LINEAR ALGEBRA
AND ITS
APPLICATIONS

The invariant polynomials degrees of the Kronecker sum of two linear operators and additive theory

Cristina Caldeira ${ }^{\text {a,1 }}$, J.A. Dias da Silva ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal
${ }^{\mathrm{b}}$ Departamento de Matemática, da Universidade de Lisboa, Rua Ernesto de Vasconcelos, 1749-016
Lisboa, Portugal
Received 2 April 1999; accepted 27 March 2000
Submitted by T.J. Laffey

Abstract

Let G be an abelian group. Let A and B be finite non-empty subsets of G. By $A+B$ we denote the set of all elements $a+b$ with $a \in A$ and $b \in B$. For $c \in A+B, v_{c}(A, B)$ is the cardinality of the set of pairs (a, b) such that $a+b=c$. We call $v_{c}(A, B)$ the multiplicity of $c($ in $A+B)$.

Let i be a positive integer. We denote by $\mu_{i}(A, B)$ or briefly by μ_{i} the cardinality of the set of the elements of $A+B$ that have multiplicity greater than or equal to i.

Let \mathbb{F} be a field. Let p be the characteristic of \mathbb{F} in case of finite characteristic and ∞ if \mathbb{F} has characteristic 0 . Let A and B be finite non-empty subsets of \mathbb{F}.

We will prove that for every $\ell=1, \ldots, \min \{|A|,|B|\}$ one has $$
\begin{equation*} \mu_{1}+\cdots+\mu_{\ell} \geqslant \ell \min \{p,|A|+|B|-\ell\} . \tag{a} \end{equation*}
$$

This statement on the multiplicities of the elements of $A+B$ generalizes Cauchy-Davenport Theorem. In fact Cauchy-Davenport is exactly inequality (a) for $\ell=1$. When $\mathbb{F}=\mathbb{Z}_{p}$ inequality (a) was proved in J.M. Pollard (J. London Math. Soc. 8 (1974) 460-462); see also M.B. Nathanson (Additive number theory: Inverse problems and the geometry of sumsets, Springer, New York, 1996).© 2000 Elsevier Science Inc. All rights reserved.

[^0]Keywords: Additive number theory; Derivations; Invariant polynomials

1. Introduction

Let G be an abelian group. Let A and B be finite non-empty subsets of G. By $A+B$ we denote the set of all elements $a+b$ with $a \in A$ and $b \in B$. For $c \in A+B$, $v_{c}(A, B)$ is the cardinality of the set of pairs (a, b) such that $a+b=c$. We call $v_{c}(A, B)$ the multiplicity of c (in $A+B$).

Let i be a positive integer. We denote by $\mu_{i}(A, B)$ or briefly by μ_{i} the cardinality of the set of the elements of $A+B$ that have multiplicity greater than or equal to i.

Let X be a set. We denote by $|X|$ the cardinality of X. If $|X|=k$, we say that X is a k-set.

Let p be a prime number. If $G=\mathbb{Z}_{p}$, the Cauchy-Davenport Theorem [1-3] states that

$$
|A+B| \geqslant \min \{p,|A|+|B|-1\} .
$$

In [4] the degree of the minimal polynomial of the Kronecker sum of two linear operators is studied and an alternative proof of Cauchy-Davenport Theorem is derived from this study.

Let \mathbb{F} be a field. Let p be the characteristic of \mathbb{F} in case of finite characteristic and ∞ if \mathbb{F} has characteristic 0 . Let A and B be finite non-empty subsets of \mathbb{F}. The main purpose of this article is to state lower bounds for the sum of the degrees of the initial segments of the (divisibility non-decreasing) chain of the invariant polynomials of the Kronecker sum of two linear operators and to get, from this study, new results on the multiplicities of the elements of $A+B$. In fact we will prove that for every $\ell=1, \ldots, \min \{|A|,|B|\}$ we have

$$
\begin{equation*}
\mu_{1}+\cdots+\mu_{\ell} \geqslant \ell \min \{p,|A|+|B|-\ell\} . \tag{1}
\end{equation*}
$$

This statement on the multiplicities of the elements of $A+B$ generalizes CauchyDavenport Theorem. In fact Cauchy-Davenport is exactly inequality (1) for $\ell=1$. When $\mathbb{F}=\mathbb{Z}_{p}$, inequality (1) was proved in [6] (see also [5]).

We can see (check the remark at the end of Section 3) that these lower bounds are tight and the equality, in the inequalities (1), is attained when A and B are arithmetic progressions of the same rate.

2. Generalized cyclic subspaces

Let \mathbb{F} be an arbitrary field and denote by $\overline{\mathbb{F}}$ the algebraic closure of \mathbb{F}. Let $V \neq\{0\}$ be an n-dimensional vector space over \mathbb{F}. Let \mathscr{B} be a basis of V. By I_{V} we denote the identity operator on V. Let g be a linear operator on V. We denote by P_{g} the minimal polynomial of g. For every $x \in V$ we denote by $\mathscr{C}_{g}(x)$ the g-cyclic space of x, i.e.

$$
\mathscr{C}_{g}(x)=\left\langle g^{i}(x): i \in \mathbb{N} \cup\{0\}\right\rangle,
$$

where $\langle X\rangle$ means the linear closure of X. We use $\sigma(g)$ to denote the spectrum of g, i.e. $\sigma(g)$ is the family of the n characteristic roots of g in $\overline{\mathbb{F}}$, and $\alpha_{g, 1}, \ldots, \alpha_{g, n}$, $\left(\alpha_{g, 1}|\cdots| \alpha_{g, n}\right)$ to denote the invariant polynomials of g. The following result is well-known.

