The inertia of Hermitian block matrices with zero main diagonal

C.M. da Fonseca*

Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal
Received 24 February 1998; accepted 21 February 2000
Submitted by H. Schneider

Abstract

Let n_{1}, n_{2}, n_{3} be nonnegative integers. We consider partitioned Hermitian matrices of the form

$$
H=\left[\begin{array}{ccc}
0 & X_{12} & X_{13} \\
X_{12}^{*} & 0 & X_{23} \\
X_{13}^{*} & X_{23}^{*} & 0
\end{array}\right],
$$

where each $X_{i j}$ is $n_{i} \times n_{j}$ and we characterize the set of the inertias

$$
\left\{\operatorname{In}(H) \mid r_{i j} \leqslant \operatorname{rank} X_{i j} \leqslant R_{i j} \text { for } 1 \leqslant i<j \leqslant 3\right\}
$$

in terms of $r_{i j}, R_{i j}$ and the block orders. © 2000 Elsevier Science Inc. All rights reserved.
AMS classification: 15A42
Keywords: Hermitian matrices; Rank; Inertia; Inequalities

1. Introduction

Define the inertia of an $n \times n$ Hermitian matrix H as the triple $\operatorname{In}(H)=(\pi, \nu, \delta)$, where π is the number of positive eigenvalues of H, v is the number of negative

[^0]eigenvalues and $\delta=n-\pi-\nu$, counting multiplicities. We will simply write (π, ν, *) for the inertia of H, when n is understood.

We denote by I_{r} the identity matrix of order r and by I the same matrix when we do not need to specify the order.

The characterization of the inertia of Hermitian matrices with prescribed 2×2 and 3×3 block decomposition has been quite thoroughly investigated. Cain and Marques de Sá [2] considered Hermitian matrices H of the form

$$
H=\left[\begin{array}{ccc}
H_{1} & X_{12} & X_{13} \\
X_{12}^{*} & H_{2} & 0 \\
X_{13}^{*} & 0 & 0
\end{array}\right]
$$

and characterized the set of the inertias

$$
\begin{aligned}
& \left\{\operatorname{In}(H) \mid \operatorname{In}\left(H_{j}\right)=\left(\pi_{j}, v_{j}, *\right) \text { and } r_{1, j+1}\right. \\
& \left.\quad \leqslant \operatorname{rank} X_{1, j+1} \leqslant R_{1, j+1} \text { for } j=1,2\right\}
\end{aligned}
$$

in terms of $r_{1,2}, r_{1,3}, R_{1,2}, R_{1,3}$, the inertias of the nonzero diagonals blocks and the orders of the blocks. Their result can be stated as follows.

Theorem 1.1. Let us assume that $\pi_{1}, \nu_{1}, \pi_{2}, \nu_{2}, n_{1}, n_{2}, n_{3}$ are nonnegative and

$$
\begin{aligned}
& \pi_{i}+v_{i} \leqslant n_{i}, \quad i=1,2 \\
& 0 \leqslant r_{1 j} \leqslant R_{1 j} \leqslant \min \left\{n_{1}, n_{j}\right\}, \quad j=2,3
\end{aligned}
$$

Then the following conditions are equivalent:
(i) For $i=1,2$, and $j=2,3$, there exist $n_{i} \times n_{i}$ Hermitian matrices H_{i} and $n_{1} \times$ n_{j} matrices $X_{1 j}$ such that, $\operatorname{In}\left(H_{i}\right)=\left(\pi_{i}, \nu_{i}, *\right), r_{1 j} \leqslant \operatorname{rank} X_{1 j} \leqslant R_{1 j}$ and

$$
H=\left[\begin{array}{ccc}
H_{1} & X_{12} & X_{13} \\
X_{12}^{*} & H_{2} & 0 \\
X_{13}^{*} & 0 & 0
\end{array}\right]
$$

