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Magnetic susceptibility and magnetization properties of asymmetric nuclear matter
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A. Rabhi,1,2,* M. A. Pérez-Garcı́a,3,† C. Providência,1,‡ and I. Vidaña1,§

1Centro de Fı́sica Computacional, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
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We study the effects of a strong magnetic field on the proton and neutron spin polarization and magnetic
susceptibility of asymmetric nuclear matter within a relativistic mean-field approach. It is shown that magnetic
fields B ∼ 1016–1017 G have noticeable effects on the range of densities of interest for the study of the crust of a
neutron star. Although the proton susceptibility is larger for weaker fields, the neutron susceptibility becomes of
the same order or even larger for small proton fractions and subsaturation densities for B > 1016 G. We expect
that neutron superfluidity in the crust will be affected by the presence of magnetic fields.
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I. INTRODUCTION

A well-grounded understanding of the properties of isospin-
asymmetric nuclear systems, such as nuclei far from the
stability valley or astronomical objects like neutron stars,
is crucial for the advancement of both nuclear physics and
astrophysics [1–4]. A major experimental and theoretical effort
with significant progress has been carried out in recent years
(see, e.g., Ref. [1] and references therein) on the study of the
properties of isospin-asymmetric nuclear systems. Laboratory
experiments, such as those recently performed or being
planned in existing or next-generation radioactive ion beam
facilities, are providing crucial information on the isospin de-
pendence of the nuclear force from a large number of heavy ion
collision and nuclear structure observables. Complementary
information can be extracted from the observation of neutron
stars, which open a window into both the bulk and microscopic
properties of nuclear matter at extreme isospin asymmetries.

Neutron stars, most of which are detected as pulsars, have
strong surface magnetic fields which can reach values of the
order of 1014–1015 G in the case of the so-called magnetars1

that may grow by several orders of magnitude in the dense
interior of the star. Despite the great theoretical effort of the
past forty years, there is still no general consensus regarding
the mechanism that generates such strong magnetic fields
in a neutron star. The field could be a fossil remnant from
that of the progenitor star [6], or alternatively, it could be
generated after the formation of the neutron star by some
long-lived electric currents flowing in the highly conductive
neutron star material [7]. From the nuclear physics point of
view, however, one of the most interesting and stimulating
mechanisms that has been suggested is the possible existence
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1For a review of magnetars, see, e.g., Ref. [5].

of a phase transition to a ferromagnetic state at densities
corresponding to the theoretically stable neutron stars and,
therefore, of a ferromagnetic core in the liquid interior of such
compact objects. Such a possibility has long been considered
by many authors within different theoretical approaches (see,
e.g., [8–32]), but results were contradictory. Therefore, a
complete understanding of the magnetic properties of neutron
stars and, more generally, of those of isospin-asymmetric
nuclear matter, requires the study of nuclear matter under the
influence of magnetic fields.

An estimation of the maximum magnetic field intensity
supported by a star before magnetic field stresses give rise to
the formation of a black hole may be obtained equating the
magnetic field energy of an uniform field in a sphere with
the star radius R to the gravitational binding energy. Using
the Schwarzschild criterion that R > 2M G/c2, the magnetic
field should satisfy B � 8 × 1018(1.4M�/M) G [33]. This
estimation is just slightly larger than the maximum fields
obtained in the framework of a relativistic magneto-hydrostatic
formalism [33], which were of the order of ∼5 × 1018 G. In
Ref. [34], using the same approach and an hyperonic equation
of state (EOS), the authors have obtained stable configurations
for B � 3 × 1018 G. However, they did not exclude larger
fields, and, in particular, they suggest that a nonconstant current
function with an appreciable gradient or a disordered field with
〈B2〉 > 〈 �B〉2 could possibly give rise to larger fields in still
stable stars. Taking these numbers as indicative, we consider
fields B � 1019 G in the present work.

Until recently fields no higher than ∼1015 G have been
measured at the surface of magnetars; see Ref. [35].2 From the
observation of the spin down of pulsars via electromagnetic
radiation, the surface poloidal magnetic field can be estimated.
However, there is some evidence that the internal magnetic
field of several external low-field magnetars could be higher.
An example is SGR 0418+5729, whose dipole field is less
than a few times 1012 G: An internal toroidal field as large

2http://www.physics.mcgill.ca/˜pulsar/magnetar/main.html
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as ∼1016 G could have existed inside its interior, which would
explain some of the presently observed properties [36]. Using a
pure toroidal magnetic field, equilibrium models of relativistic
stars have been calculated for both nonrotating and rotating
stars. These toroidal fields vanish at the symmetry axis, have a
maximum value that can be larger than 1018 G depending on the
EOS on the equatorial plane deep inside the star, and decrease
toward the surface where they vanish [37]. Let us also point
out that the internal poloidal fields calculated using a general
relativistic magnetohydrostatic formalism are larger than the
surface ones [38]. It has also been suggested that magnetic
fields may be held in the core for periods much longer than the
ohmic diffusion time due to interactions between the magnetic
flux tubes and the vortex tubes expected to be present in a
superconducting, superfluid, rotating neutron star [39]. The
detailed underlying mechanism for this is, however, far from
being completely understood.