Theorem 2.1 (Max-min). The maximum dimension of the g-cyclic spaces, $\mathscr{C}_{g}(x)$, when x runs over V, is equal to the degree of $P_{g}=\alpha_{g, n}$.

The purpose of this section is the generalization of this theorem.
Definition 2.2. Let x_{1}, \ldots, x_{ℓ} be linearly independent vectors of V and g a linear operator on V. We call generalized g-cyclic subspace associated to x_{1}, \ldots, x_{ℓ} the subspace

$$
\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)=\left\langle g^{i}\left(x_{j}\right): i \in \mathbb{N} \cup\{0\}, j=1, \ldots, \ell\right\rangle
$$

The subspace $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$ is the smallest g-invariant subspace containing x_{1}, \ldots, x_{ℓ}.

We say that the pair $\left(\left(x_{1}, \ldots, x_{\ell}\right), g\right)$ or the generalized g-cyclic subspace $\mathscr{C}_{g}\left(x_{1}\right.$, $\left.\ldots, x_{\ell}\right)$ are completely controllable if

$$
\begin{equation*}
\left\langle x_{1}, x_{2}, \ldots, x_{\ell}, g\left(x_{1}\right), \ldots, g\left(x_{\ell}\right), g^{2}\left(x_{1}\right), \ldots, g^{2}\left(x_{\ell}\right), \ldots\right\rangle=V \tag{2}
\end{equation*}
$$

Definition 2.3. Let g be a linear operator on V and x_{1}, \ldots, x_{ℓ} linearly independent vectors of V. A basis, \mathscr{B}, of $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$ selected from the vectors of the sequence

$$
x_{1}, x_{2}, \ldots, x_{\ell}, g\left(x_{1}\right), \ldots, g\left(x_{\ell}\right), g^{2}\left(x_{1}\right), \ldots, g^{2}\left(x_{\ell}\right), \ldots
$$

is nice if, for $0 \leqslant i \leqslant k-1, g^{i}\left(x_{j}\right) \in \mathscr{B}$ provided that $g^{k}\left(x_{j}\right) \in \mathscr{B}$.
Let

$$
\begin{aligned}
\mathscr{B}= & \left\{x_{1}, g\left(x_{1}\right), \ldots, g^{r_{1}-1}\left(x_{1}\right), x_{2}, g\left(x_{2}\right), \ldots,\right. \\
& \left.g^{r_{2}-1}\left(x_{2}\right), \ldots, x_{\ell}, g\left(x_{\ell}\right), \ldots, g^{r_{\ell}-1}\left(x_{\ell}\right)\right\}
\end{aligned}
$$

be a nice basis of $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$. The non-negative integers $r_{i}, i=1, \ldots, \ell$, are called indices of \mathscr{B}.

Let $\left\{x_{1}, \ldots, x_{\ell}\right\}$ be a linearly independent ℓ-set of vectors of V. If

$$
\mathscr{I}=\bigcup_{i=1}^{\ell}\left\{x_{i}, g\left(x_{i}\right), g^{2}\left(x_{i}\right), \ldots, g^{s_{i}-1}\left(x_{i}\right)\right\}
$$

is a linearly independent $\left(s_{1}+\cdots+s_{\ell}\right)$-set, we say that \mathscr{I} is a $\left(\left(x_{1}, \ldots, x_{\ell}\right), g\right)$-nice independent set and we call the non-negative integers s_{1}, \ldots, s_{ℓ} indices of \mathscr{I}.

Definition 2.4. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ be sequences of nonnegative integers. Denote by $\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)$ and $\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)$ the reordering, in a
non-increasing way, of a and b, respectively. We say that a weakly-dominates b and we write

$$
a \sqsupseteq b
$$

if

$$
\sum_{i=1}^{k} \bar{a}_{i} \geqslant \sum_{i=1}^{k} \bar{b}_{i}, \quad k=1, \ldots, n
$$

If also $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}$, we say that a dominates b and we write $a \succeq b$.
In [7], the following result is proved.
Propositon 2.5. Let $n=t+q$. Let $\alpha_{1}\left|\alpha_{2}\right| \cdots \mid \alpha_{t}$ be the invariant polynomials of the $t \times t$ matrix A. Let $\gamma_{1}, \ldots, \gamma_{n}$ be monic polynomials such that $\operatorname{deg}\left(\gamma_{1} \cdots \gamma_{n}\right)=n$ and $\gamma_{1}|\cdots| \gamma_{n}$. Then there exist $C \in \mathbb{F}^{q \times t}$ and $D \in \mathbb{F}^{q \times q}$ such that the $n \times n$ matrix

$$
\left[\begin{array}{ll}
A & 0 \\
C & D
\end{array}\right]
$$

has invariant polynomials $\gamma_{1}, \ldots, \gamma_{n}$, if and only if

$$
\gamma_{i}\left|\alpha_{i}\right| \gamma_{i+q}, \quad i=1, \ldots, t
$$

The following result is proved in [9, Corollary 2.2] and states, for a fixed linear operator g on V and linearly independent vectors $x_{1}, \ldots x_{\ell}$ such that $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$ is completely controllable, a necessary and sufficient condition for the existence of a nice basis of $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$ with prescribed indices.

Theorem 2.6. Let g be a linear operator on V. Let r_{1}, \ldots, r_{ℓ} be positive integers. Then there exist linearly independent vectors x_{1}, \ldots, x_{ℓ} and a nice basis \mathscr{B}, of $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$, with indices r_{1}, \ldots, r_{ℓ} such that $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$ is completely controllable if and only if the following conditions hold:

$$
\alpha_{g, i}=1, \quad i=1, \ldots, n-\ell,
$$

and

$$
\left(r_{1}, \ldots, r_{\ell}\right) \preceq\left(\operatorname{deg}\left(\alpha_{g, n}\right), \ldots, \operatorname{deg}\left(\alpha_{g, n-\ell+1}\right)\right) .
$$

The next theorem states a necessary condition for the existence of nice bases with prescribed indices, where the constraint of complete controllability is skipped.

