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Repulsive vector interaction in three-flavor magnetized quark and stellar matter
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Pedro Costa and Constança Providência
Centro de Fı́sica Computacional - Department of Physics - University of Coimbra - P-3004 - 516 - Coimbra - Portugal

(Received 11 March 2014; revised manuscript received 30 April 2014; published 23 May 2014)

The effect of the vector interaction on three-flavor magnetized matter is studied within the SU(3) Nambu–
Jona-Lasinio quark model. We considered cold matter under a static external magnetic field within two different
models for the vector interaction in order to investigate how the form of the vector interaction and the intensity
of the magnetic field affect the equation of state as well as the strangeness content. It was shown that the
flavor-independent vector interaction predicts a smaller strangeness content and, therefore, harder equations of
state. On the other hand, the flavor-dependent vector interaction favors larger strangeness content the larger
the vector coupling. We confirmed that, at low densities, the magnetic field and the vector interaction have
opposite competing effects: the first one softens the equation of state while the second hardens it. Quark stars
and hybrid stars subject to an external magnetic field were also studied. Larger star masses are obtained for the
flavor-independent vector interaction. Hybrid stars may bare a core containing deconfined quarks if neither the
vector interaction nor the magnetic field are too strong. Also, the presence of strong magnetic fields seems to
disfavor the existence of a quark core in hybrid stars.
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I. INTRODUCTION

Early investigations performed with the Walecka model for
nuclear matter [1] show that the inclusion of a vector-isoscalar
channel is an essential ingredient for an accurate description
of nuclear matter. Later, such a channel has been considered to
extend the standard Nambu–Jona-Lasinio model (NJL), which
originally included only a scalar and a pseudoscalar type of
channels, in order to obtain a saturating chiral theory for
nuclear matter described only by fermions [2]. As discussed in
Ref. [3], the introduction of the vector interaction, and thus
of the vector excitations, is also important in determining
the properties of strongly interacting matter at intermediate
densities where vector mesons mediate the interactions and
their exchange might be responsible for kaon condensation at
high density. Recently, the presence of a vector interaction in
the NJL model was crucial to reproduce the measured relative
elliptic flow differences between nucleons and antinucleons as
well as between kaons and antikaons at energies carried out in
the Beam-Energy Scan program of the Relativistic Heavy Ion
Collider [4].

Regarding the QCD phase diagram at finite quark density
it has been established that the net effect of a repulsive
vector contribution is to weaken the first-order transition [5].
Indeed, it has been observed that the first-order transition
region shrinks, forcing the critical endpoint (CEP) to appear at
smaller temperatures, while the first-order transition occurs at
higher chemical potential values when the vector interaction
increases.

Since the finite density region of the QCD phase diagram is
not yet accessible to lattice simulations, one usually employs
model approximations to study the associated phase transitions
as well as to evaluate the equation of state (EOS) to be used
in stellar modeling. One of the most popular models adopted
in these investigations is the NJL which, as already referred

to, can be easily extend to accommodate a vector channel
while keeping the original symmetries. At present, despite its
importance, the vector term coupling GV cannot be determined
from experiments and lattice QCD simulations, although there
have been some attempts to determine its value. For instance, in
Ref. [6] a vector coupling constant of the order of magnitude
of the scalar-pseudoscalar coupling was obtained by fitting
the nucleon axial charge or masses of vector mesons and,
in Ref. [7], the pion mass and the pion decay constant were
recalculated as a function of the vector interaction and shown to
vary by about 10% for 0 < x < 1, where x = GV /GS , with
GS being the scalar coupling. Eventually, the combination
of neutron star observations and the energy scan of the
phase-transition signals at the Facility for Antiproton and
Ion Research (FAIR) in GSI and at the Nuclotron-based Ion
Collider Facility (NICA) in JINR may provide us some hints on
the precise numerical value. Meanwhile, GV has been taken as
a free parameter in most works. Finally, note that this channel
interaction can be generated by higher orders (exchange type
of contributions) which are present in approximations which
go beyond the large-Nc limit like the the nonperturbative
optimized perturbation theory (OPT) [8].

The fact that a sufficiently strong vector term may turn
the first-order phase transition, which is expected at the
low-temperature part of the QCD phase diagram, into a
smooth cross over (for the realistic case of quarks with finite
current masses) may also have astrophysical implications
affecting the structure of compact stellar objects. In Ref. [7], a
variable vector coupling was used in the discussion of the
possible properties of quark stars and the authors showed
that, depending on the value of the vector coupling, the
star could either be self-bound and present a finite density
at the surface or bear a very small density at the surface,
behaving as a standard (hadronic) neutron star. The maximum
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stellar mass obtained, M = 1.6M�, corresponds to the largest
vector coupling considered, x = 1, i.e., GV = GS . After these
seminal works, a repulsive vector term was also used in many
other investigations involving hybrid stars and possible phase
transitions to a quark phase [9]. Recently, the importance of
the vector interaction in describing massive stars has also been
extensively discussed [10–15].

Another timely important problem concerns the investiga-
tion of the effects produced by a magnetic field B on the
QCD phase diagram and also on the EOS used to model
neutron stars. The motivation stems from the fact that strong
magnetic fields may be produced in noncentral heavy ion
collisions [16,17], as well as being present in magnetars [18].

