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We consider the problem of “measuring” the Källén-Lehmann spectral density of a particle (be it
elementary or bound state) propagator by means of 4D lattice data. As the latter are obtained from oper-
ations at (Euclidean momentum squared) p2 ≥ 0, we are facing the generically ill-posed problem of con-
verting a limited data set over the positive real axis to an integral representation, extending over the whole
complex p2 plane. We employ a linear regularization strategy, commonly known as the Tikhonov method
with the Morozov discrepancy principle, with suitable adaptations to realistic data, e.g. with an unknown
threshold. An important virtue over the (standard) maximum entropy method is the possibility to also probe
unphysical spectral densities, for example, of a confined gluon. We apply our proposal here to “physical”
mock spectral data as a litmus test and then to the lattice SUð3Þ Landau gauge gluon at zero temperature.
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In most practical 4D quantum field theory computa-
tional schemes to date, whether continuum Feynman-
diagrammatic (not necessarily perturbation theory) or
lattice Monte Carlo based, a Euclidean setting is used.
An obvious drawback is that physics happens in
Minkowski space, so an analytic continuation is in order.
To name only a few examples where such effort is needed,
we give the following: (i) transport properties, which in
general describe the response to a small external disturb-
ance that drives the system a little bit out of its equilibrium
state, making it an inherently (time) dynamical problem;
(ii) particle properties, e.g. a mass as a pole of a propagator
does not show up in Euclidean correlators for p2 ≥ 0 but
for p2 ≤ 0. This becomes particularly relevant for the
bound state equations of particles that are not physically
observable, e.g. confined colored quarks and gluons [1,2].
The problem we are thus facing is the analytic continu-

ation of a function that is only known over the positive real
axis or, even more, only known in a limited set of data
points on that semi-axis, for example, that obtained from
a lattice QCD computation or a numerical solution to the
quantum Dyson-Schwinger equations (DSE) of motion
[1,3]. One can always match a polynomial to the data
set, but nobody will proclaim that all observable physics
is embedded in a polynomial description. In the absence
of some a priori global information, e.g. location of cuts,
the numerical analytical continuation is clearly an
extremely ill-defined problem. Attempts have been made,
as in [2], using the local Cauchy-Riemann equations
obeyed by an analytic function, but the numerical stability
remained a problem. Luckily, in several cases the

indispensable a priori information is available. Let us con-
sider Gðp2Þ≡ hOðpÞOð−pÞi, the Euclidean momentum-
space propagator of a (scalar) physical degree of freedom1;
then it must have a Källén-Lehmann (KL) spectral repre-
sentation form (see e.g. [4]),

Gðp2Þ ¼
Z þ∞

0

dμ
ρðμÞ
p2 þ μ

; with ρðμÞ ≥ 0 for μ ≥ 0:

(1)

The spectral density,

ρðμÞ ¼
X
l

δðμ −m2
lÞjh0jOjl0ij2; (2)

contains information on the masses of physical states
described by the operator O (isolated δ-function contribu-
tions), as well as on where the multiparticle spectrum sets
in, defining a threshold. Here jl0i refers to all states2 at rest
(p⃗ ¼ 0) that have an overlap with the operator O.
Obviously, ρðμÞ ≥ 0. Moreover, Eq. (1) defines a function
over the complex Euclidean p2 plane that is everywhere
analytic except for a branch cut for real p2 ≤ 0. From the
KL representation, we learn that ρðμÞ∝Discμ≥0 Im½Gð−μÞ�,
while from the optical theorem [4], Im½GðμÞ� ∝
cross section, giving a clear physical reason behind ρðμÞ ≥
0 for μ ≥ 0. Given the prescribed integral form (1), the
problem is reduced to finding ρðμÞ given data input for
Gðp2Þp2≥0. This is still an ill-posed problem, best it can
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1Straightforward generalizations apply to states with spin.
Integral representations for finite temperature correlation func-
tions can be found in e.g. [6].