Theorem 2.7. Let g be a linear operator on V. Let r_{1}, \ldots, r_{ℓ} be positive integers. If there exist linearly independent vectors x_{1}, \ldots, x_{ℓ} and a nice basis \mathscr{B}, of $\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$, with indices r_{1}, \ldots, r_{ℓ}, then the following condition holds:

$$
\left(r_{1}, \ldots, r_{\ell}\right) \sqsubseteq\left(\operatorname{deg}\left(\alpha_{g, n}\right), \ldots, \operatorname{deg}\left(\alpha_{g, n-\ell+1}\right)\right)
$$

Proof. Let $U=\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)$. By definition $\mathscr{C}_{g_{\mid U}}\left(x_{1}, \ldots, x_{\ell}\right)$ is completely controllable. Assume that $\operatorname{dim}\left(\mathscr{C}_{g}\left(x_{1}, \ldots, x_{\ell}\right)\right)=\operatorname{dim}(U)=t$ and that $q=n-t$. Then Theorem 2.6 guarantees that

$$
\begin{equation*}
\left(r_{1}, \ldots, r_{\ell}\right) \preceq\left(\operatorname{deg}\left(\alpha_{g_{\mid U}, t}\right), \ldots, \operatorname{deg}\left(\alpha_{g_{\mid U}, t-\ell+1}\right)\right) \tag{3}
\end{equation*}
$$

By the transposed version of Proposition 2.5, we know that

$$
\alpha_{g, i}\left|\alpha_{g_{\mid U}, i}\right| \alpha_{g, i+q}, \quad i=1, \ldots, t
$$

Therefore,

$$
\begin{equation*}
\alpha_{g_{\mid U}, t} \alpha_{g_{\mid U}, t-1} \cdots \alpha_{g_{\mid U}, t-j} \mid \alpha_{g, n} \alpha_{g, n-1} \cdots \alpha_{g, n-j}, \quad j=0, \ldots, t-1 \tag{4}
\end{equation*}
$$

Taking degrees in (4) and bearing in mind (3) we get

$$
\left(r_{1}, \ldots, r_{\ell}\right) \sqsubseteq\left(\operatorname{deg}\left(\alpha_{g, n}\right), \ldots, \operatorname{deg}\left(\alpha_{g, n-\ell+1}\right)\right) .
$$

Corollary 2.8. Let g be a linear operator on V. Let s_{1}, \ldots, s_{ℓ} be positive integers. If there exist linearly independent vectors v_{1}, \ldots, v_{ℓ} such that

$$
\bigcup_{i=1}^{\ell}\left\{v_{i}, g\left(v_{i}\right), g^{2}\left(v_{i}\right), \ldots, g^{s_{i}-1}\left(v_{i}\right)\right\}
$$

is a linearly independent $\left(s_{1}+\cdots+s_{\ell}\right)$-set, then the following condition holds:

$$
\left(s_{1}, \ldots, s_{\ell}\right) \sqsubseteq\left(\operatorname{deg}\left(\alpha_{g, n}\right), \ldots, \operatorname{deg}\left(\alpha_{g, n-\ell+1}\right)\right) .
$$

Proof. Complete the set

$$
\bigcup_{i=1}^{\ell}\left\{v_{i}, g\left(v_{i}\right), g^{2}\left(v_{i}\right), \ldots, g^{s_{i}-1}\left(v_{i}\right)\right\}
$$

to a nice basis of $\mathscr{C}_{g}\left(v_{1}, \ldots, v_{\ell}\right)$. This completion is always possible as can be easily seen. In fact, for $q \in\{1, \ldots, \ell\}$, let t_{q} be the positive integer such that

$$
\left(\bigcup_{j=1}^{q}\left\{v_{j}, g\left(v_{j}\right), \ldots, g^{t_{j}-1}\left(v_{j}\right)\right\}\right) \cup\left(\bigcup_{i=q+1}^{\ell}\left\{v_{i}, g\left(v_{i}\right), g^{2}\left(v_{i}\right), \ldots, g^{s_{i}-1}\left(v_{i}\right)\right\}\right)
$$

is a linearly independent $\left(t_{1}+\cdots+t_{q}+s_{q+1}+\cdots+s_{\ell}\right)$-set and

$$
\left.\begin{array}{rl}
g^{t_{q}}\left(v_{q}\right) \in\langle & (
\end{array} \bigcup_{j=1}^{q}\left\{v_{j}, g\left(v_{j}\right), \ldots, g^{t_{j}-1}\left(v_{j}\right)\right\}\right) .
$$

It is obvious, from the definitions, that

$$
\begin{equation*}
g\left(\left\langle\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}\right\rangle\right) \subseteq\left\langle\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}\right\rangle \tag{5}
\end{equation*}
$$

We are going to show that

$$
\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}
$$

is a maximal linear independent set contained in $\left\langle g^{j}\left(v_{i}\right)\right| i=1, \ldots, \ell, j \in \mathbb{N} \cup$ $\{0\}\rangle$. Assume, in order to get a contradiction, that for some $i \in\{1, \ldots, \ell\}$ and some $r \in \mathbb{N}, g^{r}\left(v_{i}\right) \notin\left\langle\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}\right\rangle$. Wlog we can suppose that r is the smallest integer with this property. Then

$$
g^{r-1}\left(v_{i}\right) \in\left\langle\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}\right\rangle
$$

Therefore,

$$
g^{r}\left(v_{i}\right) \in g\left(\left\langle\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}\right\rangle\right) .
$$