has inertia ($\pi, \nu, *$).
(ii) Let $k \in\{1,2\}$. Let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia ($\left.\pi_{k}, v_{k}, *\right)$. (i) holds with $H_{k}=W_{k k}$.
(iii) Let $k \in\{2,3\}$. Let $W_{1 k}$ be any fixed $n_{1} \times n_{k}$ matrix with $r_{1 k} \leqslant \operatorname{rank} W_{1 k} \leqslant R_{1 k}$. (i) holds with $X_{1 k}=W_{1 k}$.
(iv) For $k=1,2$ let $W_{k k}$ be any fixed $n_{k} \times n_{k}$ Hermitian matrix with inertia ($\pi_{k}, v_{k}, *$). (i) holds with $H_{1}=W_{11}$ and $H_{2}=W_{22}$.
(v) Let W_{22} be any fixed $n_{2} \times n_{2}$ Hermitian matrix with inertia $\left(\pi_{2}, \nu_{2}, *\right)$, and let W_{13} be any fixed $n_{1} \times n_{3}$ matrix with $r_{13} \leqslant \operatorname{rank} W_{13} \leqslant R_{13}$. (i) holds with $H_{2}=W_{22}$ and $X_{13}=W_{13}$.
(vi) The following inequalities hold:

$$
\pi \geqslant \max \left\{\pi_{1}, \pi_{2}+r_{13}, \pi_{1}+\pi_{2}-R_{12}, r_{12}-v_{1}, r_{12}-v_{2}\right\},
$$

$$
\begin{aligned}
& v \geqslant \max \left\{v_{1}, \nu_{2}+r_{13}, v_{1}+\nu_{2}-R_{12}, r_{12}-\pi_{1}, r_{12}-\pi_{2}\right\}, \\
& \pi \leqslant \min \left\{n_{1}+\pi_{2}, \pi_{1}+n_{2}+R_{13}, \pi_{1}+\pi_{2}+R_{12}+R_{13}\right\}, \\
& v \leqslant \min \left\{n_{1}+\nu_{2}, \nu_{1}+n_{2}+R_{13}, \nu_{1}+\nu_{2}+R_{12}+R_{13}\right\}, \\
& \pi-v \leqslant \min \left\{\pi_{1}+\pi_{2}, \pi_{1}+\pi_{2}+R_{12}-v_{2}\right\}, \\
& v-\pi \leqslant \min \left\{v_{1}+\nu_{2}, \nu_{1}+\nu_{2}+R_{12}-v_{2}\right\}, \\
& \pi+v \geqslant \pi_{1}+\pi_{2}+v_{1}+v_{2}-R_{12}, \\
& \pi+v \leqslant \min \left\{\begin{array}{c}
n_{1}+n_{2}+R_{13}, n_{1}+\pi_{2}+v_{2}+R_{12}+R_{13}, \\
\pi_{1}+v_{1}+n_{2}+R_{12}+2 R_{13}
\end{array}\right\} .
\end{aligned}
$$

This paper gives a similar characterization when H is decomposed into 3×3 blocks whose diagonal blocks are zeros, namely:

Theorem 1.2. For $i=1,2,3$, let n_{i} be a nonnegative integer, and for $i<j \leqslant 3$, let

$$
0 \leqslant r_{i j} \leqslant R_{i j} \leqslant \min \left\{n_{i}, n_{j}\right\} .
$$

Then the following conditions are equivalent:
(i) For $i=1,2$ and for $i<j \leqslant 3$, there exist $n_{i} \times n_{j}$ matrices $X_{i j}$ such that $r_{i j} \leqslant$ rank $X_{i j} \leqslant R_{i j}$ and

$$
H=\left[\begin{array}{ccc}
0 & X_{12} & X_{13} \\
X_{12}^{*} & 0 & X_{23} \\
X_{13}^{*} & X_{23}^{*} & 0
\end{array}\right]
$$

has inertia $(\pi, \nu, *)$.
(ii) Let $(k, t) \in\{(1,2),(1,3),(2,3)\}$ and let $W_{k t}$ be any fixed $n_{k} \times n_{t}$ matrix with $r_{k t} \leqslant \operatorname{rank} W_{k t} \leqslant R_{k t}$. (i) holds with $X_{k t}=W_{k t}$.
(iii) The following inequalities hold:

$$
\begin{aligned}
& \max \left\{r_{12}, r_{13}, r_{23}\right\} \leqslant \pi, v \leqslant \min \left\{R_{12}+n_{3}, R_{13}+n_{2}, R_{23}+n_{1}\right\}, \\
& \pi-v, v-\pi \leqslant \min \left\{R_{12}, R_{13}, R_{23}\right\}, \\
& 2 \pi-v, 2 v-\pi \leqslant R_{12}+R_{13}+R_{23}, \\
& \pi+v \leqslant n_{1}+n_{2}+n_{3} .
\end{aligned}
$$