Regarding stellar matter, the low-temperature part of
the QCD phase diagram, where a first-order (chiral) phase
transition is expected to occur [8,19], constitutes the relevant
region to be investigated. The question of how this region is
affected by magnetic fields has been addressed in Refs. [20,21]
in the framework of the three-flavor NJL and Polyakov
Nambu-Jona-Lasinio (PNJL) models, respectively. One of
the main results of Ref. [20] shows that, in this regime,
the symmetry-broken phase tends to shrink with increasing
values of B. At these low temperatures, the chemical-potential
value associated with the first-order transition decreases with
increasing magnetic fields, an effect known as the inverse
magnetic catalysis phenomenon (IMC). This result has been
previously observed with the two-flavor NJL, in the chiral
limit [22], as well as with a holographic one-flavor model [23]
and more recently with the planar Gross–Neveu model [24]. A
model-independent physical explanation for the IMC is given
in Ref. [23] while a recent review with new analytical results
for the NJL can be found in Ref. [25]. Another interesting
result obtained in Ref. [20] concerns the size of the first-order
segment of the transition line which expands with increasing B
in such a way that the critical point becomes located at higher
temperature and smaller chemical-potential values. Note that,
depending on the adopted parametrization, this region can
display a rather complex pattern with multiple weak first-order
transitions taking place [26].

Concerning the low-temperature portion of the phase
diagram one notices that, so far, most applications have
considered effective models with scalar and pseudoscalar
channels only. However, as already pointed out, the presence of
a vector interaction can be an important ingredient to reproduce
some experimental results or compact-star observations, and
so should also be taken into account in the computation of
the EOS for magnetized quark matter. A step towards this
type of investigation has been recently taken in Ref. [27]
where two-flavor magnetized quark matter in the presence of
a repulsive vector coupling, described by the NJL model, has
been considered. The results show that the vector interaction
counterbalances the effects produced by a strong magnetic
field. For instance, in the absence of the vector interaction,
high magnetic fields (eB � 0.2 GeV2) increase the first-order-
transition region. On the other hand, a decrease of this region
is observed for a strong vector interaction and vanishing
magnetic fields. Also, at low temperatures and GV = 0, the
coexistence chemical potential decreases with an increase of
the magnetic field (IMC) [20]; however, the inclusion of a the

vector-interaction results in the opposite effect. The presence
of a magnetic field together with a repulsive vector interaction
gives rise to a peculiar transition pattern since B favors the
appearance of multiple solutions to the gap equation whereas
the vector interaction turns some metastable solutions into
stable ones, allowing for a cascade of transitions to occur [27].
The most important effects take place at intermediate and low
temperatures affecting the location of the critical endpoint as
well as the region of first-order chiral transitions.

More realistic physical applications require that one con-
siders more sophisticated versions of the simple two-flavor
model considered in Ref. [27]. Strangeness is a necessary
ingredient when describing the structure of compact stellar
objects or the QCD phase diagram. Therefore, the purpose
of the present work is to study magnetized strange quark
matter in the presence of a repulsive vector interaction.
We are also interested in understanding the properties of
strongly interacting matter described by two different vector
interactions [5–7] and two commonly used parametrizations
of the NJL model [28,29]. In the following we refer to the
extended version of the NJL model that incorporates a vector
interaction as NJLv model. We first evaluate the similarities
and differences at zero temperature of pure quark matter
obtained with the two models by investigating the behavior
of the constituent quark masses and the related EOS for two
different physical situations; namely, matter with the same
quark chemical potentials and the same quark densities. Once
the underlying physics is understood, we move to stellar
matter conditions. Having in mind two recently 2M� pulsars
measured PSR J1614−2230 [30], (1.97 ± 0.04)M�, and PSR
J0348+0432 [31], (2.01 ± 0.04)M�, we discuss which form
of the vector-interaction results in higher compact-star masses.
We devote special attention to the zero-temperature part of
the phase diagram which is currently not accessible to lattice
simulations and which constitutes the important region as far as
the physics of compact stars is concerned. We do not consider
the color superconducting phase in the interior of hybrid stars,
which would make the equation of state softer. Our conclusions
on the maximum star masses should, therefore, be regarded as
upper limits.

II. GENERAL FORMALISM

In order to consider quark matter under the influence of
strong magnetic fields and in the presence of a repulsive vector
interaction we introduce the following Lagrangian density,
where the quark sector is described by the SU(3) version of
the NJL model:

L = ψ̄[γμ(i∂μ − qAμ) − m̂f ]ψ + Lsym

+Ldet + Lvec − 1
4FμνF

μν, (1)

where Lsym and Ldet are given by

Lsym = GS

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2], (2)

Ldet = −K{det[ψ̄(1 + γ5)ψ] + det[ψ̄(1 − γ5)ψ]}, (3)
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TABLE I. Parameter sets for the NJL SU(3) model.

Parameter set � GS�
2 K�5 mu,d ms

MeV MeV MeV

HK [28] 631.4 1.835 9.29 5.5 135.7
RKH [29] 602.3 1.835 12.36 5.5 140.7

where ψ = (u,d,s)T represents a quark field with three flavors,
m̂f = diag(mu,md,ms) is the corresponding (current) mass
matrix while q represents the quark electric charge, λ0 =√

2/3I where I is the unit matrix in three-flavor space, and
0 < λa � 8 denotes the Gell-Mann matrices. We consider
mu = md �= ms . The Ldet term is the t’Hooft interaction which
represents a determinant in flavor space which, for three
flavors, gives a six-point interaction [32] and Lsym, which is
symmetric under global U (Nf )L × U (Nf )R transformations
and corresponds to a four-point interaction in flavor space. The
parameters of the model; �, the coupling constants GS and K ,
and the current quark masses m0

u and m0
s , are determined by

fitting fπ , mπ , mK , and mη′ to their empirical values. Two
parametrization sets are used in the present work and the
constant values are given in Table I.

We employ a mean-field approach and the effective quark
masses can be obtained self-consistently from

Mi = mi − 4GSφi + 2Kφjφk, (4)

with (i,j,k) being any permutation of (u,d,s), and where φi

stands for the scalar condensate of the i-flavor quark.
At this point, a comment on the sharp cutoff-regularization

scheme we have used is in order. In Refs. [33,34], the authors
choose a smooth cutoff to avoid unphysical oscillations, which
appear when the pairing interaction is included because the
sharp cutoff limits the allowed momenta.

