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We study the SU(3) gluon propagator in renormalizable Rξ gauges implemented on a symmetric lattice
with a total volume of ð3.25 fmÞ4 for values of the gauge fixing parameter up to ξ ¼ 0.5. As expected, the
longitudinal gluon dressing function stays constant at its tree-level value ξ. Similar to the Landau gauge, the
transverse Rξ gauge gluon propagator saturates at a nonvanishing value in the deep infrared for all values of
ξ studied.
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I. INTRODUCTION

During the last decade, ab initio lattice gauge compu-
tations have been instrumental for advancing our under-
standing of the infrared (IR) sector of QCD. In fact, once
discretization and finite volume artifacts are accounted for,
these calculations provide nonperturbative results that are
regarded as benchmark tests for the available continuum
approaches. In particular, large volume SU(2) and SU(3)
lattice simulations of the gluon and ghost propagators have
been carried out by different groups, using quenched and
unquenched configurations gauge fixed in the Landau
gauge [1–9]. These simulations have unequivocally estab-
lished that in the deep IR the gluon propagator and the
ghost dressing function (defined as q2 times the propagator)
saturate to a nonvanishing value.
The finding of these so-called massive (or decoupling)

solutions has in turn spurred an intense activity in the
continuum formulation of the theory, in order to determine
a reliable picture of the fundamental QCD dynamics capable
of predicting their emergence. Themost successful proposals
that have been developed include (i) Schwinger-Dyson
studies [10–14], in which the saturation is due to the
(dynamical) generation of an effective gluon mass scale
[15–18]; (ii) the refined Gribov-Zwanziger picture [19–21],
in which the effect is due to a mass scale generated through
dimension 2 condensates induced by the presence of the
Gribov horizon; (iii) functional and renormalization group
studies [22,23], in which decoupling solutions appear when
special boundary conditions are imposed to the relevant
equations.
On the other hand, given the gauge variant nature of the

objects under scrutiny, it is clearly very important to
perform simulations in as many gauges as possible, in
order to discern which aspects of the nonperturbative

behavior of the function at hand are (or are not) affected
by a gauge choice. From the continuum perspective, this is
also extremely important as the results obtained can be used
to further test the aforementioned proposals.
Indeed, while the gluon two-point function has been

studied in covariant and noncovariant gauges [24–27] (for
continuum studies in noncovariant gauges see, e.g.,
[28–34] and the references therein), reliable calculations
in renormalizable ξ (Rξ) gauges [35] have not been
systematically pursued so far. While this class of gauges
is the only one completely under control at the perturbative
level, its lattice implementation has nevertheless proven to
be quite complicated due to poor numerical convergence of
the corresponding gauge fixing (GF) algorithm [36–41]. A
GF procedure with an improved convergence rate was
finally implemented in [42]; however, one still encountered
significant problems, which unfortunately become more
severe as the GF parameter ξ and/or the lattice volume
become larger, and the number of colors Nc and/or the
lattice coupling β become smaller [43–45]. As a result,
there have been only preliminary studies of the Rξ gluon
propagator [41,42,45].
In this paper, we present the SU(3) gluon propagator inRξ

gauges for a relatively large lattice volume ð3.25 fmÞ4 and
GF parameter up to ξ ¼ 0.5. This allows us to address in
some detail the IR behavior of the Rξ gluon propagator,
showing, in particular, that, similar towhat has been found in
the Landau gauge, the gluon propagator saturates in the IR.
The paper is organized as follows. In Sec. II we briefly

review the Rξ gauges framework, both in the continuum and
in its lattice discretized version. In Sec. III we discuss the
algorithm we employ to successfully implement the Rξ GF
procedure for a relatively large lattice volume ð3.25 fmÞ4 and
GF parameter up to ξ ¼ 0.5. We present our simulation
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results for the SU(3) gluon propagator in Rξ gauges in
Sec. IV. Our conclusions are finally drawn in Sec. V.

II. THE Rξ GAUGES FRAMEWORK

In the continuum, gauge fixing is achieved by adding
to the SUðNcÞ Yang-Mills gauge invariant action the term
(in Minkowski space),

SGF ¼
Z

d4x

�
bmΛm −

ξ

2
ðbmÞ2

�
: ð1Þ

Here ξ is a (non-negative) GF parameter, bm are the
so-called Nakanishi-Lautrup multipliers and Λm ¼ Λm½A�
is the GF condition. For all fields we write Φ ¼ Φmtm,
where tm represents the SUðNcÞ generators.
It is usually convenient to adopt an on-shell formalism,

eliminating the bm fields through their (trivial) equation of
motion; this yields the (gauge) condition ξbm ¼ Λm, and
the GF action

