

Linear Algebra and its Applications 311 (2000) 153-160

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

The inertia of Hermitian block matrices with zero main diagonal

C.M. da Fonseca*

Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal Received 24 February 1998; accepted 21 February 2000

Submitted by H. Schneider

Abstract

Let n_1, n_2, n_3 be nonnegative integers. We consider partitioned Hermitian matrices of the form

 $H = \begin{bmatrix} 0 & X_{12} & X_{13} \\ X_{12}^* & 0 & X_{23} \\ X_{13}^* & X_{23}^* & 0 \end{bmatrix},$

where each X_{ij} is $n_i \times n_j$ and we characterize the set of the inertias

 $\left\{ \operatorname{In}(H) \mid r_{ij} \leqslant \operatorname{rank} X_{ij} \leqslant R_{ij} \text{ for } 1 \leqslant i < j \leqslant 3 \right\}$

in terms of r_{ii}, R_{ii} and the block orders. © 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 15A42

Keywords: Hermitian matrices; Rank; Inertia; Inequalities

1. Introduction

Define the inertia of an $n \times n$ Hermitian matrix H as the triple $In(H) = (\pi, \nu, \delta)$, where π is the number of positive eigenvalues of H, ν is the number of negative

^{*} Tel.: +351-39-700-3179; fax: +351-39-32568.

E-mail address: cmf@mat.uc.pt (C.M. da Fonseca).

eigenvalues and $\delta = n - \pi - \nu$, counting multiplicities. We will simply write $(\pi, \nu, *)$ for the inertia of *H*, when *n* is understood.

We denote by I_r the identity matrix of order r and by I the same matrix when we do not need to specify the order.

The characterization of the inertia of Hermitian matrices with prescribed 2×2 and 3×3 block decomposition has been quite thoroughly investigated. Cain and Marques de Sá [2] considered Hermitian matrices *H* of the form

$$H = \begin{bmatrix} H_1 & X_{12} & X_{13} \\ X_{12}^* & H_2 & 0 \\ X_{13}^* & 0 & 0 \end{bmatrix}$$

and characterized the set of the inertias

$$\{ \text{In}(H) \mid \text{In}(H_j) = (\pi_j, \nu_j, *) \text{ and } r_{1,j+1} \\ \leqslant \text{rank } X_{1,j+1} \leqslant R_{1,j+1} \text{ for } j = 1, 2 \}$$

in terms of $r_{1,2}$, $r_{1,3}$, $R_{1,2}$, $R_{1,3}$, the inertias of the nonzero diagonals blocks and the orders of the blocks. Their result can be stated as follows.

Theorem 1.1. Let us assume that π_1 , ν_1 , π_2 , ν_2 , n_1 , n_2 , n_3 are nonnegative and

$$\pi_i + \nu_i \leqslant n_i, \quad i = 1, 2,$$

$$0 \leqslant r_{1j} \leqslant R_{1j} \leqslant \min\{n_1, n_j\}, \quad j = 2, 3.$$

Then the following conditions are equivalent:

(i) For i = 1, 2, and j = 2, 3, there exist $n_i \times n_i$ Hermitian matrices H_i and $n_1 \times n_j$ matrices X_{1j} such that, $\ln(H_i) = (\pi_i, \nu_i, *), r_{1j} \leq \operatorname{rank} X_{1j} \leq R_{1j}$ and

$$H = \begin{bmatrix} H_1 & X_{12} & X_{13} \\ X_{12}^* & H_2 & 0 \\ X_{13}^* & 0 & 0 \end{bmatrix}$$

has inertia $(\pi, \nu, *)$ *.*

- (ii) Let $k \in \{1, 2\}$. Let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$. (i) holds with $H_k = W_{kk}$.
- (iii) Let $k \in \{2, 3\}$. Let W_{1k} be any fixed $n_1 \times n_k$ matrix with $r_{1k} \leq \operatorname{rank} W_{1k} \leq R_{1k}$. (i) holds with $X_{1k} = W_{1k}$.
- (iv) For k = 1, 2 let W_{kk} be any fixed $n_k \times n_k$ Hermitian matrix with inertia $(\pi_k, \nu_k, *)$. (i) holds with $H_1 = W_{11}$ and $H_2 = W_{22}$.
- (v) Let W_{22} be any fixed $n_2 \times n_2$ Hermitian matrix with inertia $(\pi_2, \nu_2, *)$, and let W_{13} be any fixed $n_1 \times n_3$ matrix with $r_{13} \leq \operatorname{rank} W_{13} \leq R_{13}$. (i) holds with $H_2 = W_{22}$ and $X_{13} = W_{13}$.
- (vi) The following inequalities hold: $\pi \ge \max \{\pi_1, \pi_2 + r_{13}, \pi_1 + \pi_2 - R_{12}, r_{12} - \nu_1, r_{12} - \nu_2\},\$