2. Preliminary results

Lemma 2.1. Let n and p denote nonnegative integers such that $p \leqslant n$. There exists an $n \times n$ matrix P of rank p such that $M=P+P^{*}$ has inertia $(\pi, \nu, *)$ if and only if

$$
\begin{equation*}
0 \leqslant \pi \leqslant p, \quad 0 \leqslant v \leqslant p, \quad \pi+v \leqslant n . \tag{2.1}
\end{equation*}
$$

Proof. Let us prove the necessity of (2.1). Let N and Q be, respectively, the leading $\pi \times \pi$ principal submatrices of $U^{*} M U$ and $U^{*} P U$, where U is a unitary matrix such that $U^{*} M U$ is diagonal and N is positive definite. Then if $\pi>p$, there will exist a $x \neq 0$ such that $Q x=0$; therefore

$$
x^{*} N x=x^{*}\left(Q+Q^{*}\right) x=0,
$$

which is a contradiction. Thus $\pi \leqslant p$. In a similar way one proves $v \leqslant p$.
Next we show the sufficiency of (2.1). If $\pi+\nu \leqslant p$ then we can make

$$
P=\left[\begin{array}{cc|ccc}
I_{\pi} & 0 & 0 & 0 \\
0 & -I_{\nu} & 0 & 0 & \\
\hline 0 & 0 & \mathrm{i} I_{p-\pi-\nu} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

If $\pi+v \geqslant p$, we may assume, without loss of generality, that $\pi \geqslant \nu$, and set

$$
P=\left[\begin{array}{cc|c|cc}
0 & 0 & I_{\nu} & \begin{array}{cc}
0 & 0 \\
0 & \mathrm{i} I_{p-\pi}
\end{array} & I_{\nu} \\
\hline & 0_{\nu} & \mathrm{i} I_{\nu} & 0 & 0 \\
\hline & 0 & 0 & I_{\pi-\nu} & 0 \\
& 0 & 0 & 0 & 0
\end{array}\right]
$$

since the inertia of

$$
\left[\begin{array}{cc}
0 & I_{v} \\
I_{v} & 0
\end{array}\right]
$$

is $(\nu, v, 0)$.
If we consider A and $B, n \times m$ and $m \times n$ matrices, respectively, with ranks a and b, then the rank of the product $A B$ may be r if and only if

$$
\max \{0, a+b-m\} \leqslant r \leqslant \min \{a, b\} .
$$

Lemma 2.2. If a Hermitian block matrix contains the 2×2 block principal submatrix

$$
\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right],
$$

then it is congruent to a matrix with this submatrix undisturbed and these I's being the only nonzero blocks in the rows and columns containing them.

Since the matrix

$$
H=\left[\begin{array}{ccc}
0 & X & I_{m} \tag{2.2}\\
X^{*} & 0_{n} & Z \\
I_{m} & Z^{*} & 0
\end{array}\right]
$$

is congruent to

$$
\left[\begin{array}{ccc}
0 & 0 & I_{m} \\
0 & H^{\prime} & 0 \\
I_{m} & 0 & 0
\end{array}\right]
$$

by the Lemma 2.2, where $H^{\prime}=-Z X-(Z X)^{*}$, it follows from (2.1) and the remark following Lemma 2.1 that:

Corollary 2.3. Let n, m, x and z denote nonnegative integers such that $x, z \leqslant$ $\min \{m, n\}$. There exist an $m \times n$ matrix X and an $n \times m$ matrix Z such that $\operatorname{rank} X=$ x, $\operatorname{rank} Z=z$ and H in (2.2) has inertia $(\pi, \nu, *)$ if and only if

$$
m \leqslant \pi, v \leqslant \min \{x+m, z+m\}
$$

and

$$
\pi+v \leqslant n+2 m
$$

3. Proof

We are ready to prove Theorem 1.2. The equivalence between (i) and (ii) is straightforward (see e.g. the beginning of the proof of the Theorem 2.1 in [2]).