In the present work we do not face the problem of
unphysical solutions: on one hand, no superconducting phase
is considered (that would require the pairing gap equation to
be solved); on the other hand, at the densities at which we are
working the constituent quark masses are always above the
respective current masses.

As for the vector interaction, the Lagrangian den-
sity that denotes the U (3)V ⊗ U (3)A invariant interaction
is [3,10,11,35,36]

Lvec = −GV

8∑
a=0

[(ψ̄γ μλaψ)2 + (ψ̄γ μγ5λaψ)2]. (5)

For the SU(2) version of the NJL model, at nonzero quark
densities, the flavor singlet condensate term of the vector
interaction, (ψ̄γ 0λ0ψ), develops a nonzero expectation value
while all other components of the vector and axial vector
interactions have vanishing mean fields. Hence, a reduced
NJLv Lagrangian density can be written as [13–15,37,38]

Lvec = −GV (ψ̄γ μψ)2. (6)

In the SU(3) NJLv model, the above Lagrangian densities are
not identical in a mean-field approach, and we discuss both
cases next. We refer to the Lagrangian density given in Eq. (5)

as model 1 (P1) and to the Lagrangian density given in Eq. (6)
as model 2 (P2).

As usual, Aμ and Fμν = ∂μAν − ∂νAμ are used to account
for the external magnetic field. We are interested in a static
and constant magnetic field in the z direction and hence we
choose Aμ = δμ2x1B.

We need to evaluate the thermodynamical potential for the
three-flavor quark sector, �f , which as usual can be written
as � = −P = E − T S − ∑

f μf ρf , where P represents the
pressure, E is the energy density, T is the temperature, S
is the entropy density, and μf is the chemical potential of
quark with flavor f . To determine the EOS for the SU(3)
NJL at finite density and in the presence of a magnetic field
in a mean-field approximation we need to know the scalar
condensates φi , the quark number densities ρi , as well as the
pressure kinetic contribution from the gas of quasiparticles, θi .
In the presence of a magnetic field, all of these quantities
have been evaluated in great detail in Refs. [39,40], from
where the mathematical expressions with vacuum, medium,
and magnetic-field contributions can be obtained. For the sake
of completeness, some of the most important expressions are
displayed in the Appendix.

If model 1 is considered, the pressure reads

P = θu + θd + θs − 2GS

(
φ2

u + φ2
d + φ2

s

)
+ 2GV

(
ρ2

u + ρ2
d + ρ2

s

) + 4Kφuφdφs, (7)

and the effective chemical potential, for each flavor, is given
by

μ̃i = μi − 4GV ρi, i = u,d,s. (8)

We also refer to P1 as the flavor-dependent model, for reasons
that will become obvious from the analysis of our results.

If, on the other hand, model 2 is considered, the pressure
becomes

P = θu + θd + θs − 2GS

(
φ2

u + φ2
d + φ2

s

)
+GV ρ2 + 4Kφuφdφs, (9)

where

ρ = ρu + ρd + ρs, ρB = ρ/3, (10)

and in this case the effective chemical potential, for each flavor,
is given by

μ̃i = μi − 2GV ρ. (11)

We next refer to P2 as the flavor-independent (or flavor-blind)
model. In both cases note that, as pointed out in Ref. [32], μ̃i is
a strictly rising function of μi . Here, the pressure is normalized
in a conventional way so that P (μ = 0) = 0.

If stellar matter is to be considered, β equilibrium and
charge neutrality have to be imposed and a leptonic sector is
then included. The Lagrangian density reads

Ll = ψ̄l[γμ(i∂μ − qlA
μ) − ml]ψl, (12)

where l = e, μ and the leptonic contributions to the pressure,
density, and entropy density are also given in the Appendix.
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MENEZES, PINTO, CASTRO, COSTA, AND PROVIDÊNCIA PHYSICAL REVIEW C 89, 055207 (2014)

III. RESULTS AND DISCUSSIONS

We next analyze two different physical situations: pure
quark matter, of interest in the studies of the QCD phase
diagram, and stellar matter applied to investigate possible
quark and hybrid stars.

A. Pure quark matter

In the present section we discuss two distinct physical
situations: quark matter defined by equal chemical potentials
for three flavors u, d, s and for equal quark densities. This is
achieved by numerically solving, without further approxima-
tions, the three gap equations (4) together with the constraints
μu = μd = μs or ρu = ρd = ρs , with the chemical potentials
defined by Eq. (8) for model P1 or Eq. (11) for model P2.

We discuss the effect of the vector interaction on the EOS
and strangeness fraction. In particular, we take GV = xGS ,
where x is a free parameter which we vary such that 0 < x < 1,
as proposed in Ref. [7]. We present results for both possible
forms of the vector interaction discussed in the previous
section, which are designated by P1 and P2, respectively, the
flavor-dependent and -independent form. We also compare two
popular parametrizations of the SU(3) NJL model designated
by HK [28] and RKH [29].

The effect on the EOS of the different forms for the vector
interaction is seen in Fig. 1(a), where the parametrization RKH
is used with different strengths of the vector interaction, for
both P1 and P2 under the equal-chemical-potential constraint.
Several conclusions are in order: (a) The models coincide
until ∼3ρ0 to 4ρ0, where ρ0 = 0.17 fm−3 is the nuclear matter
saturation density, depending on the magnitude of x. The larger
x, the earlier the two models differ. This is due to the onset of
the strangeness that occurs at smaller densities with form P1,
as is shown later. (b) Once the strangeness sets on the EOS
becomes softer, therefore, for sufficiently large densities P1 is
softer than P2. (c) The pressure is negative for some values of
GV , including GV = 0, a feature observed and discussed in
Ref. [7], with consequences on possible coexisting phases and
associated phase transitions. (d) for a sufficiently large GV the
first-order phase transition observed for densities below 2ρ0

disappears, and the pressure increases monotonically with the
baryonic density. For the parametrization RKH this occurs for
x = 0.71 and is represented by the pink curves in the figure.