Particularly interesting is the study of the magnetization
of matter due to the presence of a magnetic field. Whereas
the magnetization of symmetric nuclear matter and pure
neutron matter has been studied by several authors [40–45],
the magnetization of β-stable neutron star matter has received
less attention in the literature. In Ref. [46], for instance, the
magnetization of β-stable matter was extensively studied for
a single-component electron gas and for the crust matter
of neutron star. This study was generalized by Broderick
et al. [47] by including also the contribution of neutrons and
protons. Recently, Dong et al. [48] have studied the effect of
density dependence of the nuclear symmetry energy on the
magnetization of β-stable matter. These authors concluded
that the magnetic susceptibility of charged particles (protons,
electrons, and muons) can be larger than that of the neutron and
that the anomalous magnetic moment of the protons enhances
their magnetic susceptibility to the point that it can be one of the
main contributions and therefore should not be neglected. They
also show that the proton magnetic susceptibility is sensitive
to the density dependence of the nuclear symmetry energy,
namely to the isospin content of the nuclear force.

In this work we study the magnetization of spin-polarized
isospin asymmetric nuclear matter at zero temperature by
using a relativistic mean-field approach. The scope of this
work is threefold: (i) to determine under which conditions of
density and isospin asymmetry, matter in the presence of a
magnetic field is totally polarized, (ii) to compare under such
conditions the proton and neutron magnetic susceptibilities,
and finally (iii) to determine which is in each case the
most energetically favorable spin configuration. The density
dependence of the energy of the system and its pressure, as well
as its compressibility, is analyzed for different proton fractions
and magnetic fields. We will not consider β-equilibrium matter
in most of the results shown, but will consider a wide range
of nuclear matter asymmetries of interest for stellar matter, in
particular, to the study of the inner crust, where a pasta phase
is expected [49], to the study of matter with trapped neutrinos
where large proton fractions are expected, which may be as
large as 0.4 in the presence of a magnetic field [50], and to the
study of neutrino free matter in β-equilibrium where the proton
fraction will increase above 0.1 at subsaturation densities for
a sufficiently strong magnetic field [51]. Therefore, besides

symmetric nuclear matter and neutron matter, we choose
two representative proton fractions, namely Yp = 0.1 for cold
β-equilibrium matter and Yp = 0.3 for warm protoneutron star
matter with a fraction of 0.4 trapped leptons. For reference, we
also present the proton fraction of β-equilibrium matter for the
magnetic field intensities considered in the present work, as
well as the proton and neutron polarization and magnetization
of β-equilibrium matter for some of the cases discussed. Let
us point out that even though a protoneutron star should be
described at finite temperature, which has as an immediate
consequence the washout of Landau levels, the main features
defined by a large isospin symmetry due to neutrino trapping
may be understood at zero temperature. In addition, the role
of the proton anomalous magnetic moment is investigated in
detail.

The paper is organized in the following way. A short review
of the formalism is presented in Sec. II. In Sec. III we present
explicit expressions for the magnetization of each nucleonic
species, as well as for their differential susceptibilities. The
results are shown and discussed in Sec. IV. Finally, a short
summary and our main conclusions are given in Sec. V.

II. THE FORMALISM

To describe nuclear matter in a external uniform magnetic
field B along the z axis, we employ a relativistic mean-
field (RMF) approach, in which the nucleons interact via
the exchange of σ , ω, and ρ mesons. The total interacting
Lagrangian density of the nonlinear Walecka model (NLWM)
has the form

L =
∑

N=n,p

LN + Lm. (1)

The nucleon (N = n, p) Lagrangian density, including
meson-nucleon interacting terms, and the meson (σ , ω, and
ρ) Lagrangian density are, respectively, given by

LN = �̄N

(
iγμ∂μ − qNγμAμ − m + gσσ − gωγμωμ

− 1
2gρτ .γμρμ − 1

2μNκNσμνF
μν

)
�N (2)

and

Lm = 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

3!
cσσ 3 − 1

4!
λσ 4

+ 1

2
m2

ωωμωμ + 1

4!
ξg4

ω(ωμωμ)2 − 1

4

μν
μν

− 1

4
FμνFμν + 1

2
m2

ρρμ.ρμ − 1

4
P μνPμν

+�ωg2
ρρμ.ρμg2

ωωμωμ. (3)

In the above expressions, �N are the nucleon Dirac fields,
the nucleon mass is denoted by m, τ are the isospin Pauli
matrices, and μN is the nuclear magneton. The nucleon
anomalous magnetic moments (AMM) are introduced via the
coupling of the baryons to the electromagnetic field tensor
with σμν = i

2 [γμ,γν] and strength κN , with κn = −1.91315
for the neutron and κp = 1.79285 for the proton, respectively.
The mesonic and electromagnetic field strength tensors are
given by their usual expressions: 
μν = ∂μων − ∂νωμ, Pμν =
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∂μρν − ∂νρμ − gρ(ρμ × ρν), and Fμν = ∂μAν − ∂νAμ. The
photon field Aμ is taken as (0,0,Bx,0) in such a way that
the external magnetic field �B is aligned with the z axis. The
electromagnetic field is assumed to be externally generated
(and thus has no associated field equation), and only frozen-
field configurations will be considered. The nucleon-meson
couplings are denoted by g and the electromagnetic couplings
by q. The parameters of the model are the nucleon mass m,
the masses of mesons mσ , mω, and mρ , and the nucleon-
meson couplings. The self-interaction term with coupling
constants cσ and λ for the σ meson are introduced. The RMF
parametrization employed in this work is the FSUGold [52],
where two more parameters ξ and �ω have been introduced:
ξ to describe the ω meson self-interactions, which soften the
equation of state at high density, and �ω, a nonlinear mixed
isoscalar-isovector term, which modifies the dependence of
the symmetry energy. The FSUGold model has been chosen
because it is frequently applied in the description of nuclear
matter and stellar hadronic matter [53]. Although, FSUGold
is too soft at large densities and it is not capable of describing
a 2M� neutron star, we expect it will describe well nuclear
matter below 3ρ0, the range of densities we analyze.