Let us denote $X_{12}=X, X_{13}=Y, X_{23}=Z$ and fix their ranks: rank $X=x$, rank $Y=y, \operatorname{rank} Z=z$. We will prove that (ii) is equivalent to (iii). Without loss of generality we may choose

$$
Y=\left[\begin{array}{cc}
0 & I_{y} \\
0 & 0
\end{array}\right]
$$

Then

$$
H=\left[\begin{array}{ccccc}
0 & 0 & X_{1} & 0 & I_{y} \\
0 & 0 & X_{2} & 0 & 0 \\
X_{1}^{*} & X_{2}^{*} & 0 & Z_{1} & Z_{2} \\
0 & 0 & Z_{1}^{*} & 0 & 0 \\
I_{y} & 0 & Z_{2}^{*} & 0 & 0
\end{array}\right]
$$

where

$$
X=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \quad \text { and } \quad Z=\left[\begin{array}{ll}
Z_{1} & Z_{2}
\end{array}\right]
$$

Suppose that the rank of Z_{1} is a. Then there exist nonsingular matrices U and V such that

$$
U Z_{1} V=\left[\begin{array}{cc}
0 & I_{a} \\
0 & 0
\end{array}\right]
$$

Then

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
0 & 0 & U & 0 & 0 \\
0 & 0 & 0 & V^{*} & 0 \\
0 & 0 & 0 & 0 & I
\end{array}\right] H\left[\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
0 & 0 & U^{*} & 0 & 0 \\
0 & 0 & 0 & V & 0 \\
0 & 0 & 0 & 0 & I
\end{array}\right]} \\
& =\left[\begin{array}{cc|c|cc}
0 & 0 & X_{1} U^{*} & 0 & I_{y} \\
0 & 0 & X_{2} U^{*} & 0 & 0 \\
\hline\left(X_{1} U^{*}\right)^{*} & \left(X_{2} U^{*}\right)^{*} & 0 & U Z_{1} V & U Z_{2} \\
\hline 0 & 0 & \left(U Z_{1} V\right)^{*} & 0 & 0 \\
I_{y} & 0 & \left(U Z_{2}\right)^{*} & 0 & 0
\end{array}\right] .
\end{aligned}
$$

This is congruent to

$$
\left[\begin{array}{cc|cc|ccc}
0 & 0 & 0 & \bar{X}_{1} & 0 & 0 & I_{y} \\
0 & 0 & 0 & \bar{X}_{2} & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & I_{a} & 0 \\
\bar{X}_{1}^{*} & \bar{X}_{2}^{*} & 0 & 0 & 0 & 0 & \bar{Z}_{2} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_{a} & 0 & 0 & 0 & 0 \\
I_{y} & 0 & 0 & \bar{Z}_{2}^{*} & 0 & 0 & 0
\end{array}\right] .
$$

Suppose now that the rank of the block \bar{X}_{2} is b. Then
$\left[\begin{array}{ccc|ccc|ccc}0 & 0 & 0 & 0 & 0 & \hat{X} & 0 & 0 & I_{y} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I_{b} & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & I_{a} & 0 \\ 0 & 0 & I_{b} & 0 & 0 & 0 & 0 & 0 & 0 \\ \hat{X}^{*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \hat{Z} \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{a} & 0 & 0 & 0 & 0 & 0 \\ I_{y} & 0 & 0 & 0 & 0 & \hat{Z}^{*} & 0 & 0 & 0\end{array}\right]$.
is congruent to H by the Lemma 2.2, and is permutation similar to

$$
\widehat{H}=\left[\begin{array}{ccc}
0 & \widehat{X} & I_{y} \tag{3.1}\\
\widehat{X}^{*} & 0 & \widehat{Z} \\
I_{y} & \widehat{Z}^{*} & 0
\end{array}\right] \oplus\left[\begin{array}{cc}
0 & I_{a} \\
I_{a} & 0
\end{array}\right] \oplus\left[\begin{array}{cc}
0 & I_{b} \\
I_{b} & 0
\end{array}\right] \oplus 0,
$$

where

$$
\begin{array}{ll}
\widehat{X} \text { is } y \times\left(n_{2}-a-b\right), & \operatorname{rank} \widehat{X} \stackrel{\text { def }}{=} \beta-b \\
\widehat{Z} \text { is }\left(n_{2}-a-b\right) \times y, & \operatorname{rank} \widehat{Z} \stackrel{\text { def }}{=} \alpha
\end{array}
$$

with

$$
\begin{align*}
& \max \{0, z-y\} \leqslant a \leqslant \min \left\{z, n_{3}-y\right\}, \tag{3.2}\\
& \max \{0, x-a\} \leqslant \beta \leqslant \min \left\{x, n_{2}-a\right\}, \tag{3.3}\\
& \max \{0, \beta-y\} \leqslant b \leqslant \min \left\{\beta, n_{1}-y\right\} \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\max \{0, z-a-b\} \leqslant \alpha \leqslant \min \left\{z-a, n_{2}-a-b\right\} \tag{3.5}
\end{equation*}
$$