In Fig. 1(b), we compare two different scenarios, μu =
μd = μs and ρu = ρd = ρs represented, respectively, by the
thin and thick lines. The equal flavor densities, corresponding
to matter generally designated by strange quark matter, is
softer, giving rise to a larger density discontinuity at the
first-order phase transition. In this scenario the EOS for
models P1 and P2 differ for all baryonic densities because
the vector-interaction form given in Eq. (6) results in different
contributions in each case. This scenario may be approximately
realized at the center of a quark star.

The effect of the magnetic field on the EOS is seen by
comparing the four graphs of Fig. 2. We first discuss the
scenario μu = μd = μs . We have chosen three values of eB:
0.1, 0.3, and 0.6 GeV2 corresponding to 5m2

π , 15m2
π , and

30m2
π . The van Alphen oscillations due to the filling of the

(a)

(b)

FIG. 1. (Color online) The pressure versus baryonic density for
model 1 (P1) and 2 (P2) for different values of x and parametrization
RKH, under the conditions (a) μu = μd = μs , (b) ρu = ρd = ρs

(thick lines), and μu = μd = μs (thin lines).

Landau levels are already seen for eB = 0.1 GeV2. The EOS
becomes harder at large densities, and the larger eB, the harder
the EOS, although locally, when the filling of a new Landau
level begins, the EOS becomes softer. This increased softness
is immediately overtaken by an extra hardness. The larger B,
the larger the amplitude of the fluctuations and the smaller their
number, because less Landau levels are involved. The softening
occurring when a new Landau level starts being occupied has
a strong effect at the smaller densities, giving rise to a pressure
that is negative within a larger range of densities. For eB = 0.3
GeV2, a magnetic field that could occur at Large Hadron
Collider (LHC) experiments, negative pressures occur beyond
ρB = 0.5 fm−3 and this range increases until ∼1 to 1.5 fm−3

for eB = 0.6 GeV2. The vector interaction P2 always gives
the hardest EOS due to the smaller strangeness content.

In Fig. 3 the EOS obtained with interaction P2 and the two
different parametrizations of the NJL model are compared for
eB = 0 and 0.3 GeV2. For GV = 0 the EOS obtained with the
HK parametrization does not cross the RKH EOS. This is no
longer valid for a finite GV . The RKH EOS becomes stiffer
and the two EOSs cross within the range of densities shown
in the figure. This feature is still present for a finite magnetic
field [see Fig. 3(b)].

Now we move to the scenario of equal flavor densities.
The EOSs are plotted in Fig. 4 for eB = 0 and 0.6 GeV2.
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FIG. 2. (Color online) Pressure versus baryonic density for equal chemical potentials and models P1 and P2 for different values of x, and
several intensities of the magnetic field: eB = 0, eB = 0.1 GeV2, eB = 0.3 GeV2, and eB = 0.6 GeV2.

As already referred to before, this scenario is softer than the
equal-chemical-potentials scenario for the range of densities

(a)

(b)

FIG. 3. (Color online) Pressure versus baryonic density for
model 2 (P2) for different values of x. Two parametrizations of
the NJL are compared HK and RKH with magnetic-field intensities
(a) eB = 0 and (b) eB = 0.3 GeV2.

shown. However, at sufficiently large densities both scenarios
converge. In fact, above chiral-symmetry restoration it is

(a)

(b)

FIG. 4. (Color online) Pressure versus baryonic density for mod-
els P1 and P2 for equal quark densities, different values of x for
(a) eB = 0 and (b) eB = 0.6 GeV2.

055207-5



MENEZES, PINTO, CASTRO, COSTA, AND PROVIDÊNCIA PHYSICAL REVIEW C 89, 055207 (2014)

FIG. 5. (Color online) The quark constituent masses as a function of the baryonic density for models P1 and P2, different values of x for
eB = 0 (top figures) and eB = 0.3 GeV2 (bottom figures).

expected that equal chemical potentials correspond to equal
densities. The effect of a strong magnetic field is very
different in both scenarios: while the equal-chemical-
potentials EOS presents very strong oscillations, these are not
seen for the scenario of equal densities. In the equal chemical
potentials, the s-quark density remains zero until a quite high
baryonic density and, therefore, for a given density below
the strangeness onset the u- and d-quark densities are much
larger than in the equal quark densities. Larger u- and d-quark
densities give rise to the restoration of chiral symmetry at
lower baryonic densities. Since the effect of the magnetic field
is stronger for smaller masses, this explains the differences in
the bottom graphs of Fig. 4 between the two scenarios.

The difference between the chiral-symmetry restoration in
the two scenarios presented above is clearly seen in Fig. 5,
where the constituent masses of the u, d, and s quarks are
plotted for different strengths of the vector interaction and
the two models P1 and P2. We first comment on the eB = 0
results and the two vector interactions (top panels of Fig. 5).
The chiral restoration of u and d quarks does not depend on
the interaction. However, a difference is observed between the
scenarios of equal chemical potential and equal density.

In the scenario of equal densities (gray lines), one can see
that the chiral symmetry restoration of the u and d quarks
occurs at larger densities than in the situation with equal
chemical potentials (red lines) because the u- and d-quark
densities are larger in the latter situation. For the s quark, the
opposite occurs. Including the vector interaction does not af-
fect the quark masses in model P2, but it does affect the s-quark
mass in model P1. In this case the larger GV , the faster the
chiral restoration of the s-quark mass, due to the larger s-quark
density. At finite B similar conclusions are drawn, but also new
aspects arise. First of all, the constituent masses of the u and d

quarks do not coincide anymore due to the charge difference.
Since the u quark has a larger charge, Mu > Md in the scenario
of equal densities. In the scenario of equal chemical potentials
there is a competition between the effect of the charge and
the effect of density. For the larger magnetic field considered,
discontinuities are obtained. These correspond to first-order
phase transitions associated with the filling of the Landau
levels.