Using (5) we get

$$
g^{r}\left(v_{i}\right) \in\left\langle\bigcup_{i=1}^{\ell}\left\{v_{i}, \ldots, g^{t_{i}-1}\left(v_{i}\right)\right\}\right\rangle
$$

Contradiction.
By Theorem 2.7 we can conclude that

$$
\left(t_{1}, \ldots, t_{\ell}\right) \sqsubseteq\left(\operatorname{deg}\left(\alpha_{g, n}\right), \ldots, \operatorname{deg}\left(\alpha_{g, n-\ell+1}\right)\right) .
$$

But, since by construction, we have $s_{i} \leqslant t_{i}, i=1, \ldots, \ell$, we get from the former inequalities

$$
\left(s_{1}, \ldots, s_{\ell}\right) \sqsubseteq\left(\operatorname{deg}\left(\alpha_{g, n}\right), \ldots, \operatorname{deg}\left(\alpha_{g, n-\ell+1}\right)\right) .
$$

3. Main results

Notation. Let A and B be subsets of the field \mathbb{F}. Recall that, if i is a positive integer, $\mu_{i}(A, B)$ (or $\left.\mu_{i}\right)$ is the cardinality of the set $\left\{x \in A+B: v_{x}(A, B) \geqslant i\right\}$.

Theorem 3.1. Let V and W be non-zero finite-dimensional vector spaces over the field \mathbb{F} with dimensions n and m, respectively. Let p be the characteristic of \mathbb{F} in the case of finite characteristic and ∞ if \mathbb{F} has characteristic 0 . Assume that ℓ is a positive integer satisfying

$$
\ell \leqslant \min \left\{\operatorname{deg}\left(P_{f}\right), \operatorname{deg}\left(P_{g}\right)\right\} .
$$

Then we have

$$
\sum_{i=1}^{\ell} \operatorname{deg}\left(\alpha_{f \otimes I_{W}+I_{V} \otimes g, m n-i+1}\right) \geqslant \ell \min \left\{p, \operatorname{deg}\left(P_{f}\right)+\operatorname{deg}\left(P_{g}\right)-\ell\right\} .
$$

Theorem 3.2. Let A and B be finite non-empty subsets of \mathbb{F}. Then, for $\ell=1,2, \ldots$, $\min \{|A|,|B|\}$,

$$
\sum_{i=1}^{\ell} \mu_{i} \geqslant \ell \min \{p,|A|+|B|-\ell\} .
$$

4. Proofs

Let $V \neq\{0\}$ be an n-dimensional vector space over the field \mathbb{F} and let h be a linear operator on V. Let i be a positive integer. Denote by $m_{i}(h)$ the cardinality of the elements of $\sigma(h)$ whose algebraic multiplicity is greater than or equal to i. The following proposition is an easy consequence of basic results on Linear Algebra.

Propositon 4.1. Let h be a diagonalizable linear operator on the n-dimensional vector space V. Then, if $j \leqslant n$, we have

$$
m_{1}(h)+\cdots+m_{j}(h)=\sum_{i=1}^{j} \operatorname{deg}\left(\alpha_{h, n-i+1}\right) .
$$

Propositon 4.2. Given non-empty finite subsets of \mathbb{F}, A and B, let V and W be vector spaces over \mathbb{F} of dimensions $|A|$ and $|B|$, respectively. Let f be a linear operator on V with spectrum $\sigma(f)=A$ and g be a linear operator on W with spectrum $\sigma(g)=B$. Then

$$
m_{i}\left(f \otimes I_{W}+I_{V} \otimes g\right)=\mu_{i}(A, B), \quad i=1, \ldots, \min \{|A|,|B|\} .
$$

Proof. It could be easily derived from the definitions that the spectrum of $f \otimes I_{W}+$ $I_{V} \otimes g$ is the family

$$
(a+b)_{(a, b) \in A \times B} .
$$

Then, for $1 \leqslant i \leqslant \min \{|A|,|B|\}$, we have

$$
\begin{aligned}
m_{i}\left(f \otimes I_{W}+I_{V} \otimes g\right) & =|\{x \in A+B:|\{(a, b) \in A \times B: a+b=x\}| \geqslant i\}| \\
& =\mu_{i}(A, B) . \quad \square
\end{aligned}
$$

Lemma 4.3. Let e_{1}, \ldots, e_{n} be linearly independent vectors of the vector space V. Let $v_{1}, \ldots, v_{t} \in\left\langle e_{1}, \ldots, e_{n}\right\rangle$. Let $k \in\{1, \ldots, n\}$ and $r \in\{1, \ldots, t\}$ and denote by π the projection of $\left\langle e_{1}, \ldots, e_{n}\right\rangle$ onto $\left\langle e_{k+1}, \ldots, e_{n}\right\rangle$ along $\left\langle e_{1}, \ldots, e_{k}\right\rangle$. If v_{1}, \ldots, v_{t} satisfy the following conditions:
(1) $v_{1}, \ldots, v_{r} \in\left\langle e_{1}, \ldots, e_{k}\right\rangle$,
(2) $\pi\left(v_{r+1}\right), \ldots, \pi\left(v_{t}\right)$ are linearly independent,
then

$$
\left\langle v_{1}, \ldots, v_{t}\right\rangle=\left\langle v_{1}, \ldots, v_{r}\right\rangle \oplus\left\langle v_{r+1}, \ldots, v_{t}\right\rangle .
$$

Proof. Let $x \in\left\langle v_{1}, \ldots, v_{r}\right\rangle \cap\left\langle v_{r+1}, \ldots, v_{t}\right\rangle$. Then

$$
x=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{r}=\gamma_{r+1} v_{r+1}+\cdots+\gamma_{t} v_{t} .
$$

Then

$$
0=\pi(x)=\gamma_{r+1} \pi\left(v_{r+1}\right)+\cdots+\gamma_{t} \pi\left(v_{t}\right) .
$$

Therefore,

$$
\gamma_{k+1}=\cdots=\gamma_{t}=0,
$$

and then $x=0$.
Lemma 4.4. Let p be the characteristic of \mathbb{F} in the case of finite characteristic and ∞ if \mathbb{F} has characteristic 0 . Let u, v, t, q be positive integers satisfying
(i) $v+q \leqslant u$,
(ii) $t \leqslant u$,
(iii) $t \leqslant q+1$,
(iv) $u<p$.