Denote the first matrix of the decomposition (3.1) by H^{\prime}. By Corollary 2.3, the set of inertias $\left(\pi^{\prime}, \nu^{\prime}, *\right)$ of H^{\prime} is described by

$$
\begin{equation*}
y \leqslant \pi^{\prime}, v^{\prime} \leqslant \min \{\beta-b+y, \alpha+y\}, \quad \pi^{\prime}+v^{\prime} \leqslant n_{2}-a-b+2 y . \tag{3.6}
\end{equation*}
$$

From (3.1), we have

$$
\begin{equation*}
\pi=\pi^{\prime}+a+b, \quad v=v^{\prime}+a+b . \tag{3.7}
\end{equation*}
$$

Combining (3.7) and (3.6), we get

$$
\begin{equation*}
y+a+b \leqslant \pi, v \leqslant \min \{\beta+y+a, \alpha+y+a+b\} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi+v \leqslant n_{2}+2 y+a+b \tag{3.9}
\end{equation*}
$$

Eliminating α, from (3.5) and (3.8), and β, from (3.3), (3.4), and (3.8), (see [1,2]), and after eliminating redundancies, we get

$$
\begin{align*}
& \pi, \nu \leqslant \min \left\{y+n_{2}, x+y+a, 2 y+a+b, y+z+b\right\}, \tag{3.10}\\
& \pi, v \geqslant y+a+b, \tag{3.11}\\
& \pi+v \leqslant n_{2}+2 y+a+b \tag{3.12}
\end{align*}
$$

and

$$
\begin{equation*}
a+b \geqslant x-y . \tag{3.13}
\end{equation*}
$$

Finally, we combine (3.2), the inequality $0 \leqslant b \leqslant n_{1}-y$ (from (3.4)), and (3.10)(3.13) in order to eliminate a and b. For example, the inequality $\pi, \nu \leqslant x+y+z$ is redundant since $2 \pi \leqslant v+x+y+z$ and $2 v \leqslant \pi+x+y+z$ is equivalent to $\pi, \nu \leqslant x+y+z-|\pi-\nu|$.

Then, we get

$$
\begin{aligned}
& \max \{x, y, z\} \leqslant \pi, v \leqslant \min \left\{x+n_{3}, y+n_{2}, z+n_{1}\right\}, \\
& \pi-v, v-\pi \leqslant \min \{x, y, z\}, \\
& 2 \pi-v, 2 v-\pi \leqslant x+y+z, \\
& \pi+v \leqslant n_{1}+n_{2}+n_{3} .
\end{aligned}
$$

Combining these inequalities with $r_{12} \leqslant x \leqslant R_{12}, r_{13} \leqslant y \leqslant R_{13}$ and $r_{23} \leqslant z \leqslant$ R_{23} we obtain inequalities of (iii).

To see that we have actually proven the equivalence note that H and \widehat{H} are congruent, that the Corollary 2.3 gives us a necessary and sufficient condition and that the elimination of the several constants does not change the equivalence. Details are left to the reader.

Acknowledgements

I am grateful to Professor E. Marques de Sá for the helpful discussions we had about the questions treated here. Some important ideas contained in this paper are due to him. I would like to thank to the referee for his suggestions that helped improving the manuscript. This work was supported by CMUC (Centro de Matemática da Universidade de Coimbra).

References

[1] B.E. Cain, E. Marques de Sá, The inertia of Hermitian matrices with a prescribed 2×2 block decomposition, Linear and Multilinear Algebra 31 (1992) 119-130.
[2] B.E. Cain, E. Marques de Sá, The inertia of certain skew-triangular block matrices, Linear Algebra Appl. 160 (1992) 75-85.
[3] E.V. Haynesworth, A.M. Ostrowski, On the inertia of some classes of partitioned matrices, Linear Algebra Appl. 1 (1968) 299-316.
[4] S. Perlis, Theory of Matrices, Addison-Wesley, Reading, MA, 1952.

[^0]: * Tel.: +351-39-700-3179; fax: +351-39-32568.

 E-mail address: cmf@mat.uc.pt (C.M. da Fonseca).

