0.19071 0.01703 0.19061 0.01855 0.19078 0.02362 0.19076 0.02204 0.19079 0.02488 0.19078 0.02286 0.19082 0.02777
0.0035 0.16685 0.01500 0.16677 0.01606 0.16691 0.02002 0.16689 0.01880 0.16692 0.02098 0.16690 0.01941 0.16694 0.02316
0.0030 0.14299 0.01297 0.14292 0.01363 0.14304 0.01657 0.14303 0.01571 0.14304 0.01733 0.14304 0.01612 0.14306 0.01880
0.0025 0.11914 0.01095 0.11908 0.01125 0.11917 0.01333 0.11916 0.01272 0.11918 0.01389 0.11917 0.01297 0.11919 0.01485
0.0020 0.09529 0.00892 0.09524 0.00892 0.09532 0.01034 0.09531 0.00998 0.09532 0.01069 0.09531 0.01014 0.09533 0.01125
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TABLE IV. (Continued.)

ρ (fm−3) NL3 TM1 FSU NL3ωρ DD-MEδ DD-ME2 IU-FSU

E P E P E P E P E P E P E P

0.0015 0.07145 0.00694 0.07141 0.00674 0.07146 0.00755 0.07146 0.00745 0.07147 0.00780 0.07146 0.00745 0.07147 0.00806
0.0010 0.04761 0.00507 0.04759 0.00466 0.04762 0.00517 0.04762 0.00517 0.04762 0.00532 0.04762 0.00507 0.04763 0.00537
0.0009 0.04285 0.00466 0.04283 0.00431 0.04286 0.00476 0.04285 0.00476 0.04285 0.00487 0.04286 0.00466 0.04286 0.00487
0.0008 0.03808 0.00431 0.03806 0.00395 0.03809 0.00431 0.03809 0.00436 0.03809 0.00441 0.03809 0.00426 0.03809 0.00441
0.0007 0.03332 0.00395 0.03330 0.00360 0.03332 0.00395 0.03332 0.00400 0.03332 0.00400 0.03332 0.00385 0.03332 0.00400
0.0006 0.02855 0.00365 0.02854 0.00324 0.02856 0.00355 0.02855 0.00360 0.02856 0.00360 0.02856 0.00350 0.02856 0.00355
0.0005 0.02379 0.00334 0.02378 0.00289 0.02379 0.00314 0.02379 0.00324 0.02379 0.00324 0.02379 0.00314 0.02379 0.00319
0.0004 0.01902 0.00299 0.01902 0.00258 0.01903 0.00284 0.01903 0.00289 0.01903 0.00289 0.01903 0.00279 0.01903 0.00284
0.0003 0.01426 0.00258 0.01426 0.00228 0.01426 0.00248 0.01426 0.00253 0.01426 0.00253 0.01426 0.00243 0.01426 0.00248

Next, we come to the size of the nondroplet pasta phase:
the phases that correspond to a frustrated system. In a 1M�
star the nondroplet pasta size is smaller than 200 m (Fig. 1,
bottom). Its relative size is slightly smaller in less massive
stars (Fig. 2, middle). Within the nondroplet pasta phase, we
find in our results slab and rod phases. The slab fraction
corresponds to ∼35% to 40% of the total nondroplet pasta
phase for all the models, apart from IU-FSU, where it is
almost 55% and DDME2 with ∼30% to 45% (Fig. 2, bottom).
The different behavior of IU-FSU is mainly due to the small
proton fraction in the cluster. IU-FSU has a small value of
the symmetry energy slope at subsaturation densities, which
affects the surface tension giving quite a high surface tension;
see Ref. [12], and preventing the neutron drip. A small proton
fraction in the cluster favors the slab geometry with respect to
the rod geometry because the surface energy decreases with
the proton fraction. On the contrary, a smaller surface tension
favors the neutron drip. Clusters are more isospin symmetric
and the droplet geometry is favored. In Ref. [12] it is shown
that the DDME2 and NL3 models have the smallest surface
energies for nuclear symmetric matter. This could explain the
behavior of DDME2 which has the smallest fraction of the
nondroplet pasta phase.

In Ref. [45] the effect of the nuclear pasta on the crustal
shear phenomena was studied. In particular, two limits were
considered; namely, the pasta as an elastic solid and as a
liquid. In the first case the shear modulus was calculated
at the crust-core transition while in the second case it was
done at the transition from the droplet phase to the nondroplet
pasta phase. For models with no nondroplet pasta phase, such
as NL3 and TM1, there is no difference between these two
pictures. However, models with a symmetry energy slope L
below 80 MeV have a nondroplet pasta phase, and the ratio of
shear modulus to pressure can be as high as two times larger
if the pasta is considered an elastic solid and L = 40 MeV. An
intermediate picture would consider the rod phase as an elastic
solid and the slab phase as a liquid phase.