C.M. da Fonseca / Linear Algebra and its Applications 311 (2000) 153-160

$$\begin{split} \nu &\ge \max \left\{ \nu_1, \nu_2 + r_{13}, \nu_1 + \nu_2 - R_{12}, r_{12} - \pi_1, r_{12} - \pi_2 \right\}, \\ \pi &\le \min \left\{ n_1 + \pi_2, \pi_1 + n_2 + R_{13}, \pi_1 + \pi_2 + R_{12} + R_{13} \right\}, \\ \nu &\le \min \left\{ n_1 + \nu_2, \nu_1 + n_2 + R_{13}, \nu_1 + \nu_2 + R_{12} + R_{13} \right\}, \\ \pi - \nu &\le \min \left\{ \pi_1 + \pi_2, \pi_1 + \pi_2 + R_{12} - \nu_2 \right\}, \\ \nu - \pi &\le \min \left\{ \nu_1 + \nu_2, \nu_1 + \nu_2 + R_{12} - \nu_2 \right\}, \\ \pi + \nu &\ge \pi_1 + \pi_2 + \nu_1 + \nu_2 - R_{12}, \\ \pi + \nu &\le \min \left\{ n_1 + n_2 + R_{13}, n_1 + \pi_2 + \nu_2 + R_{12} + R_{13}, \\ \pi_1 + \nu_1 + n_2 + R_{12} + 2R_{13} \right\}. \end{split}$$

This paper gives a similar characterization when *H* is decomposed into 3×3 blocks whose diagonal blocks are zeros, namely:

Theorem 1.2. For i = 1, 2, 3, let n_i be a nonnegative integer, and for $i < j \leq 3$, let

$$0 \leqslant r_{ij} \leqslant R_{ij} \leqslant \min\{n_i, n_j\}.$$

Then the following conditions are equivalent:

(i) For i = 1, 2 and for $i < j \leq 3$, there exist $n_i \times n_j$ matrices X_{ij} such that $r_{ij} \leq rank X_{ij} \leq R_{ij}$ and

$$H = \begin{bmatrix} 0 & X_{12} & X_{13} \\ X_{12}^* & 0 & X_{23} \\ X_{13}^* & X_{23}^* & 0 \end{bmatrix}$$

has inertia $(\pi, \nu, *)$ *.*

- (ii) Let $(k, t) \in \{(1, 2), (1, 3), (2, 3)\}$ and let W_{kt} be any fixed $n_k \times n_t$ matrix with $r_{kt} \leq \text{rank } W_{kt} \leq R_{kt}$. (i) holds with $X_{kt} = W_{kt}$.
- (iii) The following inequalities hold:

 $\max\{r_{12}, r_{13}, r_{23}\} \leqslant \pi, \nu \leqslant \min\{R_{12} + n_3, R_{13} + n_2, R_{23} + n_1\},\$

$$\pi - \nu, \nu - \pi \leq \min \{R_{12}, R_{13}, R_{23}\},\$$

$$2\pi - \nu, 2\nu - \pi \leqslant R_{12} + R_{13} + R_{23},$$

$$\pi + \nu \leqslant n_1 + n_2 + n_3.$$

2. Preliminary results

Lemma 2.1. Let *n* and *p* denote nonnegative integers such that $p \le n$. There exists an $n \times n$ matrix *P* of rank *p* such that $M = P + P^*$ has inertia $(\pi, \nu, *)$ if and only if

$$0 \leqslant \pi \leqslant p, \quad 0 \leqslant \nu \leqslant p, \quad \pi + \nu \leqslant n. \tag{2.1}$$

Proof. Let us prove the necessity of (2.1). Let *N* and *Q* be, respectively, the leading $\pi \times \pi$ principal submatrices of U^*MU and U^*PU , where *U* is a unitary matrix such that U^*MU is diagonal and *N* is positive definite. Then if $\pi > p$, there will exist a $x \neq 0$ such that Qx = 0; therefore

$$x^*Nx = x^* \left(Q + Q^* \right) x = 0,$$

which is a contradiction. Thus $\pi \leq p$. In a similar way one proves $\nu \leq p$. Next we show the sufficiency of (2.1). If $\pi + \nu \leq p$ then we can make

$$P = \begin{bmatrix} I_{\pi} & 0 & 0 & 0 \\ 0 & -I_{\nu} & 0 & 0 \\ 0 & 0 & iI_{p-\pi-\nu} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