Then the matrix over \mathbb{F}

$$
B_{u, v, t, q}=\left[\binom{u-i+1}{v-i+j}\right]_{\substack{i=1, \ldots, t \\ j=1, \ldots, q+1}}
$$

has rank t. We use the convention $\binom{u}{m}=0$ if $m<0$.
Proof. Let φ and ψ be maps from \mathbb{Z} into $\mathbb{N} \cup\{0\}$ defined in the following way:

$$
\begin{aligned}
& \varphi(t)=\left\{\begin{array}{ll}
1 & \text { if } t \geqslant 0, \\
0 & \text { if } t<0,
\end{array} \quad t \in \mathbb{Z},\right. \\
& \psi(t)=\left\{\begin{array}{ll}
t & \text { if } t>0, \\
1 & \text { if } t \leqslant 0,
\end{array} \quad t \in \mathbb{Z} .\right.
\end{aligned}
$$

It is easy to check that $B_{u, v, t, q}$ is equivalent to

$$
\begin{equation*}
\left[\varphi(v-i+j) \frac{1}{(u-v-j+1)!\psi(v-i+j)!}\right]_{\substack{i=1, \ldots, t \\ j=1, \ldots, q+1}} . \tag{6}
\end{equation*}
$$

Multiplying the column j of matrix (6) by $(v+j-1)$! $(u-v-j+1)$! we can show that the former matrix (and then matrix $B_{u, v, t, q}$) is equivalent to

$$
C_{v, t, q}=\left[\varphi(v-i+j) \frac{(v+j-1)!}{\psi(v-i+j)!}\right]_{\substack{i=1, \ldots, t \\ j=1, \ldots, q+1}}
$$

We are going to prove, by induction on t, that $C_{v, t, q}$ has rank t. If $t=1$, the result is obviously true. On the other hand, let J denote the $(q+1) \times(q+1)$-matrix, with the entries $(i, i+1)$ equal to $1, i=1, \ldots, q$, and the remaining entries equal to 0 . We have

$$
C_{v, t, q}\left(I_{q+1}-J\right)=\left[\begin{array}{cc}
1 & 0 \\
* & A^{\prime}
\end{array}\right],
$$

where A^{\prime} is equivalent to the matrix

$$
C_{v, t-1, q-1}=\left[\varphi(v-i+j) \frac{(v+j-1)!}{\psi(v-i+j)!}\right]_{\substack{i=1, \ldots, t-1 \\ j=1, \ldots, q}} .
$$

Using, now, the induction hypothesis A^{\prime} has rank equal to $t-1$. Then $C_{v, t, q}$ (which is equivalent to $B(u, v, t, q))$ has rank equal to t.

4.1. Proof of main theorems

Let $v \in V$ and $w \in W$. Let f be a linear operator on V and g a linear operator on W. Suppose that $\left\{v, f(v), \ldots, f^{k-1}(v)\right\}$ is a basis of $\mathscr{C}_{f}(v)$ and $\left\{w, g(w), \ldots, g^{r-1}\right.$ $(w)\}$ is a basis of $\mathscr{C}_{g}(w)$. Then, it is well known that

$$
\mathscr{B}=\left\{f^{i}(v) \otimes g^{j}(w): 0 \leqslant i \leqslant k-1,0 \leqslant j \leqslant r-1\right\}
$$

is a basis of $\mathscr{C}_{f}(v) \otimes \mathscr{C}_{g}(w)$. Let z be a vector of $\mathscr{C}_{f}(v) \otimes \mathscr{C}_{g}(w)$,

$$
z=\sum_{i=0}^{k-1} \sum_{j=0}^{r-1} \gamma_{i j} f^{i}(v) \otimes g^{j}(w)
$$

We say that $z \in \mathscr{C}_{f}(v) \otimes \mathscr{C}_{g}(w)$ has weight t if

$$
t=\max \left\{i+j: 0 \leqslant i \leqslant k-1,0 \leqslant j \leqslant r-1 \text { and } \gamma_{i j} \neq 0\right\} .
$$

Proof of Theorem 3.1. Let $v \in V, w \in W$ be such that $k=\operatorname{dim} \mathscr{C}_{f}(v)=\operatorname{deg}\left(P_{f}\right)$ and $r=\operatorname{dim} \mathscr{C}_{g}(w)=\operatorname{deg}\left(P_{g}\right)$. Let $s=k+r-1$. We are going to prove that we can extract \quad a $\left(v \otimes w, f(v) \otimes w, \ldots, f^{\ell-1}(v) \otimes w, f \otimes I_{W}+I_{V} \otimes g\right)$-nice independent set,

$$
\begin{aligned}
& \mathscr{M}=\left\{\left(f \otimes I_{W}+I_{V} \otimes g\right)^{b}\left(f^{m}(v) \otimes w\right): 0 \leqslant m \leqslant \ell-1,\right. \\
&0 \leqslant b \leqslant \min \{p-1, s-\ell\}\}
\end{aligned}
$$

with all indices equal to $\min \{p, s-\ell+1\}$, from the family

$$
\begin{equation*}
\left(\left(f \otimes I_{W}+I_{V} \otimes g\right)^{b}\left(f^{m}(v) \otimes w\right)\right)_{\substack{b=0, \ldots, s-1 \\ m=0, \ldots, \ell-1}}^{\substack{ }} \tag{7}
\end{equation*}
$$