Comparing our results with those discussed in Ref. [45], a
couple of comments are in order. First, the incompressibility
of the EoS seems to have an important influence on the total
crust, so that DDME2 with L = 51 and K0 = 250.8 MeV has
a larger crust than FSU with L = 60 and K0 = 230 MeV.
Second, except for NL3ωρ with a large K0, all the other

models predict the nondroplet pasta phase of the 1.44M�
star with a thickness of ∼80 m, similar to that calculated
in Ref. [45].

Crustal thicknesses were determined in several recent
papers [18,19,39,45,46]. In these works the crust-core bound-
ary, essential to determine the crustal thickness, was ob-
tained from the instability against small-amplitude density
fluctuations [18,39] or the compressible liquid drop model
(CLDM) [19,45,46]. All the works consider the BPS EoS for
the outer crust. The inner crust EoS was obtained within the
CLDM and the Wigner–Seitz approximation in Refs. [45,46]
and a polytropic component of the EoS that interpolates
between the neutron drip density and the crust-core den-
sity [18,39].

Comparing our results for the crust thickness to those of the
above works we conclude that there is an overall agreement.
For M = 1.44 M� our crust thickness lies between 0.892 km
for DDME2 (the only model giving a thickness below 1 km)
and 1.386 km for NL3ωρ with L = 55 MeV. Our result for
IUFSU agrees with Ref. [18].

Within the set of models chosen we do not get a thickness
as large as those obtained in Ref. [18], comparing with the
1.4M� results. This could be due to the fact that the authors
study the parametrizations that give the largest pressures at the
crust core, which are close to some of the parametrizations
of the present study but not the same. However, in Ref. [39]
some of the same parametrizations we consider are studied
by using the same method and larger thicknesses than ours
are obtained: 2.03, 1.76, and 1.48 km for NL3ωρ with �v =
0.03, NL3, and FSU, respectively. These numbers should
be compared with the numbers we obtain: 1.39, 1.30, and
1.00 km, respectively. The method applied by these authors to
determine the crust-core transition gives results very similar
to the Thomas–Fermi approximation; see Table III. Therefore,
it could be that the polytropic parametrization of the inner-
crust EoS is the responsible for the differences in the crust
thicknesses.

Next we compare our calculations of crust thickness with
results obtained from a systematic study that uses neutron
star observations [19]. We must restrict ourselves to the
models with L < 60 MeV, i.e., we exclude TM1 and NL3.
For all other models the crust-core transition density ρt

lies within 0.0751 fm−3 (FSU) and 0.0855 fm−3 (IUFSU)

045803-7
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and, therefore, we take the numbers given in Ref. [19]
for ρt = 0.08 fm−3. Our values are compatible with those
obtained by using a quantum Monte Carlo EoS calculated
with chiral effective theory interactions, at saturation den-
sity or below and above saturation density an EoS formed
by three piecewise polytropes, designed by model A in
Ref. [19].

As mentioned before, both the incompressibility and the
density dependence of the symmetry energy affect the size of
the inner crust. We obtained a possible correlation between the
ratio Esym/K0 and the inner-crust thickness. This correlation
is shown in Fig. 3. This should be further investigated and
confirmed with a larger set of models. The correlation is worse
for the 1.6 M� star, probably because this mass lies closer to
the maximum-mass configuration. The slope obtained for the
three star masses analyzed is ∼ − 7.6 ± 1.95 km.

B. Density profile of crust

In Fig. 4 we present the profile of stars with masses M =
1M�, 1.44M�, 1,60M�, and Mmax. The whole star profile is
shown for the models NL3 and FSU in Figs. 4(a) and 4(b),
respectively, since these two models predict the largest and the
smallest maximum-mass configuration.

All the other panels of Fig. 4 show, instead, for the whole
set of models under discussion, only the last ∼2 km of the star
profile close to the surface. The results determined with the
same EoS presented in the previous section (i.e., including the
TF calculation of the inner crust) are represented by a solid
black line, and the transitions between the different phases
of the inner crust are identified with full black symbols. For
comparison, the result obtained joining the BPS EoS directly
to the homogeneous stellar matter EoS (red dashed lines) is
also shown. In this case, the transition from the BPS to the
homogeneous matter is shown by a red empty symbol. The
EoSs of the inner crust obtained within the TF framework and
used to calculate the crust profiles are given in Table IV.