The above results on the constituent quark masses confirm
that the large oscillations of the EOS seen in Fig. 4(b), for the
equal chemical potential is in fact due to the small masses of
the u and d quarks.

It is interesting to compare the strangeness content of matter
under the conditions discussed up to this point. We next analyze
once more the situation of equal chemical potentials. In Fig. 6
the strange-quark fraction for the P1 and P2 models, three
values of GV , and eB = 0 and 0.3 GeV2 are displayed. We
also report results for the parametrizations RKH (thick) and
HK (thin). One aspect that is immediately observed is that
the P2 model presents the least amount of strange quarks, and
its content does not depend on GV , both for zero and for a
finite magnetic field. However, the P1 model does affect the
strange-quark content and the larger GV , the earlier the onset
of the s quark and the larger its content. One should notice that
the definition of the effective chemical potentials in Eqs. (8)
and (11) is directly reflected on the strangeness content.
The magnetic field does not erase this feature. Nevertheless,
the filling of new Landau levels decreases the rate of the
increase of the s-quark content, as observed in Fig. 6(b).
Parametrizations RKH and HK behave in a similar way with
RKH predicting an onset of s quarks at smaller densities,
and a larger amount of strangeness for a given baryonic
density.
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(a)

(b)

FIG. 6. (Color online) The strangeness fraction as a function of
the baryonic density for models P1 and P2, different values of GV ,
and (a) B = 0 and (b) eB = 0.3 GeV2.

B. Stellar matter: quark stars

We next move to the study of stellar matter, i.e., matter
where β equilibrium and charge neutrality are enforced. In
this case, leptons are introduced in the system. We solve self-
consistently the gap equations (4) together with the constraints
of chemical equilibrium and charge neutrality, respectively,

μs = μd = μu + μe, μe = μμ, (13)

and

ρe + ρμ = 1
3 (2ρu − ρd − ρs), (14)

with the chemical potentials defined by Eq. (8) for model P1
or Eq. (11) for model P2.

Since, there is no information available to date on the star
interior magnetic field, we assume that the magnetic field is
baryon-density dependent, as suggested in Ref. [41]. In the
following we consider a magnetic field that increases with
density according to

B = Bsurf + B0{1 − exp[−β(ρ/ρ0)γ ]},
β = 0.02, γ = 3. (15)

Bsurf = 1015 G is the magnetic field at the surface of the star.
Because our aim in this section is to compare results with
astrophysical observations, the use of magnetic fields in Gauss
units is more adequate. We considered that eB = 1 GeV2

corresponds to B = 1.685 × 1020 G. In the following we start
by investigating the effects of the vector interaction in stellar
matter applied do quark stars and subsequently we choose the

(a)

(b)

FIG. 7. (Color online) The pressure versus energy density (EOS)
for model P1 (thin lines) and P2 (thick lines) for different values of
GV and (a) B = 0 and (b) B = 1018 and 1019 G. Both figures were
obtained for the parametrization RKH.

best possible model and parameter set to build hybrid stars and
look at their macroscopic properties.

Once again, we start from the nonmagnetized case and
check the differences arising from both models with the RKH
parameter set and different values of GV in Fig. 7. The same
conclusions reached from the pure-quark-matter case can be
drawn here; mainly that P2 gives rise to a harder EOS and that,
at very low energy densities, the pressure becomes slightly neg-
ative. This difference can be easily understood if one looks at
Eqs. (7) and (9), from where it is seen that the contribution from
the vector term to the pressure is larger in model P2 because
in this case it is flavor blind. The effect of the magnetic field
on the quark matter is stronger for the large densities when the
magnetic field is more intense due to the density dependence
we have considered [see Eq. (15)] and much larger when we
consider B0 = 1019 G. The fluctuations arising due to the fill-
ing of new Landau levels seem larger and more frequent for the
smaller vector coupling on an energy-density versus pressure
curve. This arises because, for a stronger vector term, a larger
energy density is obtained for the same density and, therefore,
the fluctuations are spread over a larger energy-density range.

We then reobtain the EOS for the cases where B = 1017

and 3.1 × 1018 G. These values were chosen as the limiting
values because, below B = 1017 G, all EOSs coincide with
the nonmagnetized case and 3.1 × 1018 G is the maximum
value that allows us to avoid anisotropic pressures [42]. This
is also the maximum intensity supported by a star bound by the
gravitational interaction before the star becomes unstable [43].
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(a)

(b)

FIG. 8. (Color online) EOS for model 2 (P2) for different values
of GV and (a) B = 3.1 × B = 1018 G obtained with parametrizations
HK and RKH and (b) two intensities of the magnetic field: B = 1017 G
and B = 3.1 × 1018 G for parameter set HK.

However, because we are using a density-dependent magnetic
field, this value may never be reached in the star core.

In Fig. 8(a), we compare both parametrizations for a fixed
magnetic field equal to 3.1 × 1018 G and different values
of GV . We can observe that HK yields a harder EOS than
RKH. The van Alphen oscillations are noticeable for this field
intensity. The feature of HK and RKH EOS crossing with
the increase of the vector interaction, observed when pure
quark matter is analyzed, occurs at energy densities larger
than those shown in the figure. In Fig. 8(b), we fix the HK
parametrization and plot the EOS for the two intensities of the
magnetic field mentioned above. It is interesting to observe that
at large densities an EOS obtained with a smaller magnetic field
becomes harder for certain values of GV than an EOS obtained
with a much stronger magnetic field and a smaller value of GV .