SGF ¼
1

2ξ

Z
d4xðΛmÞ2: ð2Þ

Rξ gauges are obtained when choosing the linear GF
condition Λm ¼ ∂μAm

μ . In this case the (nonperturbative)
gluon propagator Δmn

μν ¼ δmnΔμν can be decomposed
according to

ΔμνðqÞ ¼
�
gμν −

qμqν
q2

�
ΔTðq2Þ þ

qμqν
q2

ΔLðq2Þ: ð3Þ

Slavnov-Taylor identities ensure that q2ΔL ¼ ξ to all
orders. Therefore, all the dynamical information is carried
by the transverse form factor ΔT alone.
The lattice formulation of Yang-Mills theories is

obtained in terms of the Wilson gauge action, in which
the dynamical variables are the gauge links Uμ, related to
the gauge fields (in lattice units) through

UμðxÞ ¼ exp½ig0Aμðxþ êμ=2Þ�;

Aμðxþ êμ=2Þ ¼
UμðxÞ −U†

μðxÞ
2ig0

����
traceless

; ð4Þ

where êμ is the unit vector along the direction μ, and β ¼
2Nc=g20 is the lattice coupling which determines the lattice
spacing a. Physical quantities are then obtained by the
evaluation of the Euclidean path integral through
Monte Carlo techniques, with a probability distribution
given by the exponential of the action.
In Rξ gauges, besides the usual integration over the link

variables, one has to integrate over the Λ fields.
Equation (2) implies that the integration measure is a
Gaussian distribution, with variance ξ, i.e.,

P½ΛmðxÞ� ∝ exp

�
−

1

2ξ

X
m

½ΛmðxÞ�2
�
: ð5Þ

The numerical difficulty of implementing the Rξ

gauges lies in enforcing the GF condition. In fact, the
standard procedure for GF requires to gauge rotate all link
variables through the gauge transformation UμðxÞ →
gðxÞUμðxÞg†ðxþ êμÞ, where g represents elements of the
SUðNcÞ gauge group that minimizes a suitable functional
implementing the desired GF condition. In the Landau
gauge case, which is the ξ → 0 limit of the gauges studied
here, the simplest possible functional of the gauge links
UμðxÞ leading, upon a suitable minimization procedure, to
the condition ∇ · Am ¼ 0 is

ELG½U; g� ¼ −ReTr
X
x;μ

gðxÞUμðxÞg†ðxþ êμÞ: ð6Þ

Contrary to this simple limit, the general case of a
nonvanishing ξ was proven to have no simple GF func-
tional suitable for minimization [36]. Nevertheless, in [42]
it was shown that the functional

ERξ
½U; g� ¼ ELG½U; g� þ ReTr

X
x

igðxÞΛðxÞ ð7Þ

yields the correct condition ∇ · Am ¼ Λm, provided that the
following convergence algorithm is implemented. The
gauge transformation g is built as a product of a sequence
of infinitesimal gauge transformations g ¼ Q

jδgj. For each
infinitesimal transformation δgj one minimizes the func-
tional (7); however when moving on to the next infinitesi-
mal transformation δgjþ1, the Gaussian distribution Λm is
maintained unchanged and the linkUμ is updated through a
gauge rotation.
Writing δgj ¼ 1þ i

P
mw

m
j t

m, the variation of the func-
tional (7) with respect to the coefficients wm

j then reads

ERξ
½U; δgj� − ERξ

½U; 1� ¼ Tr
X
x;m

wm
j ðxÞtmΔðxÞ;

ΔðxÞ ¼
X
μ

g0½Aμðxþ êμ=2Þ − Aμðx − êμ=2Þ� − ΛðxÞ: ð8Þ

Choosing wm
j ¼ αjΔm, with αj being a relaxation

parameter to be optimized, will reduce Δ. Our goal is to
converge to a vanishing Δ in all lattice points x, which in
turn implies [36]

θ ¼ 1

NcL4

X
x

Tr½ΔðxÞΔ†ðxÞ� → 0: ð9Þ

Whenever this condition is fulfilled (which, based on the
experience of Landau GF [46], means to have θ < 10−15),
then the configuration can be considered to be Rξ

gauge fixed.
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III. LATTICE SETUP AND ALGORITHM

In order to study the gluon propagator we use 50
configurations generated through importance sampling of
the SU(3) Wilson action [47]. We opt for a symmetric
lattice of size L ¼ 32 and β ¼ 6.0, with associated lattice
spacing a ¼ 0.1016ð25Þ fm measured from the string
tension [48]. The simulated volume is therefore
ð3.25 fmÞ4, large enough to resolve the onset of non-
perturbative effects in the propagator’s transverse form
factor. The values of ξ chosen are ξ ¼ 0.1, 0.2, 0.3, 0.4, and
0.5. For comparison, we also report the Landau gauge,
obtained as the ξ → 0 limit of the gauges studied.
As explained above, to gauge fix the configurations, we