2The
P

l is a symbolic notation as there is a continuum of
states, next to a discrete (possibly bound state) spectrum.
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be appreciated when considered in terms of the inverse
Laplace transform. Indeed, with L the Laplace integral,
FðtÞ ¼ ðLfÞðtÞ≡ Rþ∞

0 dse−stfðsÞ, Eq. (1) can be reex-
pressed as

G ¼ L2ρ̂ ¼ LL�ρ̂: (3)

We introduced the adjoint L� of the Laplace operator,
which is L itself. As taking L−1 is a notorious ill-posed
problem due to the exponential dampening, quite obviously
so is the double inversion. For Gðp2Þ, we usually have a set
of data points with error bars. Let us assume that

jjG − Gδjj ≤ δ; (4)

where jj · jj represents either the continuum L2 norm,

jjfjj ¼
ffiffiffiffiffiffiffiffiffiffiffiR jfj2

q
, or the usual Euclidean vector norm in a

discrete setting. For the applications discussed we define
δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðerrorsÞ2
p

. Thus, Eq. (4) expresses that we have
unprecise data for Gðp2Þ within a “noise” level δ. The
essence of an ill-posed problem is that very small variations
in the input data for G can cause utterly violent changes in
the output. Overcoming this boils down to finding an esti-
mate for ρ such that when δ → 0, the corresponding
approximate solution goes to the exact ρ. In order to handle
this, one usually looks at a properly regularized version of
the problem. Such problems are well studied in signal
processing sciences, and in the context of spectral represen-
tations of Green’s functions (at finite temperature), it has
become popular to rely on the maximum entropy method
(MEM) [5].
We will now develop an alternative to MEM for inverting

the KL representation. Preliminary attempts can be found in
[7]. We first provide a few general concepts, loosely follow-
ing [8] which we refer to for the mathematical background.
Consider a generic ill-posed problem with operator K:

y ¼ Kx; jjy − yδjj ≤ δ: (5)

Standard Tikhonov regularization amounts to searching for
the solution xλ where

J λ ¼ jjKx − yjj2 þ λjjxjj2 (6)

is minimal; λ > 0 is a regularization parameter. Notice
that in the above the 2 norms can be chosen differently.
xλ is obtained as the solution of the so-called normal
equation [8]

λxλ þK�Kxλ ¼ K�y: (7)

The operator λþK�K is strictly positive, and hence invert-
ible; thus, Eq. (7) ought to have a unique solution. The
ill-posedness of the original problem, Eq. (5), is cured

for λ > 0. Indeed, ill-posed problems can be traced back
to having near-to-zero singular values ofK, when a singular
value decomposition is employed. The regularization
parameter screens the too small singular values and lies
at the very heart of obtaining a well-defined problem.3

To fix λ, we will resort to an a posteriori fix, by making
use of the solution xλ: the Morozov discrepancy principle
[8]. One chooses that particular λ̄ which gives

jjKxλ̄ − yδjj ¼ δ: (8)

A unique solution xλ̄ to (8) exists [8]. This particular choice
is reasonable: If the noise on the input data vanishes, δ → 0,
the “noise” on the approximate equation will also vanish. In
a sense, Eq. (8) expresses that we aim for “output” of sim-
ilar quality as the “input.” Simultaneously, the discrepancy
principle avoids selecting a too-small λ, which would drive
us back to the ill-posed case. In the continuum, the solution
converges to the exact one for vanishing noise [8].
We will now adapt the inversion of the integral equation

to a discrete setting,

Gðp2Þ ¼
Z þ∞

μ0

dμ
ρðμÞ
p2 þ μ

; (9)

similar to what was done in [9] for the Laplace transform.
Notice that we introduced a to-be-determined threshold μ0
into the integral definition. Setting Gi ≡ Gðp2

i Þ and assum-
ing we have N data points, we need to minimize

J λ ¼
XN
i¼1

�Z þ∞

μ0

dμ
ρðμÞ
p2
i þ μ

− Gi

�
2

þ λ

Z þ∞

μ0

dμ ρ2ðμÞ;