If $\pi + \nu \ge p$, we may assume, without loss of generality, that $\pi \ge \nu$, and set

$$P = \begin{bmatrix} 0 & 0 & & & \\ 0 & iI_{p-\pi} & I_{\nu} & 0 & 0 & \\ \hline 0 & 0_{\nu} & iI_{\nu} & & \\ \hline 0 & 0 & & I_{\pi-\nu} & 0 & \\ 0 & 0 & & 0 & 0 & \\ \end{bmatrix}$$

since the inertia of

$$\begin{bmatrix} 0 & I_{\nu} \\ I_{\nu} & 0 \end{bmatrix}$$

is $(\nu, \nu, 0)$. \Box

If we consider A and B, $n \times m$ and $m \times n$ matrices, respectively, with ranks a and b, then the rank of the product AB may be r if and only if

 $\max\left\{0, a+b-m\right\} \leqslant r \leqslant \min\left\{a, b\right\}.$

Lemma 2.2. If a Hermitian block matrix contains the 2×2 block principal submatrix

$$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix},$$

then it is congruent to a matrix with this submatrix undisturbed and these I's being the only nonzero blocks in the rows and columns containing them.

Since the matrix

$$H = \begin{bmatrix} 0 & X & I_m \\ X^* & 0_n & Z \\ I_m & Z^* & 0 \end{bmatrix}$$
(2.2)

is congruent to

0	0	I_m
0	H'	0
I_m	0	0

by the Lemma 2.2, where $H' = -ZX - (ZX)^*$, it follows from (2.1) and the remark following Lemma 2.1 that:

Corollary 2.3. Let n, m, x and z denote nonnegative integers such that $x, z \le \min\{m, n\}$. There exist an $m \times n$ matrix X and an $n \times m$ matrix Z such that rank X = x, rank Z = z and H in (2.2) has inertia $(\pi, \nu, *)$ if and only if

 $m \leq \pi, \nu \leq \min\{x+m, z+m\}$

and

$$\pi+\nu\leqslant n+2m.$$

3. Proof

We are ready to prove Theorem 1.2. The equivalence between (i) and (ii) is straightforward (see e.g. the beginning of the proof of the Theorem 2.1 in [2]).

Let us denote $X_{12} = X$, $X_{13} = Y$, $X_{23} = Z$ and fix their ranks: rank X = x, rank Y = y, rank Z = z. We will prove that (ii) is equivalent to (iii). Without loss of generality we may choose

$$Y = \begin{bmatrix} 0 & I_y \\ 0 & 0 \end{bmatrix}.$$

Then

$$H = \begin{bmatrix} 0 & 0 & X_1 & 0 & I_y \\ 0 & 0 & X_2 & 0 & 0 \\ X_1^* & X_2^* & 0 & Z_1 & Z_2 \\ 0 & 0 & Z_1^* & 0 & 0 \\ I_y & 0 & Z_2^* & 0 & 0 \end{bmatrix},$$

where

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \quad \text{and} \quad Z = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$$

Suppose that the rank of Z_1 is *a*. Then there exist nonsingular matrices *U* and *V* such that

$$UZ_1V = \begin{bmatrix} 0 & I_a \\ 0 & 0 \end{bmatrix}.$$

Then

$\begin{bmatrix} I \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 I 0 0	0 0 <i>U</i> 0	0 0 0 V*	0^{-} 0 0 0	Н	- <i>I</i> 0 0 0	0 I 0 0	$\begin{array}{c} 0 \\ 0 \\ U^{*} \\ 0 \\ 0 \end{array}$	0 0 0 V 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 1 \end{array}$		
Γυ	0	0 0 0	0	1(())	_0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			<i>I</i>])	$I_y = 0$	
=	<u>(</u>	$\frac{(X_1U^*)^*}{0}$		$(X_2U^*)^*$		($\frac{0}{(UZ_1V)^*}$		UZ_1V		UZ_2	
	L	I_y		0			$(UZ_2)^*$		0		0 _	

This is congruent to

Γ	0	0	0	\bar{X}_1	0	0	I_y	
	0	0	0	\bar{X}_2	0	0	0	
	0	0	0	0	0	I_a	0	
	\bar{X}_1^*	\bar{X}_2^*	0	0	0	0	\bar{Z}_2	
	0	0	0	0	0	0	0	
	0	0	Ia	$0 \\ \bar{Z}_2^*$	0	0	0	
	Iy	0	0	\bar{Z}_2^*	0	0	0	