need to minimize the functional ERξ
½U; g� through a suitable

succession of gauge rotations of the link variables. In
practice, for every lattice site x, eight real valued numbers
ΛmðxÞ are generated with the Gaussian probability distri-
bution (5) and combined in the SU(3) algebra element Λ
(for the generation of the Gaussian distribution we rely on
the standard Box-Muller algorithm). Then, for each link
andΛ field, the GF functional (7) is minimized over the link
gauge orbit. For the Λ integration, we consider 50 different
Λ’s for each configuration. Furthermore, to reduce the
correlations in the evaluation of the path integral, the Λ’s
are generated independently for each gauge configuration.
For each combination of link/Λ’s one expects the func-

tional ERξ
½U; g� to have several minima and that the

problem of the Gribov copies is, for the linear covariant
gauges, at least as complicated as for the Landau gauge.
Given the exploratory nature of this work (and that the Rξ

GF problem is computationally much more demanding
than the corresponding Landau GF problem, see below),
possible Gribov copies effects will be simply neglected,
and a single minimum (or copy) will be studied.
The GF procedure represents clearly the hardest and

most time consuming part of the whole calculation. In fact,
while in Landau gauge the minimization over the gauge
orbit is similar to finding the energy minimum of a spin
glass system, in linear covariant gauges the minimization
resembles finding the energy minimum of a spin glass in a
Gaussian random distributed external field (our Λ). From
the computational point of view the latter problem is much
harder than the first one. In addition, minimization in the
Landau case happens in a compact space, whereas for linear
covariant gauges the contribution of the “external field” Λ
is unbounded; therefore for sufficiently large ξ (recall that
the width of the distribution of the Gaussian distributed Λ
increases with ξ), it can happen that the minima of the
energy is at the boundary of the SU(3) group and not
necessarily at a point where the derivative of the energy
vanishes.
For minimization purposes we first tried to apply three

different standard optimized techniques used in the Landau
case [46]: the fast Fourier transform–accelerated steepest

descent (FFT), over relaxation (OVR), and stochastic
relaxation (STR). Each one of the techniques we have
employed shows some convergence problems when min-
imizing the functional θ. A typical case is shown in Fig. 1
for the FFT algorithm, where one can see a convergence
rate of around ∼75% for ξ ¼ 0.3 and up to 50 000
iterations. A similar behavior is seen for OVR and STR,
with the convergence rate dropping to ∼40% for ξ ¼ 0.5 in
all three cases. Thus we opted to cycle through all
convergence techniques when the procedure stalls.
Indeed, by cycling through FFT, OVR, and STR, for our
hardest case of ξ ¼ 0.5, we increase the convergence
success rate up to ∼90%; for the remaining 10% of cases,
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FIG. 1 (color online). Number of iterations required to meet our
convergence goal θ < 10−15 with a FFT steepest descent min-
imization procedure (similar results hold for the OVR and STR
minimization procedures). We illustrate the case of 200 uncorre-
lated configurations for the value ξ ¼ 0.3. Notice that at 50000
iterations the minimization is considered to have failed.

FIG. 2 (color online). (Top panel) The 324 values of ∇ · A4

evaluated for a configuration gauge fixed at ξ ¼ 0.5, grouped in
5000 bins, compared with a Gaussian with standard deviationffiffiffi
ξ

p ≃ 0.316. (Bottom panel) Plot of d ¼ ∇ · A4 − Λ4; the two
distributions coincide within

ffiffiffi
θ

p
precision.
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restarting the combined algorithm, after performing finite
random gauge transformations, leads to convergence for all
cases (technical details will be presented elsewhere [49]).
In Fig. 2 we compare the distribution obtained from the

values of ∇ · Am with the one expected for Λm for a given
configuration and a given color index (m ¼ 4) after GF has
succeeded; as one can appreciate the GF is within the
precision defined above.

IV. SIMULATION RESULTS

The lattice gluon two-point correlation function reads

hAm
μ ðq̂ÞAn

νðq̂0Þi ¼ δmnΔμνðqÞL4δðq̂þ q̂0Þ; ð10Þ

where Δμν is given in Eq. (3) The lattice momenta q̂ (used
for Fourier transforms) and q are defined according to
[9,50]

qμ ¼
2

a
sin

q̂μ
2
; q̂μ ¼

2πnμ
L

; nμ ¼ 1;2;…;L: ð11Þ

From Eq (3) and (10) it follows that the transverse and
longitudinal SU(3) propagator form factors can be esti-
mated using

ΔTðq2Þ ¼
1

24L4

X
μ;ν;m

ðδμν − qμqν=q2ÞhAm
μ ðq̂ÞAm

ν ð−q̂Þi;

ΔTð0Þ ¼
1

32L4

X
μ;m

hAm
μ ð0ÞAm

μ ð0Þi;