Within the same model, a larger mass corresponds to
a steeper profile, as expected, due to the larger gravita-
tional force. In models with a large incompressibility, like
NL3, TM1, NL3ωρ, and DDME2, and taking only the
1M�, 1.44M�, and 1.6M� stars, the star with the largest mass
has the inner crust at a larger distance from the center. On the
contrary, in the case of FSU, IU-FSU, and DDMEδ there is a
larger concentration of mass at the center because the EoS is
softer, and the crust is pushed more strongly towards the center
of the star: this explains why, for IU-FSU and DDMEδ, the
profiles of the 1.44M� and 1.6M� stars are almost coincident,
and for FSU the profiles of the 1M� and 1.44M� stars cross,
while the crust of the 1.6M� one has the smallest distance to
the star center. Notice that, for NL3, TM1, and DDME2, the
maximum-mass star also has the smallest radius.

One interesting conclusion is that taking into account the
correct description of the inner crust in the total stellar EoS is
more important for the softer EoS and with smaller slopes L.
However, on the whole, using the BPS EoS for the outer crust
and an EoS of homogeneous stellar matter for the inner crust
and core gives good results for the stellar profiles.
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FIG. 5. (Color online) (top panel) Density range of the crust as
a function of temperature for all models considered in the present
study. (middle and bottom panels) Size of the pasta phases versus T

for DDME2 and IU-FSU. In these two panels, the dotted (dashed)
line represents the transition droplet rod (rod slab).

C. Finite-temperature effects on crust

In this section we present the results of a finite-temperature
calculation of the crust size for β-equilibrium matter. Our
main objectives are (i) to determine the critical temperatures
below which clusterization should be taken into account;
(ii) to verify how temperature affects the pasta phase,
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FIG. 6. (Color online) (top panel) Density range of the crust as a
function of temperature for some of the relativistic mean-field models
considered in the present study, obtained by using a TF calculation
(thin lines) and a DS calculation (thick lines).

particularly the transition between the different geometries
and the size of the cells; and (iii) to determine the melting
temperature of clusters with different geometry.

We perform the study by using both a finite-temperature
TF calculation of the pasta phase and the finite-temperature
dynamical approach within the relativistic Vlasov formal-
ism [24–26,47]. In the latter case, the crust-core transition is
defined by the intersection between the β-equilibrium EoS and
the dynamical spinodal (DS). The cluster size is identified with
half the wavelength of the density fluctuation [24,25,27]. The
results are shown in Fig. 5 for the TF calculation; a comparison
between the TF and the DS calculation is done in Fig. 6 and
in Table III.

The critical temperature is model dependent and both
the density dependence of the symmetry energy and the
incompressibility affect this quantity: a smaller value of L and
a smaller K0 favor clusterization at larger temperatures. The
results obtained within the TF approach are compatible with
the estimations calculated by using the dynamical calculation
at the bottom of the inner crust [9]. Close to the outer crust the
dynamical calculations estimations give much larger densities.
This could be expected, considering that in the TF calculation
the inner crust in this region is formed by small droplets
inside cells with a much larger radius. On the other hand,
the dynamical calculation considers always that the cluster
size is half the WS cell and, therefore, has a much larger
surface-energy contribution. Our results are compatible with
those obtained in Ref. [27] (see Fig. 11 of this reference), where
most of the results have been obtained for Skyrme forces.

From the middle and lower panels of Fig. 5, we observe
that the droplet-rod and the rod-slab transition densities do not
depend on the temperature. However, the melting temperature
of the three geometries is different, with the droplets surviving
up to higher temperatures.

In the present calculation we suppose that the WS cells
exist until the clusters melt. This is an approximation that
will probably break down close to the melting point due

to thermal fluctuations and, therefore, the numbers obtained
should be interpreted as an upper limit. The problem of the
effect of thermal fluctuations on the pasta structures was
studied in Refs. [28,29] and it was shown that thermally
induced displacements of the rod-like and slab-like nuclei
can melt the lattice structure when these displacements are
larger than the space available between the cluster and the
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boundary of the WS cell. Moreover, it was also shown that
slab-like nuclei would more easily be dissolved, while the
rod like were expected to survive at temperatures relevant for
supernova cores. In the present calculation, except for IU-FSU,
all models predict the melting of the slabs at a temperature
T < 3 MeV, while the rods will melt at temperatures 1 MeV
higher; see Table III. Neglecting thermal fluctuations, we
expect that clusters will survive in β-equilibrium matter at
temperatures below 5 to 6 MeV, approximately twice the
melting temperature of nondroplet structures. According to
the results of Ref. [21] the appearance of the nonspherical
pasta structures will affect the cooling by making matter more
transparent to low-energy neutrino diffusion and increase the
structure factor for larger-energy neutrinos.