From now we take the standard mean-field theory approach
and display only some of the equations needed for this study.
A complete set of equations and description of the method
can be found in the literature (e.g., Refs. [47,51,54]). For
the description of the system, we need the energy density
of nuclear matter, the pressure, and the baryonic density. The
energy density of nuclear matter can be expressed as

ε = εn + εp + 1

2
m2

σ σ 2 + 1

3!
cσ g3

σ σ 3 + 1

4!
λg4

σ σ 4 + 1

2
m2

ωω2
0

+ 1

8
ξg4

ωω4
0 + 1

2
m2

ρρ
2
0 + 3�ωg2

ρρ
2
0g2

ωω2
0, (4)

and the pressure of the system is obtained from the thermody-
namical relation

Pm =
∑
i=n,p

μiρi − ε. (5)

The proton and neutron chemical potentials read

μp = E
p
F + gωω0 + 1

2gρρ
0, (6)

μn = En
F + gωω0 − 1

2gρρ
0, (7)

where E
p
F and En

F are the proton and neutron Fermi energies
related to their corresponding Fermi momenta k

p
F,ν,s and kn

F,s

through(
k

p
F,ν,s

)2 = (
E

p
F

)2 − [√
m∗2 + 2νqpB − sμNκpB

]2
, (8)

(
kn
F,s

)2 = (
En

F

)2 − m̄2
ns, (9)

where ν = n + 1
2 − sgn(q) s

2 = 0,1,2, . . . enumerates the
Landau levels of the fermions with electric charge q, the
quantum number s is +1 for spin-up (↑) and −1 for spin-down

(↓) particles, and for the neutrons we have introduced

m̄ns = m∗ − sμNκnB, (10)

with m∗ the nucleon effective mass given by

m∗ = m − gσσ. (11)

The proton and neutron densities are given by

ρp = qpB

2π2

∑
ν,s

k
p
F,ν,s , (12)

ρn = 1

2π2

∑
s

[
1

3

(
kn
F,s

)3 − 1

2
sμNκnB

×
(

m̄nsk
n
F,s + (

En
F

)2
(

arcsin

(
m̄ns

En
F

)
− π

2

)) ]
, (13)

where the summation over the index ν in the expression for
the proton density starts from 0 (1) for spin-up (spin-down)
protons and runs up to the largest integer for which the square
of the Fermi momentum of the proton is still positive. This
maximum value of ν is defined by the ratio

νmax =
[(

E
p
F + sμNκpB

)2 − m∗2

2|qp|B

]
. (14)

Finally, the proton and neutron energy densities εp and εn that
enter the total energy density (4) are given by

εp = qpB

4π2

∑
ν,s

[
k

p
F,ν,sE

p
F +(

√
m∗2 + 2νqpB − sμNκpB)2

× ln

∣∣∣∣∣ k
p
F,ν,s + E

p
F√

m∗2 + 2νqpB − sμNκpB

∣∣∣∣∣
]
, (15)

εn = 1

4π2

∑
s

[
1

2
kn
F,s

(
En

F

)3 − 2

3
sμNκnB

(
En

F

)3

×
(

arcsin

(
m̄ns

En
F

)
− π

2

)
−

(
1

3
sμNκnB + 1

4
m̄ns

)
(

m̄nsk
n
F,sE

n
F + m̄3

ns ln

∣∣∣∣k
n
F,s + En

F

m̄ns

∣∣∣∣
) ]

. (16)

III. MAGNETIC SUSCEPTIBILITY

The magnetization of nuclear matter defined as the deriva-
tive of the energy density with respect to B, at constant
baryonic density ρ and fixed proton fraction Yp, can be written
as

M = − ∂ε

∂B

∣∣∣∣
ρ,Yp

=
∑
i=p,n

−∂εi

∂B

∣∣∣∣
ρ,Yp

=
∑
i=p,n

Mi . (17)

Note that since the density and the proton fraction is considered
fixed, there is no contribution from the meson fields to the
magnetization in this case. The proton magnetization, Mp, is
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given by [47,48,55]

Mp = −εp

B
+ E

p
F

ρp

B
− qpB

2π2

∑
ν,s

m̄pνs ln

∣∣∣∣∣E
p
F + k

p
F,ν,s

m̄pνs

∣∣∣∣∣
(

qpν

m̃pνs

− sμNκp

)
, (18)

where m̄pνs is defined as

m̄pνs = m̃pν − sμNκpB (19)

with

m̃pν =
√

m∗2 + 2 qp νB. (20)

The magnetization of the neutrons Mn reads

Mn = 1

2π2

∑
s

(sμNκn)

{(
1

6
m̄ns + 1

2
sμNκnB

)
En

F kn
F,s − 1

6

(
En

F

)3
(

arcsin

(
m̄ns

En
F

)
− π

2

)

− m̄2
ns

(
1

2
sμNκnB + 1

3
m̄ns

)
ln

∣∣∣∣E
n
F + kn

F,s

m̄ns

∣∣∣∣
}
. (21)

The differential magnetic susceptibility of nuclear matter is calculated from the derivative of the magnetization with respect
to the field B for proton and neutron, at constant baryonic density

χn = ∂Mn

∂B

∣∣∣∣
ρ

. (22)