(10)

where we take into account that the KL integral operator is
self-adjoint. Perturbing ρðμÞ linearly and demanding that
the variation of J λ vanishes leads to the normal equation

XN
i¼1

�Z þ∞

μ0

dν
ρðνÞ
p2
i þ ν

− Gi

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ci

1

p2
i þ μ

þ λρðμÞ ¼ 0 ðμ ≥ μ0Þ

(11)

after some rearranging. In other words, the (regularized)
solution to KL inversion is explicitly given by

3MEM is actually a special case of a more general Tikhonov
regularization strategy whereby jjxjj2 is replaced by a— not nec-
essarily quadratic in x— penalty function ΨðxÞ. MEM corre-
sponds to using e.g. ψ ¼ − R

x ln x, the Shannon-Jaynes
entropy. The nonlinear nature of this regularization, given the
presence of the ln, makes it computationally burdensome. In
our current alternative approach, we aim at a simpler (and thus
more computation friendly) regularization.
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ρλðμÞ ¼ − 1

λ

XN
i¼1

ci
p2
i þ μ

θðμ − μ0Þ; (12)

with θð·Þ being the step function. Notice that the threshold is
crucial to avoiding a singularity at μ ¼ 0 if Gðp2

i ¼ 0Þ < ∞
is part of the inversion. The ci are evidently still in order to
give meaning to the foregoing equation. Combination of
Eqs. (11), (12) yields

ci ¼ − 1

λ

Z þ∞

μ0

dν
1

p2
i þ ν

XN
j¼1

1

p2
j þ ν

cj − Gi; (13)

i.e. a linear system of equations,

λ−1Mcþ c ¼ −G; (14)

with

Mij ¼
Z þ∞

μ0

dv
1

p2
i þ ν

1

p2
j þ ν

¼
ln

p2
jþμ0

p2
iþμ0

p2
j − p2

i
: (15)

As Mii ¼ 1=ðp2
i þ μ0Þ, we have a perfectly well-defined,

symmetric matrix for μ0 > 0. The inverse KL operation
has been reduced to solving a linear system of equations,
Eq. (14). Moreover, to implement the Morozov discrepancy
principle (8), we notice that the reconstructed propagator can
be directly expressed in terms of the ci:

Gλðp2Þ ¼
Z þ∞

μ0

dμ
ρλðμÞ
p2 þ μ

¼ − 1

λ

XN
i¼1

ci ln
p2þμ0
p2
iþμ0

p2 − p2
i

: (16)

Since the threshold μ0 is a priori free, wewill use the optimal
(Morozov) regulator λ̄, which depends on μ0, to fix it: We
will look for a region of stability (i.e. minimum) in λ̄ðμ0Þ.
This is a natural criterion, since the smaller λ the closer
we are to the original problem.

An important remark is still in order. The formal solution
(12) implicitly assumes that ρðμÞ ∼ 1=μ for μ large. This,
however, is not always the case, depending on the correla-
tor Gðp2Þ that is being investigated. In asymptotically free
gauge theories, (renormalization group improved) perturba-
tion theory can be assumed to be valid at large momenta,
under which conditions the spectral density, for large values
of its argument, can be estimated directly via
ρðμÞ ∝ Discμ≥0Im½Gð−μÞ�. This large μ behavior can then
be superimposed onto the above analysis by adding a
weight to the last integral appearing in Eq. (10), corre-
sponding to choosing an appropriate norm in Eq. (6) for
jjxjj2, i.e. on the space of suitably tempered spectral func-
tions. Most of the foregoing computations carry over; the
inverse weight enters the solution (12), thereby producing
the desired asymptotic behavior. We plan to come back to
this in a more extensive work.
As a first application, let us consider a (nonrelativistic)

“Breit-Wigner” toy spectral density with a nonzero
threshold,

ρðμÞ ¼ μ

ðμ −m2Þ2 þ Γ2=4
θðμ − μ̄Þ

m2 ¼ 1 GeV2; Γ ¼ 1 GeV2; μ̄ ¼ 0.1 GeV2: (17)