We next analyze the effect of the temperature on the
size of the WS cells. In Fig. 7 we plot the WS radius as
a function of the temperature for all the models. We select
three reference densities: ρ = 2.76 × 10−4 and 2.02 × 10−2

fm−3, at which the clusters are spherical for all models, and
ρ = 6.73 × 10−2 fm−3, where all are in rod phase except
IU-FSU, which is in a slab phase. In Fig. 8 we focus on
the TM1 model, which only shows spherical clusters, and
plot the radius of the WS cell versus density at different
temperatures.

In general, for the densities shown, the WS radius increases
with the temperature, but for ρ = 2.02 × 10−2 fm−3 the RWS

suffers a small decrease of the order of 0.5 fm below T = 3 to 4
MeV. The surface energy decreases with temperature and,
as a result, we could expect that the Wigner–Seitz radius
would decrease with temperature. This, in fact, occurs for
temperatures well below the critical transition temperature to
homogeneous matter, corresponding to the behavior below
T � 4 MeV in Fig. 7, middle panel for most of the models
considered, or to the IUFSU below 7 MeV and NL3ωρ below
2 MeV in the bottom panel of Fig. 7. However, for temperatures
close to the critical temperature, the Wigner–Seitz radius
increases most probably due to the restrictions of the present
calculation which does not allow the freedom for the cluster
to choose the shape that minimizes the free energy. A similar
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FIG. 8. (Color online) Radius of the cells as a function of matter
density for the TM1 model within the DS calculation (thick lines)
and TF calculation (thin lines).

behavior was obtained within a different formalism; namely,
considering plane-wave density fluctuations and relating the
wave number of the unstable modes with the Wigner–Seitz
cell size. In Refs. [27] and [26], both within the framework of
the nonrelativistic Skyrme interactions and the RMF nuclear
models, the Wigner–Seitz cell increases with the temperature.
In this case the size of the Wigner–Seitz cell is identified
to the wavelength of the perturbation, and the cluster size
corresponds to half wavelength, and the system does not have
the freedom to have the size of the cluster and of the cell
uncorrelated.

We have performed a calculation of the WS radius within
a DS calculation for TM1 and T = 0, and 1 MeV (thick lines
in Fig. 8). TF and DS give similar sizes for T = 0 MeV at
the bottom of the inner crust, where the dynamical calculation
predicts nonhomogeneous matter. However, in general the DS
predictions are quite different from the TF results; in particular;
quite smaller at T = 0 MeV and larger at finite T .

IV. CONCLUSIONS

In the present work the inner crust, including the non-
spherical pasta phases, was calculated within a self-consistent
Thomas–Fermi approach [7,8] for β-equilibrium matter at zero
and finite temperature. Several relativistic nuclear models,
both with constant and density-dependent couplings, were
considered.

All models, except NL3 and TM1, both with a symmetry
energy slope at saturation above 110 MeV, predict the
existence of lasagna-like structures that may have an important
contribution to the specific heat of the crust [48].

The effect of the inner crust EoS on the neutron star profiles
was also analyzed. It was verified that a smaller slope gives
rise to a steeper crust density profile and a larger inner crust
with respect to the total crust. It may also enhance the slab
phase size as observed in IU-FSU.

It was observed that the star profile obtained by using the
TF inner-crust calculation or the homogeneous EoS above
the outer-inner–crust transition did not differ much except for
the models with a large symmetry-energy slope.

The finite-temperature calculation of the pasta phase in
β equilibrium has shown that nonhomogeneous matter is
expected for temperatures below 5 to 6 MeV; the only
exception was obtained with the parametrization IU-FSU
which only melts at 9.5 MeV. Nonspherical structures, rod
like and slab like, melt above 2 to 3.5 MeV and 1 to 3 MeV,
respectively. It was also verified that the onset density of
the rod-like and the slab-like structures is independent of
temperature.

Finally, it was shown that a DS calculation gives a
good prediction of the crust-core transition, even at finite
temperature. However, considering the size of the WS cells,
this formalism fails except for T = 0 MeV close to the
crust-core transition.
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