For the proton we obtain the expression

χp = qp

2π2

∑
ν,s

{
BE

p
F

k
p
F,ν,s

(
qpν

m̃pν

− sμNκp

)2

− 2m̄pνs

(
qpν

m̃pν

− sμNκp

)
ln

∣∣∣∣∣E
p
F + k

p
F,ν,s

m̄pνs

∣∣∣∣∣
− B

[(
qpν

m̃pν

− sμNκp

)2

− m̄pνs

(qpν)2

m̃3
pν

]
ln

∣∣∣∣∣E
p
F + k

p
F,ν,s

m̄pνs

∣∣∣∣∣
}

, (23)

whereas for the neutron we have

χn = 1

4π2

∑
s

(sμNκn)2

{
En

F kn
F,s + m̄ns(m̄ns + 2sμNκnB) ln

∣∣∣∣E
n
F + kn

F,s

m̄ns

∣∣∣∣
}

. (24)

At small values of the magnetic field B, we derive for the magnetization expressions similar to the ones derived in the nonrelativistic
approach of Ref. [42]. We get for the proton spectrum

Ep
νs 
 k2

zνs

2m∗ + m∗ + μNB

[
2

m

m∗ n + m

m∗ − s

(
κp + m

m∗ sgn(q)

)]
, (25)

where kzνs is the component of the momentum parallel to the magnetic field. For the proton energy density we obtain in this limit

εp 
 qpB

2π2

∑
ν,s

{
k

p
F,ν,s

3

6m∗ + m∗kp
F,ν,s + μNB

[
2

m

m∗ ν + m

m∗ − s

(
κp + m

m∗ sgn(qp)

)]
k

p
F,ν,s

}
. (26)

Therefore, the expression the proton magnetization reads

Mp = − ∂εp

∂B

∣∣∣∣
ρ,Yp


 −εp

B
− qpB

2π2

∑
ν,s

{
μN

[
2

m

m∗ ν + m

m∗ − s

(
κp + m

m∗ sgn(qp)

)]
k

p
F,ν,s

}


 −2
qpB

2π2

∑
ν,s

{
μN

[
2

m

m∗ ν + m

m∗ − s

(
κp + m

m∗ sgn(qp)

)]
k

p
F,ν,s

}
− qp

2π2

∑
ν,s

{
k

p
F,ν,s

3

6m∗ + m∗kp
F,ν,s

}
, (27)

from which, finally, we obtain the following approximated
expression

Mp = 2μN [κ̄pWp − 2L − np], (28)

where the quantities κ̄p,Wp,L, and np are defined as

κ̄p = κp + m

m∗ , Wp = qpB

2π2

∑
ν,s

sk
p
F,ν,s (29)
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L = qpB

2π2

∑
ν,s

m

m∗ nk
p
F,ν,s , np = qpB

2π2

∑
ν,s

m

m∗ k
p
F,ν,s . (30)

For the neutron magnetization we proceed in a similar way.
Some details are given in the following. The interested reader
is referred to Ref. [43] for a complete derivation. In the same
fashion at small B, we get for the neutron spectrum

En
s 
 m∗+ k2

s

2m∗ − sμNκnB = m∗ + k2
z,s + k2

⊥,s

2m∗ − sμNκnB,

(31)

where kz,s and k⊥,s are the components parallel and orthogonal
to the magnetic field. For the neutron energy density we
obtain

εn 

{

m∗ρn − μNκnBWn + 1

(2π )2

∑
s

∫
k4
s

m∗ dks

}
, (32)

with

Wn = 1

2π2

∑
s

∫
sk2

s dks (33)

being the spin asymmetry density for the neutron. The
expression

Mn = − ∂εn

∂B

∣∣∣∣
ρ,Yp


 μNκnWn. (34)

is obtained for the neutron magnetization. We notice that this
approximated expression was used for β-equilibrated stellar
matter in Ref. [48].

IV. RESULTS AND DISCUSSION

In the following we present and discuss the results obtained
for nuclear matter under a strong magnetic field within the
FSUGold parametrization of the NLW model [52]. We extend
our analysis to baryon densities up to three times satura-
tion density and magnetic field intensities within the range
1015 G ≤ B ≤ 1019 G in order to identify the sensitiveness
of the strength of the magnetic field. As referred in the
introduction, we consider in the following fields B � 1019 G.
Although there is no evidence that fields as high as 1019 G
exist in the crust, we include these values in the figures for
low-density cases for the sake of completeness.

Spin-polarized isospin asymmetric nuclear matter can be
seen as an infinite nuclear system composed by protons and
neutrons. Each particle species, i = n,p, has two different
fermionic components: spin-up particles (↑) and spin-down
particles (↓), having number densities ρ

↑
i and ρ

↓
i , respectively.

The degree of spin polarization of the system can be studied
through the relative polarization of the particle species i,
defined by

�i = ρ
↑
i − ρ

↓
i

ρ
↑
i + ρ

↓
i

. (35)

Note that for small values of the magnetic field, the relation
�i = ρiWi is fulfilled, with the quantities Wp and Wn defined
previously. Note also that the value �n = �p = 0 corresponds
to nonpolarized (i.e., ρ

↑
n = ρ

↓
n and ρ

↑
p = ρ

↓
p ) matter, whereas

�n = ±1 (�p = ±1) means that neutrons (protons) are totally
polarized, i.e., all the neutron (proton) spins are align along
the same direction.