We proceed to the analysis of the strangeness content for
nonmagnetized matter, whose curves are depicted in Fig. 9(a).
As in the case of pure quark matter, the amount of strange
quarks remains unchanged with any variation of GV with
model P2 while it increases with the increase of GV if
model P1 is used. RKH presents a higher strangeness content
than HK with consequences in the maximum stellar masses,
as we show next. For the sake of completeness, we show
the strangeness fraction for B = 3.1 × 1018 G and the two
parameter sets discussed in the present work in Fig. 9(b) for the
strangeness-blind vector interaction P2. As already expected
from the softness of the EOS, we see that HK introduces a
smaller strangeness content in the system and if we compare

(a)

(b)

FIG. 9. (Color online) Strangeness fraction as a function of the
baryonic density for B = 0, parameter sets HK and RKH (a) for
models 1 (P1) and 2 (P2) and different values of x and (b) model 2
(P2) for different values of x with B = 3.1 × 1018 G.

the values obtained with different values of the magnetic field
ranging from B = 1017 G to B = 3.1 × 1018 G, we can see
that the amount of strange quarks remains practically unaltered
for both parameter sets.

Finally, we use the EOS discussed above as input to
the Tolman–Oppenheimer–Volkoff (TOV) equations [44] and
show our results in Fig. 10 and Table II. A general trend
is that HK, being harder with less strange quarks, produces
higher maximum masses. A not-so-common feature is that for
some combination of GV values and magnetic-field intensities,
the quark stars behave as hadronic stars in the sense that the
densities attained at low pressure are indeed very small. This is
seen in Fig. 10 in all cases where the low-mass stars have very
large radii. This feature has already been observed in Ref. [7]
for nonmagnetized stars and it is related to the existence
(nonexistence) of negative pressures at very low densities for
small (large) values of the vector-interaction coupling.

We see that the maximum masses obtained with zero
and low magnetic-field intensities (B = 1017 G) are always
coincident, but the radii are slightly different due to the
small differences in the central energy densities. Within RKH
the most massive neutron stars have less ∼0.2M� than if
the HK parametrization is used. HK can reach quite high
maximum mass values, of the order of 2M�, for either
large values of the vector interaction even with low or zero
magnetic fields or for high magnetic fields and any value of
the vector interaction. Concerning the radii, some comments
are in order: in Ref. [45], the radii of the canonical 1.4M�
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(a)

(b)

FIG. 10. (Color online) Mass radius curves obtained with model
2 (P2) for different values of GV , two intensities of the magnetic field
(B = 1017 G and B = 3.1 × 1018 G) and parametrizations (a) HK
and (b) RKH.

neutron star was estimated to lie in the range 9.7–13.9 Km.
More recently, there was a prediction that they should lie

TABLE II. Stellar macroscopic properties obtained from EOS
of nonmagnetized matter for models P1 and P2 and for magnetized
matter with model P2 and two values of magnetic-field intensities.
Mmax is the maximum mass, R is the star radius, and ε is the star
central energy density.

HK RKH

x = 0.1 x = 0.3 x = 0.6 x = 0.1 x = 0.3 x = 0.6

B = 0, P1

Mmax (M�) 1.49 1.58 1.69 1.27 1.35 1.46
R (km) 9.13 10.89 11.98 8.01 8.17 9.41
εc (fm−4) 7.23 6.96 6.52 9.42 9.61 9.84

B = 0, P2

Mmax (M�) 1.56 1.72 1.91 1.35 1.54 1.74
R (km) 9.15 10.61 11.47 8.22 8.60 9.91
εc (fm−4) 7.35 7.37 6.92 8.71 8.58 8.09

B = 1017 G, P2

Mmax (M�) 1.56 1.72 1.91 1.35 1.54 1.74
R (km) 9.16 10.16 10.95 8.21 8.58 9.60
εc (fm−4) 7.41 7.36 6.98 8.80 8.94 8.11

B = 3.1 × 1018 G, P2

Mmax (M�) 1.96 2.03 2.12 1.81 1.88 1.98
R (km) 9.98 10.43 11.05 9.03 9.21 9.90
εc (fm−4) 7.41 7.22 6.78 8.74 8.21 7.80

in the range R = 9.1+1,3
−1.5 Km [46] and another one stating

that the range should be 10–13.1 Km [47]. From Fig. 10,
one can see that there is a window of values for GV and B
which results in radii accepted by any of the above-mentioned
analyses.

C. Stellar matter: hybrid stars

To make our analysis of the vector interaction as broad
as possible, we dedicate this section to revisiting the case
of hybrid stars under the influence of strong magnetic fields.
We study the structure of hybrid stars based on the Maxwell
condition (without a mixed phase), where the hadron phase is
described by the GM1 [48] parametrization of the nonlinear
Walecka model [49] and the quark phase by the NJL model
with the inclusion of the vector interaction, as discussed in
the previous section. As stated in the introduction, hybrid stars
have already been extensively discussed for the nonmagnetized
case [9–15]. For the possible existence of magnetars that can
be described by hybrid stars, the reader can refer to Refs. [50]
and [51] and we refrain from writing the mathematical
expressions here.

Faced with the results we obtained for quark stars, we next
choose to construct hybrid stars with the P2 model and both the

(a)

(b)

FIG. 11. (Color online) Hybrid star (a) EOS and (b) mass radius
curves obtained with model 2 (P2) for different values of GV , two
intensities of the magnetic field (B = 1017 G and B = 3.1 × 1018 G),
and parametrization HK.
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HK and RKH parameter sets because this vector-interaction
term yields the hardest quark matter EOS. For the hadronic
phase, we use the GM1 parametrization [48] and hyperon
meson coupling constants equal to fractions of those of the
nucleons, so that giH = XiHgiN , where the values of XiH are
chosen as XσH = 0.700 and XωH = XρH = 0.783 [52]. This
is the same choice as in Ref. [51] for the case of hybrid stars
with the quark phase described by the NJL model (without
the vector interaction). The EOS obtained with a Maxwell
construction for magnetic fields B = 1017 G and B = 3.1 ×
1018 G are shown in Fig. 11(a) for two values of x, being
x = 0.22 the maximum possible value for which a hybrid
star can be built with parameter set HK. For values larger
than 0.22, the quark matter EOS becomes too hard and in a
pressure-versus-baryonic chemical potential, the hadronic and
quark EOS no longer cross each other. For an EOS built with
GM1 and RKH, the curves are very similar, but the maximum
possible value of x for the crossing of the hadronic and the
quark EOS is 0.19.