ΔLðq2Þ ¼
1

8L4

X
μ;ν;m

qμqν=q2hAm
μ ðq̂ÞAm

ν ð−q̂Þi: ð12Þ

In the case of the transverse form factor, renormalization
is performed by fitting the bare lattice propagator to the
one-loop inspired result

ΔTðq2Þ ¼
K
q2

�
ln

q2

Λ2

�−γ
; ð13Þ

where γ ¼ 13=22 is the gluon anomalous dimension. The
fits, performed using the largest momentum range starting
around 2.5 and going up to 5 GeV, provide the constants K
and Λ, which are then used to compute the renormalization
constant ZA via

ΔTðq2Þ ¼ ZAΔlat
T ðq2Þ; ð14Þ

after requiring that the renormalized propagator is such that
ΔTðμ2Þ ¼ 1=μ2. Our renormalization scale has been set
to μ ¼ 4.317 GeV.
To begin with, we show in Fig. 3 the gluon dressing

functions. Within statistical fluctuations, the longitudinal
dressing function q2ΔLðq2Þ should be a constant func-
tion, coinciding with the variance ξ of the Λ probability
distribution. This is evidently true for all cases analyzed.
In the right panel of Fig. 3 we plot the renormalized
transverse dressing function q2ΔTðq2Þ for the different ξ
values studied. Clearly, no significant deviation from the
Landau gauge case is observed; in particular, we find no
evidence of the effects reported in the recent continuum
study [51] where a dressing function in which the height
of the peak rapidly increases and its location moves
towards higher q2 values with increasing ξ was
observed.
Next, we turn our attention to the transverse form factor

ΔT. The left panel of Fig. 4 shows the renormalized ΔTðq2Þ
for the various ξ values. As was already the case in the
Landau gauge, one can see that the Rξ transverse propa-
gators show an inflection point, implying that the asso-
ciated spectral density is not positive definite. Indeed, the
associated (Euclidean) Schwinger function violates the
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FIG. 3 (color online). (Left panel) The Rξ longitudinal dressing function q2ΔL ≡ ξ; a fit of the data to a constant yield ξ ¼ 0.103ð2Þ,
0.203(2), 0.302(3), 0.402(3), and 0.502(3) respectively. (Right panel) The Rξ gluon transverse dressing function q2ΔT. Landau gauge
results obtained for a symmetric lattice of L ¼ 80 and β ¼ 6.0 (gray crosses) are also plotted [9].
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property of reflection positivity [52,53], which could be
interpreted as a manifestation of confinement [54–58].
In addition, they have a marked tendency to flatten
towards the small momentum region, thus providing
strong evidence that also in the ξ ≠ 0 case the behavior
of the zero-momentum modes of the lattice gluon field are
tamed by some nontrivial IR dynamics. The data confirms
an IR hierarchy such that ΔT (slightly) decreases for
increasing values of the gauge fixing parameter [40,42].
This is better seen in Fig. 4 (right panel) where we plot the
ratio of the transverse propagator to the Landau gauge
propagator Δξ¼0

T as a function of the momentum for the two
values ξ ¼ 0.1 and ξ ¼ 0.5, observing a maximum differ-
ence of about 10%.
In order to estimate the finite volume effects on ΔT, we

included in the corresponding plot the Landau gauge (ξ ¼ 0)
transverse form factor computed from an 804 lattice with
β ¼ 6.0 and a physical volume of about 8.1 fm [9] (gray
crosses). These data show that simulations on larger physical
volumes have the tendency to suppress the gluon propagator
in the infrared region. This effect is clearly seen for momenta
of about 300 MeV and smaller. For the Rξ gauges studied
here, a similar scaling with lattice volume is expected. This
suggests a systematic overall decrease of∼10%–15% forΔT
in the small momentum region.

V. CONCLUSIONS

In this paper the lattice SU(3) gluon propagator in Rξ

gauges was computed for values of the GF parameter ξ up
to 0.5 and a lattice volume large enough to access its IR
region. From the numerical point of view, the most
intensive task turned out to be the gauge fixing, due to
the large number of GFs required and convergence issues.
Nevertheless, at least within the set of parameters simulated

here, a proper combination of various methods (FFT, OVR,
and STR) solved the minimization problem associated with
the GF in Rξ gauges.
OurRξ propagators showvery similar characteristics to the

one found in the Landau gauge, being characterized by an
inflection point in the few hundreds of MeV region followed
by a rapid saturation to a finite nonvanishing value in the IR.
In particular, we find qualitative agreement with the recent
continuum analysis of [59], where predictions for the
behavior of the Rξ gauge gluon propagator were derived
within the context of a dynamically generated gluon mass
scenario.
Our study suggests that the IR saturation of the gluon

propagator represents a remarkable generic feature of all
Yang-Mills theories quantized in Rξ gauges, which every
model of the underlying IR dynamics ought to be able to
explain.
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