In Fig. 1 we show the neutron relative polarization �n

in terms of the neutron density (left panel), and the proton

0
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0.5
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1
Δ p

1017G
1018G
3×1018G
5×1018G

0 0.25 0.5 0.75 1
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0.4

0.6
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Δ p
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0.1
0.3 0.5

Yp = 0.5
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(c)

from 0.5 to 0.1

β-equilibrium

0 0.25 0.5 0.75 1
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B=3×1018G
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Yp decrease from 0.5 to 0.1

0.5 0.3 0.1

(a)
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FIG. 1. (Color online) Neutron (left) and proton (right) relative polarizations as functions of their respective densities, for several values of
magnetic field and for Yp = 0.1,0.3,0.5 and for β-equilibrium matter. For protons, the polarizations not including (top) or including (bottom)
the anomalous magnetic moment are shown.
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relative polarization �p as function of the proton density (right
panel). Results for both different magnetic field intensities
from B = 1017 G to B = 5 × 1018 G, and different proton
fraction, Yp = 0.1,0.3,0.5, are plotted. Decreasing proton
fractions are depicted with increasing line width. It should
be pointed out that because only the neutron or the proton
densities are shown, changing the proton fraction changes also
the total density: A given neutron density for neutron-rich
matter is attained at lower total densities than the same neutron
density for symmetric matter.

We first discuss the results shown in the left panel of Fig. 1
for the neutron polarization. In this range of fields, for very
low densities, neutrons are totally polarized (i.e., �n = −1),
up to a critical density above which they become partially
polarized. This is in agreement with other calculations of
pure neutron matter (see, i.e., Refs. [41,42,44,45]). Neutrons
have always a negative polarization due to the different sign
of their coupling to the electromagnetic field with respect to
that of the protons. By increasing the value of the magnetic
field at a fixed proton fraction the critical neutron density
increases. It is also seen that the critical neutron density
is larger for the more asymmetric and neutron-rich matter,
corresponding to a smaller total nucleon density. The same
is true for polarized proton matter, see Fig. 1 right panel
bottom: The total polarization occurs more easily in less
dense matter, because the nucleon chemical potentials are
smaller.

The critical neutron density depends on the proton fraction
because changing Yp is equivalent to changing the neutron
fraction (Yn = 1 − Yp), and, for a given neutron density, as the
total baryonic density increases, the more easily are neutrons
totally polarized.

For a magnetic field of the order of 1017 G neutrons are
totally polarized only at very small densities, and for neutron
densities above 0.02ρ0 the partial polarization of neutrons is
below 10%. This low degree of polarization is due to its weak
anomalous magnetic moment.

In Fig. 1(b) the relative proton polarization is plotted for
symmetric matter without AMM. Once more, for very low
densities, protons are totally polarized with �p = 1, up to a
critical density, where they become partially polarized with
predominance of spin-up states, i.e., 0 < �p < 1. The critical
density increases with B. In Fig. 1(c) the AMM is included.
The overall behavior does not change. When decreasing the
proton fraction from 0.5 to 0.1, the critical proton density
decreases, associated with the increase of the total density.
We have included in Figs. 1(a) and 1(c), respectively, the
neutron and proton polarizations for β-equilibrium matter in
the presence of a magnetic field B = 3 × 1018 G. For neutrons
the β-equilibrium polarization is practically coincident with
the Yp = 0.1 results, and for protons, results for Yp = 0.1 are
also quite similar, in agreement with proton fraction expected
for B = 3 × 1018 G as shown in Fig. 2 where the proton
fraction of β-equilibrium matter for different magnetic field
intensities is shown for ρ < 4ρ0.

In Fig. 3 we make a more careful analysis of the proton
critical density as function of the magnetic field, with and
without AMM and for two values of the proton fraction
Yp = 0.1 and 0.5. Protons are totally polarized on the region
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0.2

0.3

0.4

0.5

Y
p
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1019G

κp ≠ 0

FSUβ-equilibrium

FIG. 2. (Color online) The proton fraction of β-equilibrium mat-
ter for several intensities of the magnetic field, taking into account
the AMM.

below the lines of critical proton density. If no AMM is

included, total polarization occurs when eB >
k

p
F

2

2 ; however,
with AMM the following conditions should be satisfied:
k

p
F

2
< |4μNκnB|

√
m∗2 + 2eB for stronger fields or k

p
F

2
<

|2μNκnB|(
√

m∗2 + 2eB +
√

m∗2 + 4eB) − 2eB for weaker
fields. The AMM favors the polarization so that the critical
density is larger when the AMM is taken into account. For
fields of the order of 1016 G this difference is almost one
order of magnitude larger, while at B = 1019 G the difference
reduces to a factor of two. We conclude, therefore, that a
realistic calculation must include the AMM. The effect of the
isospin asymmetry on the critical proton density is related
with the filling of the Landau levels, which as referred before,
depends on the total baryonic density.
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FIG. 3. (Color online) The critical density of protons as a func-
tion of the magnetic field, for Yp = 0.1 and 0.5, and without or with
AMM (thin or thick lines). The large dots indicate the filling of the
indicated Landau level (LL).
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FIG. 4. (Color online) The energy per particle as a function of the density for several values of the magnetic field and proton fractions. In
the left panel no AMM was included.

In Fig. 4 we show the energy per particle, defined by E/A =
ε
ρ

− m, as a function of the baryon density, for several values of
the magnetic field, and for Yp = 0.1,0.3, and 0.5. The curves
obtained for B < 1018 G are almost coincident. In Ref. [42],
results obtained with 1014 < B < 1018 G also practically co-
incide; however, they are lower than the prediction for B = 0.
This could be due to some difference in the parametrization or
normalization in the calculation done with B = 0.