Since for $0 \leqslant m \leqslant \ell-1$ and $0 \leqslant b \leqslant \min \{p-1, s-\ell\}$ the tensor

$$
z_{b, m}=\left(f \otimes I_{W}+I_{V} \otimes g\right)^{b}\left(f^{m}(v) \otimes w\right)
$$

has weight $b+m$, the maximum weight of the tensors of \mathscr{M} is

$$
M_{\ell}=\min \{p+\ell-2, s-1\}
$$

For $u=0, \ldots, M_{\ell}$ denote by \mathscr{S}_{u} the index set of the subset of the elements of \mathscr{M} of weight u, i.e.

$$
\begin{aligned}
\mathscr{S}_{u}= & \left\{(b, m): z_{b, m} \in \mathscr{M} \text { and } b+m=u\right\} \\
= & \{(b, m) \in(\mathbb{N} \cup\{0\}) \times(\mathbb{N} \cup\{0\}): 0 \leqslant b \leqslant \min \{p-1, s-\ell\}, \\
& 0 \leqslant m \leqslant \ell-1 \text { and } b+m=u\} .
\end{aligned}
$$

Let

$$
b_{u}=\max \{0, u-p+1, u-s+\ell\} \quad \text { and } \quad d_{u}=\min \{u, \ell-1\} .
$$

Then we get from the former equalities,

$$
\mathscr{S}_{u}=\left\{(u-m, m) \in(\mathbb{N} \cup\{0\}) \times(\mathbb{N} \cup\{0\}): b_{u} \leqslant m \leqslant d_{u}\right\} .
$$

Let x_{u} be the cardinality of \mathscr{S}_{u}, i.e. $x_{u}=d_{u}-b_{u}+1$.
It is easy to see that \mathscr{M} is the disjoint union of the subsets indexed by the \mathscr{S}_{u} 's, i.e.

$$
\begin{equation*}
\mathscr{M}=\bigcup_{u=0}^{M_{\ell}}\left\{z_{b, m}:(b, m) \in \mathscr{S}_{u}\right\} . \tag{8}
\end{equation*}
$$

Claim 1. The set $\left\{z_{b, m}:(b, m) \in \mathscr{S}_{u}\right\}$ is linearly independent.
Let \mathscr{B}_{u} be the set of tensors of weight u of the basis

$$
\left\{f^{i}(v) \otimes g^{j}(w): 0 \leqslant i \leqslant k-1,0 \leqslant j \leqslant r-1\right\}
$$

Let π_{u} be the projection of $\mathscr{C}_{f}(v) \otimes \mathscr{C}_{g}(w)$ onto $\left\langle\mathscr{B}_{u}\right\rangle$ along $\bigoplus_{\gamma=0, \gamma \neq u}^{s-1}\left\langle\mathscr{B}_{\gamma}\right\rangle$. If we define

$$
\zeta_{u}=\max \{0, u-r+1\}
$$

and

$$
\tau_{u}=\min \{k-1, u\},
$$

then π_{u} is a projection onto the subspace spanned by

$$
\begin{aligned}
\mathscr{B}_{u} & =\left\{f^{i}(v) \otimes g^{j}(w): 0 \leqslant i \leqslant k-1,0 \leqslant j \leqslant r-1, i+j=u\right\} \\
& =\left\{f^{i}(v) \otimes g^{u-i}(w): \zeta_{u} \leqslant i \leqslant \tau_{u}\right\} .
\end{aligned}
$$

By expanding $\left(f \otimes I_{W}+I_{V} \otimes g\right)^{b}$ we can easily see that for $u \in\left\{0, \ldots, M_{\ell}\right\}$, and $(b, m) \in \mathscr{S}_{u}$

$$
z_{b, m}=\sum_{t=0}^{u-m}\binom{u-m}{t} f^{m+t}(v) \otimes g^{u-m-t}(w)
$$

Then, since for $m+t \geqslant k$ or for $u-m-t \geqslant r$ the tensor

$$
f^{m+t}(v) \otimes g^{u-m-t}(w)
$$

has weight less than or equal to $u-1$, we have

$$
\pi_{u}\left(f^{m+t}(v) \otimes g^{u-m-t}(w)\right)=0 \quad \text { if } t \geqslant k-m \text { or } t \leqslant u-m-r .
$$

Then

$$
\pi_{u}\left(z_{b, m}\right)=\sum_{t=\max \{0, u-m-r+1\}}^{\min \{u-m, k-1-m\}}\binom{u-m}{t} f^{m+t}(v) \otimes g^{u-m-t}(w) .
$$

Let us order the projection onto $\left\langle\mathscr{B}_{u}\right\rangle$ of the elements indexed by \mathscr{S}_{u} following the values of the second coordinate,

$$
y_{j}=\pi_{u}\left(z_{u-j-b_{u}+1, j+b_{u}-1}\right), \quad j=1, \ldots, x_{u} .
$$

Claim 1 can be reformulated in the following way.
Claim 1'. The tensors $y_{1}, \ldots, y_{x_{u}}$ are linearly independent.
Proof of Claim 1'. Let $\left\{\theta_{i}: \zeta_{u} \leqslant i \leqslant \tau_{u}\right\}$ be the dual basis of the basis, \mathscr{B}_{u}, of $\left\langle\mathscr{B}_{u}\right\rangle$, i.e. $\theta_{i}\left(f^{j}(v) \otimes g^{u-j}(w)\right)=\delta_{i j}, \zeta_{u} \leqslant i, j \leqslant \tau_{u}$, where $\delta_{i j}$ is the Kronecker symbol.