Suppose now that the rank of the block \bar{X}_2 is *b*. Then

[- 0	0	0	0	0	\hat{X}	0	0	I_{y}
	0	0	0	0	0	0	0	0	0
	0	0	0	0	I_b	0	0	0	0
	0	0	0	0	0	0	0	Ia	0
	0	0	I_b	0	0	0	0	0	0
	\hat{X}^*	0	0	0	0	0	0	0	\hat{Z}
	0	0	0	0	0	0	0	0	0
	0	0	0	I_a	0	0	0	0	0
l	I_y	0	0	0	0	\hat{Z}^*	0	0	0

is congruent to H by the Lemma 2.2, and is permutation similar to

$$\widehat{H} = \begin{bmatrix} 0 & \widehat{X} & I_y \\ \widehat{X}^* & 0 & \widehat{Z} \\ I_y & \widehat{Z}^* & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & I_a \\ I_a & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & I_b \\ I_b & 0 \end{bmatrix} \oplus 0,$$
(3.1)

.

where

$$\widehat{X}$$
 is $y \times (n_2 - a - b)$, rank $\widehat{X} \stackrel{\text{def}}{=} \beta - b$
 \widehat{Z} is $(n_2 - a - b) \times y$, rank $\widehat{Z} \stackrel{\text{def}}{=} \alpha$

with

$$\max\{0, z - y\} \le a \le \min\{z, n_3 - y\},$$
(3.2)

$$\max\{0, x-a\} \leqslant \beta \leqslant \min\{x, n_2 - a\},\tag{3.3}$$

$$\max\{0, \beta - y\} \leqslant b \leqslant \min\{\beta, n_1 - y\} \tag{3.4}$$

and

$$\max\{0, z-a-b\} \leqslant \alpha \leqslant \min\{z-a, n_2-a-b\}.$$
(3.5)

Denote the first matrix of the decomposition (3.1) by H'. By Corollary 2.3, the set of inertias $(\pi', \nu', *)$ of H' is described by

$$y \le \pi', \nu' \le \min\{\beta - b + y, \alpha + y\}, \quad \pi' + \nu' \le n_2 - a - b + 2y.$$
 (3.6)

From (3.1), we have

$$\pi = \pi' + a + b, \quad \nu = \nu' + a + b.$$
 (3.7)

Combining (3.7) and (3.6), we get

$$y + a + b \leqslant \pi, \nu \leqslant \min \{\beta + y + a, \alpha + y + a + b\}$$
(3.8)

and

$$\pi + \nu \leqslant n_2 + 2y + a + b. \tag{3.9}$$

Eliminating α , from (3.5) and (3.8), and β , from (3.3), (3.4), and (3.8), (see [1,2]), and after eliminating redundancies, we get

$$\pi, \nu \leq \min\{y + n_2, x + y + a, 2y + a + b, y + z + b\},$$
(3.10)

$$\pi, \nu \geqslant y + a + b, \tag{3.11}$$

$$\pi + \nu \leqslant n_2 + 2y + a + b \tag{3.12}$$

and

$$a+b \geqslant x-y. \tag{3.13}$$

Finally, we combine (3.2), the inequality $0 \le b \le n_1 - y$ (from (3.4)), and (3.10)–(3.13) in order to eliminate *a* and *b*. For example, the inequality π , $\nu \le x + y + z$ is redundant since $2\pi \le \nu + x + y + z$ and $2\nu \le \pi + x + y + z$ is equivalent to π , $\nu \le x + y + z - |\pi - \nu|$.

Then, we get

 $\max \{x, y, z\} \leq \pi, \nu \leq \min \{x + n_3, y + n_2, z + n_1\},$ $\pi - \nu, \nu - \pi \leq \min \{x, y, z\},$ $2\pi - \nu, 2\nu - \pi \leq x + y + z,$ $\pi + \nu \leq n_1 + n_2 + n_3.$

Combining these inequalities with $r_{12} \leq x \leq R_{12}$, $r_{13} \leq y \leq R_{13}$ and $r_{23} \leq z \leq R_{23}$ we obtain inequalities of (iii).

To see that we have actually proven the equivalence note that H and \hat{H} are congruent, that the Corollary 2.3 gives us a necessary and sufficient condition and that the elimination of the several constants does not change the equivalence. Details are left to the reader.

Acknowledgements

I am grateful to Professor E. Marques de Sá for the helpful discussions we had about the questions treated here. Some important ideas contained in this paper are due to him. I would like to thank to the referee for his suggestions that helped improving the manuscript. This work was supported by CMUC (Centro de Matemática da Universidade de Coimbra).

References

- B.E. Cain, E. Marques de Sá, The inertia of Hermitian matrices with a prescribed 2 × 2 block decomposition, Linear and Multilinear Algebra 31 (1992) 119–130.
- [2] B.E. Cain, E. Marques de Sá, The inertia of certain skew-triangular block matrices, Linear Algebra Appl. 160 (1992) 75–85.
- [3] E.V. Haynesworth, A.M. Ostrowski, On the inertia of some classes of partitioned matrices, Linear Algebra Appl. 1 (1968) 299–316.
- [4] S. Perlis, Theory of Matrices, Addison-Wesley, Reading, MA, 1952.