The propagator corresponding to Eq. (17) was computed
using a Gauss-Legendre quadrature with 1000 points andffiffiffi
μ

p
max ¼ 20 GeV. We checked the robustness against a

change of the number of Gauss-Legendre points. The sys-
tem (14) was solved using a Gauss-Jordan normal elimina-
tion with N ¼ 120 entry data points. We assigned to each
data point Gi the percent errors ε ¼ 10, 5, 1, 0.1, 0.001,
0.0001 according to Gi × ε × ð0.5þ 0.5rÞ, with r a uni-
form random number ∈ ½0; 1�. The propagator (¼ mock
data) and its reconstructions from the spectral functions
are shown in Fig. (1a) [Fig. (1b)]. For the optimal threshold,
we refer to Fig. (2a) where, quite surprisingly, we find that
μ0 ≈ 0.1 GeV2, i.e. at the location of the exact threshold μ̄.
This gives credit to our criterion. We opted for a 1% error
margin in the input data here to mimic a somewhat realistic

0 1 2 3 4 5 6 7 8 9 10
p²  [GeV²]

0

0.5

1

1.5

2

2.5

3

3.5

G
(p

²)
  [

G
eV

-2
]

10%
  5%
  1%
  0.1%
  0.01%
  0.001%

(a)

0 1 2 3 4 5 6 7 8 9 10
µ  [GeV²]

-2

-1

0

1

2

3

4

ρ(
µ)

ρ(µ)
10%
  5%
  1%
  0.1%
  0.01%
  0.001%

(b)

FIG. 1 (color online). The Breit-Wigner toy model with optimal μ0 ¼ 0.1 GeV2. (a) Input propagators and reconstructions. (b) Spec-
tral function and ρðμÞ from the inversion in terms of errors.
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situation. From Figs. (1a), (1b) we observe that the inver-
sion method is capable of reproducing a peak in the right
area, with increasing height if the noise on the input data
gets smaller (δ → 0). The quality of the reproduced propa-
gator starts to become excellent for errors of the order of
1% or smaller. It is worthwhile to notice that these features
of our inversion method are very similar to those found with
a MEM analysis; see, in particular, Fig. 4 of [5].
We have also investigated the effect of choosing a μ0

slightly different from the optimal one. We can report that
the main difference appeared in the deep infrared region
(very small p2) of the reconstructed propagator.
Next, we turn to a real example: We consider contempo-

rary lattice data for the pure (no quarks) SUð3Þ Yang-
Mills gluon, quantized in the Landau gauge ∂μAμ ¼ 0.
The ensuing propagator can be written as Dμνðp2Þ ¼
ðδμν − pμpν

p2 ÞDðp2Þ due to its transverse nature. The data,

discussed in e.g. [10], were obtained by simulating the
Wilson action for pure Yang-Mills theory at a β ¼ 6.0,
i.e. with a lattice spacing a ¼ 0.1016ð25Þ fm, on a 804

hypercubic lattice which has a physical volume of
ð8.13 fmÞ4. As it is well known, this propagator displays

a violation of positivity [11], made clear by probing the
Schwinger function, defined via

ΔðtÞ≡ 1

2π

Z þ∞

−∞
dpe−iptDðp2Þ

�
¼
Z þ∞

0

dyρðy2Þe−ty
�
; (18)

the bracketed equation assumes a KL representation for the
gluon. As the gluon is not an observable asymptotic particle
state, there is absolutely no guarantee it must display a KL
representation. But if it does, if ΔðtÞ is not positive, then
neither can ρðtÞ be, showing that the gluon cannot be physi-
cal. This observation has been frequently used as a practical
way to establish gluon confinement. Notice that if ΔðtÞ is
positive, we would not know anything about the sign of
ρðtÞ. As already pointed out before, if unphysical gluons
are to be combined into physical bound states (viz. the
experimentally elusive glueballs [12]), information on
the precise analytic properties of the gluon propagator
are desirable; see also [13]. In a recent paper [14], the gluon
DSE was numerically solved in the complex plane using
part of the machinery developed in [15]. A discontinuity
along the negative real axis was observed; the correspond-
ing jump can then be identified with the spectral function
ρðμÞ. The latter showed a quite peculiar form, starting out
positive but changing sign rapidly over a small momentum
window with a sharp but finite peak around