We are going to split the proof of Claim 1^{\prime} in two cases.
Case 1: $\zeta_{u} \leqslant b_{u}$. Let $X_{i}=\theta_{i+b_{u}-1}, i=1, \ldots, x_{u}$. Observe now that the matrix $\left(X_{i}\left(y_{j}\right)\right)_{i, j=1, \ldots, x_{u}}$ is a lower triangular matrix with principal elements equal to 1 . In fact, we have

$$
\begin{aligned}
X_{i}\left(y_{j}\right)= & \theta_{i+b_{u}-1}\left(\pi_{u}\left(z_{u-j-b_{u}+1, j+b_{u}-1}\right)\right) \\
= & \theta_{i+b_{u}-1}\left(\sum_{t=0}^{\tau_{u}-j-b_{u}+1}\binom{u-j-b_{u}+1}{t} f^{t+j+b_{u}-1}(v)\right. \\
& \left.\otimes g^{u-t-j-b_{u}+1}(w)\right) \\
= & \sum_{t=0}^{\tau_{u}-j-b_{u}+1}\binom{u-j-b_{u}+1}{t} \theta_{i+b_{u}-1}\left(f^{t+j+b_{u}-1}(v)\right. \\
& \left.\otimes g^{u-t-j-b_{u}+1}(w)\right)
\end{aligned}
$$

Denote η_{u} the upper bound of the value allowed for t in the previous sum, i.e.

$$
\eta_{u}=\tau_{u}-j-b_{u}+1
$$

Then

$$
X_{i}\left(y_{j}\right)= \begin{cases}0 & \text { if } i-j \notin\left\{0, \ldots, \eta_{u}\right\}, \\ \binom{u-j-b_{u}+1}{i-j} & \text { if } i-j \in\left\{0, \ldots, \eta_{u}\right\} .\end{cases}
$$

We know from the definitions that

$$
\tau_{u} \geqslant d_{u}
$$

Therefore

$$
i \leqslant x_{u}=d_{u}-b_{u}+1 \leqslant \tau_{u}-b_{u}+1, \quad i=1, \ldots, x_{u}
$$

Subtracting j in each side of the inequalities of the former expression, we obtain

$$
i-j \leqslant d_{u}-b_{u}-j+1 \leqslant \tau_{u}-j-b_{u}+1
$$

Then, for $i=1, \ldots, x_{u}$, we have that $i-j \notin\left\{0, \ldots, \eta_{u}\right\}$ if and only if $i<j$. Therefore

$$
X_{i}\left(y_{j}\right)= \begin{cases}0 & \text { if } j>i \\ \binom{u-j-b_{u}+1}{i-j} & \text { if } i \geqslant j\end{cases}
$$

Since, for $i=1, \ldots, x_{u}$

$$
X_{i}\left(y_{i}\right)=\binom{u-i-b_{u}+1}{0}=1
$$

we have proved that $\left(X_{i}\left(y_{j}\right)\right)_{i, j=1, \ldots, x_{u}}$ is lower triangular with principal elements equal to 1 . Thus, $y_{1}, \ldots, y_{x_{u}}$ is a linearly independent family.

Case 2: $\zeta_{u}>b_{u}$. Let $X_{i}=\theta_{i+\zeta_{u}-1}, i=1,2, \ldots, \tau_{u}-\zeta_{u}+1$. Arguing in a similar way, we have used in case $\zeta_{u} \leqslant b_{u}$, we can prove that the (i, j)-entry of the matrix $\left(X_{i}\left(y_{j}\right)\right)_{\substack{i=1, \ldots, \tau_{u}-\zeta_{u}+1 \\ j=1, \ldots, x_{u}}}$ whose columns are the coordinate vectors of $y_{1}, \ldots, y_{x_{u}}$ is

$$
X_{i}\left(y_{j}\right)= \begin{cases}0 & \text { if } i-j+\left(\zeta_{u}-b_{u}\right)<0 \\ \binom{u-j-b_{u}+1}{i-j+\zeta_{u}-b_{u}} & \text { if } i-j+\left(\zeta_{u}-b_{u}\right) \geqslant 0\end{cases}
$$

It is now easy to see that

$$
\left(X_{i}\left(y_{j}\right)\right)_{\substack{i=1, \ldots, \tau_{u}-\zeta_{u}+1 \\ j=1, \ldots, x_{u}}}=\left(B_{u-b_{u}, \zeta_{u}-b_{u}, x_{u}, \tau_{u}-\zeta_{u}}\right)^{\mathrm{T}} .
$$

We can easily see that the conditions for application of Lemma 4.4 are fulfilled. Then, $y_{1}, \ldots, y_{x_{u}}$ is a linearly independent family.

Proof of Theorem 3.1 (continued). Now we see from (8) that

$$
\langle\mathscr{M}\rangle=\sum_{u=0}^{M_{\ell}}\left\langle z_{b, m}:(b, m) \in \mathscr{S}_{u}\right\rangle .
$$

Using now Lemma 4.3 and Claim 1^{\prime}, we get from the former equality

$$
\langle\mathscr{M}\rangle=\bigoplus_{u=0}^{M_{\ell}}\left\langle z_{b, m}:(b, m) \in \mathscr{S}_{u}\right\rangle
$$

Then \mathscr{M} is linearly independent, therefore a $\left(v \otimes w, f(v) \otimes w, \ldots, f^{\ell-1}(v) \otimes w\right.$, $\left.f \otimes I_{W}+I_{V} \otimes g\right)$-nice independent set with all indices equal to $\min \{p, s-\ell+1\}$.