Ignoring the AMM (left panels), it is seen that in average
the effect of the magnetic field is to increase the binding
of the nuclear matter, and the effect is stronger for more
symmetric matter. The AMM has a strong effect for larger
values of the magnetic field. Note that for B ≥ 1018 G there are
already noticeable effects at densities ρ ≤ 0.25ρ0. For stronger
magnetic fields, the effect of the AMM leads clearly to an
increase of the binding energy per particle.

Several authors have studied neutron matter under the effect
of strong magnetic fields within different frameworks and
interactions, such as the Gogny interaction [31,32]. Recently,
the authors of Ref. [45] have used both microscopic, namely
the Brueckner-Hartree-Fock approach with the Argonne V18
nucleon-nucleon potential supplemented with a three-body
force, and phenomenological approaches, in particular an
effective Skyrme model in a Hartree-Fock description and
a mean-field quantum hadrodynamical formulation with the
FSUGold parametrization.

In the following we present neutron matter properties and
discuss how they change with the intensity of the magnetic
field. In order to discuss the global state of polarization and
bulk thermodynamical properties of pure neutron matter, we
show in Fig. 5 (i) the neutron critical density corresponding to

the transition from totally polarized as well as lines of partial
polarization (50% and 10%) as a function of the magnetic
field [Fig. 5(a)], (ii) the energy per particle [Fig. 5(b)], (iii) the
nucleonic pressure P [Fig. 5(c)], and (iv) the compressibility
K [Fig. 5(d)], with the last three quantities as functions of the
total density for several magnetic field intensities.

Just as we have discussed for protons, the neutron critical
density is an increasing function of the magnetic field and
the critical density is defined as the single-particle energy of
neutrons is smaller than the energy required to start populating

the neutron spin-up levels. This limit is defined by kn
F

2

4m∗ <

|μNκnB|. A magnetic field B = 3 × 1016 G has already a
noticeable effect: A polarization of 10% is expected at ρn =
0.001 fm−3 and 50% for ρn = 0.0001 fm−3. These are neutron
densities of the order of the ones existing in the background
neutron gas in the pasta phases of the inner crust.

From Fig. 5(b), it is seen that the effects due to magnetic
fields start to be significant only for B ≥ 1018 G at low baryon
densities. For B ≤ 1017 G neutron matter is not bound, as
expected, because the magnetic field is too weak to have any
effect on it. However, the binding increases when the intensity
of the magnetic field grows, and for B = 1019 G pure neutron
matter is bound up to ∼1.5 times saturation density. These
results agree with the ones in Ref. [45].

The pressure in pure neutron matter is shown as a function
of the baryonic density for several values of magnetic field in
Fig. 5(c). Only the region corresponding to densities below
the saturation density is plotted to show clearly the transition
from totally polarized to partially polarized neutron matter.
The pressure increases monotonically, showing, however, a
softening at the onset of partially polarized matter. This
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FIG. 5. (Color online) Several thermodynamic properties of neutron matter under the effect of an external magnetic field are shown:
(a) the neutron critical density for total polarization and for partial polarization (50% and 10%) as a function of the magnetic field intensity, (b)
the energy per particle, (c) the pressure, and (d) the compressibility K are plotted as functions of the total neutron density for several magnetic
field intensities. Matter below the full, dashed, and dot-dashed lines in panel (a) have, respectively, �n < −0.1, − 0.5 and �n = −1.

transition is clearly seen on the isothermal compressibility
K , defined through the first derivative of the pressure, i.e.,
1/K = ρ ∂P

∂ρ
[see Fig. 5(d)]. For each value of B, K presents

a kink at the critical density.
We next focus on the neutron magnetic susceptibility of

asymmetric nuclear matter. In the following we consider both
the magnetic susceptibility defined by the ratio Mn/B and the
differential susceptibility χn. The dependence of the neutron
magnetic and differential susceptibility on the magnetic field
intensity is shown on, respectively, the left and right panels of
Fig. 6. Results are shown for different total densities and proton
fractions. As already found in Ref. [45] the magnitude of the
neutron susceptibility is very small, χn < 0.0015 for FSU.
Two different regimes are identified. In the low-field region
corresponding to partially polarized matter, B ≤ 3 × 1018 G,
Mn/B and χn exhibit a plateau. Beyond a threshold magnetic
field, Mn/B decreases, showing a change of the slope, clearly
seen as the kink in χn which occurs at the transition from
totally polarized to partially polarized matter. Above this
critical magnetic field there is a strong decrease of the
susceptibility.

The neutron susceptibility decreases if the neutron fraction
decreases and has a nonmonotonic behavior with the density,
increasing until ∼ρ0 and decreasing above this density for
the lower magnetic field intensities. This is clearly seen in

Fig. 7 where we show the magnetic Mn/B [Fig. 7(a)] and the
differential χn [Fig. 7(b)] neutron susceptibility as function of
the baryon density, for several values of the magnetic field,
and for a fixed proton fraction Yp = 0.5. At low densities
Mn/B practically does not change for B < 1018 G. For larger
densities this range increases to fields one order of magnitude
larger. Mn/B increases linearly with ρ at low densities when
neutrons are totally polarized. At densities above the transition
from totally polarized to partially polarized neutron matter, it
continues increasing until a plateau is reached at high densities,
which correspond to the limit when the terms with the
magnetic field B are negligible, χn → 1

4π2 (μNκn)2[En
F kn

F +
m∗2 ln |En

F +kn
F

m∗ |]. However, this value not always corresponds
to the maximum of the magnetization for weak fields. For fields
below 1018 G the maximum occurs at ∼0.5–1.0ρ0 before the
plateau is attained.