ffiffiffi
μ

p ∼ 0.6 GeV.
A similar form, albeit with a δ function (thus an infinite
peak) where the function becomes negative, was found
in [16] by fitting Dðp2Þp2≥0 ∼ ðp2 þm2Þ−3=2. As solving
the gluon DSE is a complicated task even for p2 ≥ 0
due to the infinite tower of equations, it is necessary to
make truncations and modeling of the ingoing vertex inter-
actions. It would be beneficial to use Euclidean lattice data
to complement the DSE analysis. Our proposed methodol-
ogy serves this goal exactly. Notice that (standard) MEM is
out of the question here,4 since it relies on the a priori pos-
itivity of ρðμÞ and its use as a probability function [5].

0 0.05 0.1 0.15
µ

0
  [GeV²]

0.026
0.027
0.028
0.029
0.03

0.031
0.032
0.033
0.034
0.035
0.036
0.037
0.038

λ

(a)

0 0.05 0.1 0.15 0.2

µ1/2

0
  [GeV]

0.024

0.026

0.028

0.03

0.032

0.034

(b)

FIG. 2. The Morozov parameter λ̄ in terms of μ0. (a) Breit-Wigner and (b) gluon.
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FIG. 3 (color online). Gluon propagator and reconstruction.

4There exists an extension to nonpositive spectral functions,
albeit the concept of “entropy” is actually lost in such cases [18].
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The same comment applies to a recent alternative to
MEM [17]. A simple dimensional analysis reveals that
ρðμÞ ∼μ→∞ 1=μ, consistent with (12). The (computable)
logarithmic corrections to this estimate can be taken into
account in a more complete analysis later on. We renormal-
ized the gluon lattice data in a MOM scheme at μ ¼ 4 GeV
for definiteness—see [10] for details. The highest momen-
tum accessed by our simulation is pmax ¼ 7.77 GeV. The
number of lattice data points is 124 and the noise level is set
by δ ¼ 0.658 GeV−2. In Fig. (2b) we notice the occurrence
of two minima for λ̄ðμ0Þ, at μ0 ≈ 0.03 GeV and
μ0 ≈ 0.16 GeV, with the former one giving a slightly
lower value of λ̄. For both values, the reconstructed propa-
gator and associated spectral density are shown in
Figs. (3), (4a) and (4b). The differences in the spectral den-
sity translate mostly into a different deep IR behavior of the
reconstructed gluon propagator. The main observation,
however, is that the gluon spectral density is indeed a non-
positive quantity. One can also compare our estimate for the
gluon spectral function, based on lattice data, with the
numerical output of solving the complex momentum
DSE (see Fig. 5 of [14]). With our current results, we
do not see evidence of the reported sharp peak, while
the violation of positivity already sets in for small μ, rather
than after μ ∼ ð0.6Þ2 GeV2 [14].

In conclusion, we have presented a linear regularization
strategy to numerically probe spectral densities of two-
point correlation functions. In work in progress, we are
testing the method on the physical SUð3Þ lattice scalar
glueball, whose outcome can be tested against independ-
ently obtained mass estimates [7,19]. In the unphysical glue
sector, we are also studying, in more depth, the gluon
propagator, no longer assuming a cut along the negative
real axis, but rather using rational (Padé) approximation
theory and the phenomenon of Froissart doublets [20]
to get possible insights into where the branch points could
be located, whereafter, by suitably deforming the branch
cut, a spectral analysis with the tools from this paper
would become feasible. We foresee future applications
in the quark sector and finite temperature QCD, to study
e.g. the spectral properties of the electric and magnetic
gluons.
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