We can now use Corollary 2.8 to get

$$
\sum_{i=1}^{\ell} \operatorname{deg}\left(\alpha_{f \otimes I_{W}+I_{V} \otimes g, m n-i+1}\right) \geqslant \ell \min \left\{p, \operatorname{deg}\left(P_{f}\right)+\operatorname{deg}\left(P_{g}\right)-\ell\right\} .
$$

We are now going to prove Theorem 3.2.
Proof of Theorem 3.2. Let $|A|=n$ and $|B|=m$. Let f be a diagonalizable linear operator whose spectrum is A and g be a diagonalizable linear operator whose spectrum is B. Then $f \otimes I+I \otimes g$ is diagonalizable with spectrum $A+B$. Using Propositions 4.1 and 4.2 we have

$$
\mu_{1}+\cdots+\mu_{j}=\sum_{i=1}^{j} \operatorname{deg}\left(\alpha_{f \otimes I+I \otimes g, m n-i+1}\right), \quad j=1, \ldots, \min \{|A|,|B|\} .
$$

Then using Theorem 3.1 we can conclude that

$$
\sum_{i=1}^{\ell} \mu_{i} \geqslant \ell \min \{p,|A|+|B|-\ell\} .
$$

Remark. If x is an integer, denote by \bar{x} the element of $\mathbb{F}, x 1_{\mathbb{F}}$. Suppose A and B are arithmetic progressions of the same rate. Then $p \geqslant|A|$ and $p \geqslant|B|$. Assume that $|A| \geqslant|B|$. Let $s=|A|+|B|-1$. Let $A^{\prime}=\{\overline{0}, \overline{1}, \ldots, \overline{|A|-1}\}$ and $B^{\prime}=$ $\{\overline{0}, \overline{1}, \ldots, \overline{|B|-1}\}$. It is easy to see that

$$
\mu_{i}(A, B)=\mu_{i}\left(A^{\prime}, B^{\prime}\right), \quad i \in \mathbb{N}
$$

For $\bar{x} \in A^{\prime}+B^{\prime}=\{\overline{0}, \overline{1}, \ldots, \overline{\min \{p-1, s-1\}}\}$, we have:

- If $p \leqslant s-1$,

$$
\nu_{\bar{x}}\left(A^{\prime}, B^{\prime}\right)= \begin{cases}s-p+1 & \text { if } \bar{x} \in\{\overline{0}, \ldots, \overline{s-p-1}\}, \\ x+1 & \text { if } \bar{x} \in\{\overline{s-p}, \ldots, \overline{|B|-1}\}, \\ |B| & \text { if } \bar{x} \in\{\overline{|B|}, \ldots, \overline{|A|-1}\}, \\ s-x & \text { if } \bar{x} \in\{\overline{|A|}, \ldots, \overline{p-1}\}\end{cases}
$$

- If $p>s-1$,

$$
v_{\bar{x}}\left(A^{\prime}, B^{\prime}\right)= \begin{cases}x+1 & \text { if } \bar{x} \in\{\overline{0}, \ldots, \overline{|B|-1}\}, \\ |B| & \text { if } \bar{x} \in\{\overline{|B|}, \ldots, \overline{|A|-1}\}, \\ s-x & \text { if } \bar{x} \in\{\overline{|A|}, \ldots, \overline{s-1}\} .\end{cases}
$$

Then, for $i=1, \ldots, \min \{|A|,|B|\}=|B|$, we have

$$
\begin{aligned}
\mu_{i}(A, B) & =\mu_{i}\left(A^{\prime}, B^{\prime}\right) \\
& =\left|\left\{\bar{x} \in A^{\prime}+B^{\prime}: v_{\bar{x}}\left(A^{\prime}, B^{\prime}\right) \geqslant i\right\}\right| \\
& = \begin{cases}p & \text { if } 1 \leqslant i \leqslant s-p+1, \\
s-2 i+2 & \text { if } \max \{1, s-p+2\} \leqslant i \leqslant|B| .\end{cases}
\end{aligned}
$$

It follows that, for $\ell=1,2, \ldots,|B|$,

$$
\sum_{i=1}^{\ell} \mu_{i}= \begin{cases}\ell p & \text { if } \ell \leqslant s-p+1 \\ \ell(s-\ell+1) & \text { if } \ell \geqslant s-p+2\end{cases}
$$

and equality holds in Theorem 3.2.

References

[1] A. Cauchy, Recherche sur les nombres, J. École Polytech. 9 (1813) 99-116.
[2] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30-32.
[3] H. Davenport, A historical note, J. London Math. Soc. 22 (1947) 100-101.
[4] J.A. Dias da Silva, Y.O. Hamidoune, A note on the minimal polynomial of the Kronecker sum of two linear operators, Linear Algebra Appl. 141 (1990) 283-287.
[5] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, New York, 1996.
[6] J.M. Pollard, A generalization of a theorem of Cauchy and Davenport, J. London Math. Soc. 8 (1974) 460-462.
[7] I. Zaballa, Matrices with prescribed rows and invariant factors, Linear Algebra Appl. 87 (1987) 113146.
[8] I. Zaballa, Interlacing inequalities and control theory, Linear Algebra Appl. 101 (1988) 9-31.
[9] I. Zaballa, Controllability and Hermite indices of matrix pairs, Int. J. Control 68 (1) (1997) 61-86.

[^0]: * Corresponding author. Tel.: +351-1-790-4828; fax: +351-1-790-4700.

 E-mail address: perdigao@hermite.cii.fc.ul.pt (J.A. Dias da Silva).
 1 This research was done within the activities of "Centro de Matemática da Universidade de Coimbra" and partially supported by PRAXIS project "Álgebra e Matemáticas Discretas".

 2 This research was done within the activities of "Centro de Álgebra da Universidade de Lisboa" and partially supported by PRAXIS project "Álgebra e Matemáticas Discretas".