The change of slope seen in Mn/B corresponds to the
kinks shown in the differential susceptibility χn. We also
show the ratio Mn/B in the nonrelativistic limit, and contrary
to the relativistic result the susceptibility does not saturate
but increases monotonically with the density. The authors of
Ref. [48] have obtained this same increasing trend by applying
precisely the nonrelativistic limit of the ratio Mn/B. A similar
behavior was also obtained in Ref. [45] with the Skyrme
interaction, but in this case it could be that this is due to the
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FIG. 6. (Color online) Neutron magnetic susceptibility (left panels) and differential susceptibility (right panels) as a function of the magnetic
field and for several values of the density and isospin asymmetry.

properties of most Skyrme forces that predict a phase transition
to a ferromagnetic phase at suprasaturation densities.

We now discuss the proton magnetization and compare it
to the neutron one. The proton and neutron magnetic suscep-
tibilities are presented in Fig. 8 as a function of the density for
asymmetric nuclear matter under different intensities of the

magnetic fields and for two proton fractions, Yp = 0.1 (left)
and 0.3 (right). In the top and middle panels results for
protons without (black solid line) and with (red [gray] dotted
line) AMM, and for neutrons (green [gray] lines) are shown
respectively for B = 1015 G and B = 1017 G. In Figs. 8(e)
and 8(f) the different curves are for B = 1018 G (black solid
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FIG. 7. (Color online) Neutron susceptibility (left) and differential susceptibility (right) as function of the baryon density, for several values
of the magnetic field and for symmetric matter. The thick lines correspond to the nonrelativistic limit for B = 1015 and 1018 G.
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FIG. 8. (Color online) Proton and neutron magnetic susceptibilities as function of the density and for several values of the magnetic field.
In the top and middle panels results with (without) AMM are represented by dotted (solid) lines for protons and dashed lines for neutrons. In
the bottom panel results with (without) AMM for protons are given by the thick (thin) lines and the dashed lines are for neutrons.

line), 3 × 1018 G (red [gray] dashed line), and 1019 G (blue
[gray] dotted line), without and with AMM (thin and thick
lines, respectively). In all the panels the neutron susceptibility
is plotted with a green (gray) dashed curve. Please notice that
the scale changes and the largest susceptibilities occur for the
smallest magnetic fields.

The susceptibility curves for protons, at different magnetic
fields, present the well-known de Haas van Alphen oscillations
associated with the change in the number of Landau levels
contributing at different fields. The filling of the levels becomes
more complicated if the AMM is included and this is seen
in the more complex structure of the magnetic susceptibility
calculated with AMM; see bottom panel. Some of the main
conclusions that may be drawn from these figures are (a) the
proton magnetic susceptibility decreases much more strongly
with B than the neutron magnetic susceptibility, and if B
changes from 1015 G to 1017 G its magnitude changes by
almost an order of magnitude, and the same if B changes from
1017 G to 1019 G, while the neutron susceptibility is practically
unchanged; (b) the inclusion of the AMM may increase the
proton susceptibility by a factor of two or more; (c) at low
densities the proton and neutron magnetic susceptibilities are
of the same order of magnitude and the fraction of protons
defines how important is each contribution; (d) for Yp = 0.1
the neutron susceptibility is even larger than the proton one for
subsaturation densities, such as the ones occurring in the crust
of a neutron star.

In order to better understand the behavior at low densities
we plot in Fig. 9 the magnetic susceptibilities for subsaturation
densities and fields B � 1017 G. These are field intensities
that could exist in the inner crust of a magnetar. In fact,
in the inner crust of a neutron star the background neutron

gas will have densities that goes from zero to ∼0.5ρ0. For
neutron-rich matter with Yp = 0.1 and 0.3 or β-equilibrium
matter the neutron susceptibilities are of the same order of
magnitude. There is, however, a clear difference between
the proton susceptibilities: As the proton fraction increases,
the susceptibility becomes larger because the polarization
is smaller. Total polarized matter has zero susceptibility. In
particular, for these low fields β-equilibrium matter has a
proton fraction below 0.1 (see Fig. 2), and, therefore, protons
get more easily totally polarized.

This is matter that is totally or partially polarized as can be
seen looking at Figs. 3 and 5: Pure neutron matter with ρn =
0.0001 fm−3 is totally polarized by a field B ∼ 6 × 1016 G;
for ρ ∼ 0.01 fm−3, Yp = 0.1, and B = 1017 G the proton
polarization is almost 100% but the neutron polarization is
one order of magnitude smaller. The magnetic susceptibility is
larger for partially polarized matter and, although, at ∼0.5ρ0

the maximum neutron magnetic susceptibility is attained for
fields below 1018 G, at ∼0.02ρ0 it has already a magnitude
that is half of the maximum value. We expect that neutron
polarization will affect the superfluidity of neutrons, reducing
its fraction.

The effect of the proton fraction on the nucleon susceptibil-
ities is also seen in Fig. 10 where these quantities are plotted
as a function of the magnetic field intensity for several proton
fractions and for ρ = ρ0. Neglecting the AMM contribution
makes the proton susceptibility go to zero as soon as only
the first Landau level is occupied, and protons are totally
polarized. This is expected taking the large B limit of Eq. (23)
with κp = 0. For Yp = 0.1 the neutron susceptibility is of the
order of the proton one or larger for B > 1017 G. Very strong
oscillations occur for the weaker fields (or larger densities),
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FIG. 10. (Color online) Proton and neutron magnetic susceptibil-
ities and differential susceptibilities calculated at ρ = ρ0 as function
of the magnetic field for several values of the proton fraction, with
and without AMM (dotted and solid lines, respectively) for protons
and for neutrons (dashed line).

and, therefore the differential susceptibilities have not been
shown, but if an averaging is done as in Ref. [55] the average
proton susceptibility would probably be of the order of the
neutron one also for these fields (and densities). We also
conclude that it is important to take into account AMM even
for fields as small as 1016–1017 G.