Taking into account that NJL does not describe the confine-
ment feature of QCD, we cannot, in fact, fix the low-density
normalization of the pressure. In order to account for this
uncertainty, the authors of Refs. [9–12] included an extra
bag pressure that allows the density at which the transition
to deconfinement occurs to vary. Including this term in such a
way that the deconfinement transition occurs at lower densities
than those obtained in the present study would have allowed
us to choose a larger GV and, therefore, a larger maximum
mass would be possible. In the present study we renormalize
the pressure in such a way that it is zero for zero baryonic
density and do not discuss the effect of including an extra bag
pressure.

In Fig. 11(b) the mass radius curves obtained for the
HK parametrization from the solution of the TOV equations

are displayed. These macroscopic results are also shown in
Table III. In this table we present results for both the HK and
RKH parametrizations, three values of the vector couplings,
x = 0, 0.1, and the maximum possible value of x for each
parameter set, and two values of the magnetic-field intensity
B = 1017 G and B = 3.1 × 1018 G. Some of the entrances for
the central baryonic density are not indicated because they lie
on an intermediate value between the density of the hadronic
phase at the quark phase onset and the corresponding density
of the quark phase. The only maximum mass configuration that
really has a quark core is obtained for B = 1017 G and GV = 0
within the HK parametrization, giving rise to a 1.91M� star.
It is worth pointing out that the largest maximum masses are
now obtained, in general, with the parameter set RKH and
not HK, which is the case of quark stars. This is due to the
fact that the quark phase sets in at smaller densities for the
HK parametrization, making the EOS softer. This result has
already been obtained in Refs. [51,53].

One can see that the maximum stellar masses depend very
little on the vector-interaction strength. For the larger magnetic
field considered, the onset of quark matter occurs at a larger
density than the central density of the maximum-mass hadronic
star configuration, for both parametrizations. The same occurs
for B = 1017 G and GV = 0.22 (GV = 0.19) for the HK
(RKH) parameter set. In these cases the properties of the quark
phase do not affect the star properties. On the other hand, from
Fig. 11(b) for B = 1017 G and GV = 0.1, it seems that, as
soon as the quark phase sets in, the star becomes unstable.
Nevertheless, if we compare the baryonic density at the center
of the star with the baryonic density at the onset of quarks,
we conclude that this maximum-mass star could, in principle,
contain a quark core. Had we performed a Gibbs construction,
the star core would be in a mixed phase. All other stars are
ordinary hadronic stars.

TABLE III. Stellar macroscopic properties obtained from EOS of magnetized hybrid stars built with GM1 and SU(3) NJL with HK and
RKH parametrizations. Mmax is the maximum gravitational mass, Mb is the maximum baryonic mass, R is the star radius, εc is the star central
energy density, μB (εc) is the chemical potential for neutrons at εc, and μB (onset) is the baryonic chemical potential at the onset of the quark
phase.

Mmax Mb R εc ε (onset) ρc ρ (onset) μB (εc) μB (onset)
(M�) (M�) (km) (fm−4) (fm−4) (fm−3) (fm−3) (MeV) (MeV)

HK, B = 1017 G, P2
x = 0 1.91 2.18 12.78 4.57 3.47 0.78 0.62 1360 1330
x = 0.10 1.99 2.30 12.14 6.27 5.05 0.84 1503
x = 0.22 2.00 2.31 11.82 5.93 7.79 0.95 1.18 1580 1726

HK, B = 3.1 × 1018 G, P2
x = 0 2.27 2.60 12.82 4.69 3.30 0.70 0.54 1324 1261
x = 0.10 2.35 2.70 12.34 5.29 5.59 0.74 0.78 1427 1453
x = 0.22 2.35 2.70 12.35 5.27 9.03 0.74 1.18 1426 1730

RKH, B = 1017 G, P2
x = 0 1.97 2.26 12.48 4.29 4.28 0.74 1422
x = 0.10 2.00 2.31 11.91 7.51 5.67 0.92 1557
x = 0.19 2.00 2.31 11.83 5.91 7.83 0.95 1.18 1579 1728

RKH, B = 3.1 × 1018 G, P2
x = 0 2.33 2.69 12.79 4.69 4.19 0.63 1335
x = 0.10 2.35 2.70 12.34 5.30 6.52 0.74 0.88 1428 1531
x = 0.19 2.35 2.70 12.34 5.30 9.05 0.74 1.18 1428 1731

055207-10



REPULSIVE VECTOR INTERACTION IN THREE-FLAVOR . . . PHYSICAL REVIEW C 89, 055207 (2014)

As an overall conclusion, it may be stated that a star that
is subject to a strong magnetic field attains a smaller baryonic
density in its center and, therefore, the quark phase is not
favored. This same conclusion was obtained in Ref. [50] where
the quark phase was described within the MIT bag model.
Moreover, since the inclusion of a vector interaction makes
the quark EOS harder, it is also natural to expect that a quark
EOS with a large GV renders difficult the occurrence of a
quark core. The weak point of the standard NJL model is the
fact that it does not include confinement and, therefore, the
normalization considered for the pressure is not well defined.

Stars with very high masses are predicted and maximum
masses of observed compact stars may set an upper limit for
the largest possible magnetic field at the center of the star,
2 × 1018 G for 2M� stars.

Of course, had we chosen the P1 model to build the hybrid
star, the x value that would allow for a Maxwell construction
would certainly be larger than 0.19 or 0.22, depending on
the choice of parameters, but the stellar maximum mass would
probably be smaller than 2M�. It is worth remembering that all
results presented here depend also on the choice of the coupling
constants and meson-hyperon parameters for the hadron phase.