We have obtained an overall agreement with the conclusions
obtained in previous works [47,48], in particular, that the total
magnetization decreases with an increasing magnetic field and
that its magnitude is quite small.

The effect of the magnetic field on the proton fraction of β-
equilibrium matter was discussed in Ref. [43]: At ρ = 0.1ρ0 Yp

increases from Yp < 0.005 at 1015 G to 0.18 at 3.6 × 1018 G.
However, this effect is much smaller at larger densities: for
ρ = 2ρ0, 4ρ0, Yp increases from Yp = 0.15, 0.22 at 1015 G
to, respectively, Yp = 0.16 and 0.23 at 3.6 × 1018 G. These
results are in agreement with the proton fractions plotted in
Fig. 2. For the indicated densities (0.1ρ0,2ρ0,4ρ0), the total
proton polarization is attained, respectively, at log10[B(G)] =
16.2, 18.4, and 18.8. These results are confirmed in our present
work as particular cases of a more systematic study; see Fig. 3.
Similar conclusions with respect to the effect of the magnetic
field on the proton fraction have been drawn in Ref. [51],
where it is shown that, for B = 4.4 × 1018 G, the magnetic
field affects mainly densities below 2ρ0 and, instead of the
usual proton fractions below 0.1, proton fractions above this
value are expected. An increase of the proton fraction disfavors
polarization, and, therefore, in β-equilibrium magnetized
matter the proton total polarization will not occur as easily.

In matter with neutrino trapping it was shown in Ref. [50]
that at low densities neutrino suppression occurs due to the
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larger proton fractions, which can be as high as 0.4. Larger
amounts of protons mean that polarization effects of the
magnetic field will be smaller on the protons and larger
on neutrons. On the other hand, the contribution of protons
(neutrons) to the total magnetization will increase (decrease).

At subsaturation densities matter is not homogeneous and
a pasta phase calculation is required. In Ref. [49] a first study
was performed and it was shown that fields below 1018 G have
a non-negligible effect on the pasta structure. In particular, it
was shown that the magnetic field disfavors neutron drip and,
therefore, the neutron gas outside the cluster is less dense for
a given density and total polarization occurs more easily.

In stellar β-equilibrium neutral matter besides protons and
neutrons also the contribution of electrons (and muons above
0.12 fm−3) should be considered as discussed in Refs. [43,51].
Consequently a complete description of stellar matter requires
also the leptonic contribution for the description of quantities
such as the total magnetization; see Ref. [48].

V. SUMMARY AND CONCLUSIONS

In the present work we have studied the proton and neutron
polarization and magnetic susceptibility of asymmetric nuclear
matter within a relativistic mean-field approach, in particular,
the FSUGold parametrization.

The calculations were performed at a fixed proton fraction,
and for the proton results with and without AMM were
compared. We have calculated independently the proton and
the neutron magnetic susceptibilities and compared their
magnitudes. Both of them are quite small, indicating that the
magnetization induced by an external magnetic field is weak.
Similar conclusions have been obtained in Refs. [47,48].

The proton susceptibility oscillates very strongly due to
the filling of Landau levels and decreases with an increasing
magnetic field. It was shown that at subsaturation densities the
susceptibility calculated including the AMM may be several
times larger than the results obtained when it is ignored, for
magnetic fields with an intensity larger than ∼5 × 1016 G, and,
therefore, it is important to take into account AMM for fields
in the range 1016–1017 G.

The neutron susceptibility has a behavior very different
not only because it does not oscillate since the neutron has

zero electric charge but also because at large densities it
converges to a value that is independent of the magnetic
field while the proton susceptibility increases with the density
for a fixed value of B. However, it was also shown that
in the nonrelativistic limit neutron susceptibility increases
monotonically with density. We have shown that at low density
and for small proton fractions the neutron susceptibility may
be as large as the proton one or even larger.

We have also calculated the transition density from partially
to totally polarized matter as a function of the magnetic field
intensity and it was shown that neutron matter is totally
polarized by a field 6 × 1016 G and ρ = 0.0001 fm−3. The
same field will also totally polarize the protons of asymmetric
nuclear matter at ρ = 0.002 fm−3 with Yp = 0.1. This be-
havior occurs for densities of relevance in the neutron star
crusts and we expect that neutron superfluidity and transport
properties of the crust will be affected by the presence of
magnetic fields at least as strong as 1016 G. This has been
studied for the opacity, e.g., in Ref. [56]. In fact, at low
densities, such as the ones occurring in the inner crust, it is
expected neutron superfluidity in the attractive channel 1S0.
A partial or total neutron polarization will naturally hinder
the formation of neutron pairing. The consequences of the
nonexistence or reduction of neutron superfluidity would be
a faster cooling of low-mass neutron stars, stars for which
the direct Urca processes are not expected, and a reduction of
the glitch phenomena since the neutron pairing determines the
vortex structure [57–59]. Also, a reduction of the susceptibility
would have strong effects on the mean free path of a neutrino
in dense matter, and, therefore, on the cooling of the star [24].
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