IV. FINAL REMARKS

In the present work we have studied quark matter in the
presence of a strong magnetic field. We had as our main
objective to understand the interplay between the effects of an
external magnetic field and the presence of vector interaction
in the quark-density Lagrangian. Quark matter was described
within the SU(3) NJL model, and we considered two forms
of the vector interaction: a flavor-dependent interaction and
a flavor-independent interaction; both frequently used in the
literature.

As expected, it was shown that the larger the vector
coupling, the harder the EOS, due to the repulsive character of
the vector interaction. At low densities the magnetic field has
an effect contrary to the vector interaction and softens the EOS
due to appearance of Landau levels with a large degeneracy. In
fact, if the vector interaction is strong enough the low-density
first-order transition disappears and a crossover occurs. The
magnetic field, however, increases the range of densities for
which matter is unstable. On the other hand, at large densities,
both the repulsive vector interaction and the magnetic field act
in the same direction; in particular, they make the EOS harder.

Two scenarios of homogeneous quark matter were consid-
ered: equal flavor chemical potential and equal flavor density.
In the first scenario the role of the vector interaction is an
important ingredient, affecting the fraction of each kind of
quarks. For the flavor-dependent vector interaction the s-quark
fraction increases with the vector interaction. Within the
flavor-independent vector interaction the strangeness sets in
at a quite high baryonic density independently of the vector
coupling. As the presence of s quarks softens the EOS, the
hardest EOSs were obtained with the flavor-independent vector
interaction.

Stellar matter and compact-star properties in the presence
of a static magnetic field that increases with the baryonic
density were also studied. For quark stars we showed that the

larger the vector coupling, the larger the maximum star mass,
independent of the form of the vector interaction. Moreover,
it was shown that the flavor-independent vector interaction
predicts larger-mass stars, which can be 0.1M� to 0.3M�
larger depending on the magnitude of the vector interaction.
The presence of a static magnetic field increases the maximum
mass, and masses above ∼2M� are obtained for a magnetic
field that is ∼3 × 1018 G in the center of the star.

We showed that, within the present quark model, hybrid
stars with a quark content in its center are only possible if
neither the vector coupling nor the magnetic fields are too
strong. Strong magnetic fields disfavor the formation of a quark
phase. This fact, however, may have interesting consequences,
as already discussed in Ref. [50], giving rise to a phase
transition when the magnetic field decays. This kind of phase
transition is expected to release a large amount of energy,
possibly in the form of a γ -ray burst.
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APPENDIX

As already stated in Sec. II, the formalism necessary to
compute the EOS for the SU(3) NJL at finite density and in
the presence of a magnetic field in a mean-field approximation
was developed in detail in Refs. [39,40]. We next quote some
of the main results.

The kinetic contribution from the gas of quasiparticles, θ ,
present in Eqs. (7) and (9), reads

θf = θvac
f + θ

mag
f + θmed

f , (A1)

where the vacuum contribution reads

θvac
f = − Nc

8π2

{
M4

f ln

[
(� + ε�)

Mf

]
− ε��

(
�2 + ε2

�

)}
,

(A2)

and we have defined ε� = (�2 + M2
f )1/2 with � representing

a noncovariant ultraviolet cutoff. The finite magnetic contri-
bution is given by

θ
mag
f = Nc(|qf |B)2

2π2

×
[
ζ (1,0)(−1,xf ) − 1

2

(
x2

f − xf

)
ln xf + x2

f

4

]
, (A3)

where xf = M2
f /(2|qf |B) while ζ (1,0)(−1,x) = dζ (z,x)/

dz|z=−1 where ζ (z,x) is the Riemann–Hurwitz zeta function.
The medium contribution can be written as

θmed
f =

kf,max∑
k=0

αk

|qf |BNc

4π2

∫
dp( ln{1 + exp[−(Ef − μ̃f )/T ]}

+ ln{1 + exp[−(Ef + μ̃f )/T ]}), (A4)
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with α0 = 1, αk>0 = 2, and Ef = (p2 + M2
f + 2|qf |B)1/2.

The condensates φ entering the quark pressure at finite density
and in the presence of an external magnetic field can be written
as

φf = φvac
f + φ

mag
f + φmed

f , (A5)

where

φvac
f = −Mf Nc

2π2

[
�ε� − M2

f ln

(
� + ε�

Mf

)]
, (A6)

φ
mag
f = −M|qf |BNc

2π2

[
ln �(xf ) − 1

2
ln(2π ) + xf

− 1

2
(2xf − 1) ln(xf )

]
, (A7)

φmed
f =

kmax∑
k=0

αk

Mf |qf |BNc

2π2

∫
dp

(f +
f + f −

f )

Ef

, (A8)

where the fermion distribution functions read

f ±
f = 1

{1 + exp[(Ef ∓ μ̃f )/T ]} . (A9)

The quark f number density, ρf = −(∂�/∂μf ) reads

ρf =
kmax∑
k=0

αk

|qf |BNc

2π2

∫
dp(f +

f − f −
f ). (A10)

As also stated in Sec. II, when stellar matter is considered,
β equilibrium and charge neutrality have to be imposed and
a leptonic sector is then necessary. The Lagrangian density is
given in Eq. (12) and the leptonic contributions to the pressure,
density, and entropy density are given by

Pl =
μ∑

l=e

kl,max∑
k=0

αk

|ql|B
4π2

∫
dp( ln{1 + exp[−(El − μl)/T ]}

+ ln{1 + exp[−(El + μl)/T ]}), (A11)

and

ρl =
kl,max∑
k=0

αk

|ql|B
2π2

∫
dp(f +

l − f −
l ), (A12)

where

f ±
l = 1

{1 + exp[(El ∓ μl)/T ]} , (A13)

and El = (p2 + m2
l + 2|ql|B)1/2.
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