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Hybrid stars with a quark phase described by the Nambu-Jona-Lasinio model are studied. The hadron-
quark model used to determine the stellar matter equation of state favors the appearance of quark matter: the
coincidence of the deconfinement and chiral transitions and a low vacuum constituent quark mass. These
two properties are essential to build equations of state that predict pure quark matter in the center of neutron
stars. The effect of vector-isoscalar and vector-isovector terms is discussed, and it is shown that the vector-
isoscalar terms are necessary to describe 2 M⊙ hybrid stars, and the vector-isovector terms result in larger
quark cores and a smaller deconfinement density.
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I. INTRODUCTION

Compact stars are natural laboratories to investigate the
properties of strongly interactingmatter at high densities and
small temperatures. Due to their very large central densities,
several times larger than normal saturation density, it is
possible that the deconfinement phase transition and the
partial restoration of chiral symmetry may occur inside
compact stars. Indeed, as density increases baryons start to
overlap, the distance between quarks becomes very short,
and distinct baryons gradually cease to exist. Consequently,
inside a compact star the density could be high enough to
involve quark degrees of freedom. The study of the behavior
of the matter under extreme conditions such as the ones
existing in the interior of neutron stars, should take into
account that at low densities the relevant degrees of freedom
are hadronswhile at high densities quark degrees of freedom
may set in giving rise to hybrid stars. However, the two solar
mass pulsars PSR J0348þ 0432 (M ¼ 2.01� 0.04 M⊙)
[1] and PSR J1614 − 2230 (with the recently updated mass
1.928� 0.017 M⊙ [2,3]) set a strong constraint on the high
density equation of state (EoS), in particular, on the possible
existence of hyperons, kaon condensation or even quark
matter inside neutron stars.
In Ref. [4] hybrid stars are described using a two model

approach, hadronicmatterwithin a nuclear field theorymodel
and quark matter within theMIT bag model [5]. The hadron-
quark phase transition is obtained imposingGibbs conditions
and considering global electric charge neutrality, which
develops a mixed phase separating a pure hadronic and a
pure quark phase. TheMITbagmodel is a quite simplemodel
that has been widely used. A quark core is possible if the bag
constant is not too high. This parameter is constrained from

below, imposing that at saturationdensity nuclearmatter has a
lower energy than strange matter, see Ref. [6].
In Ref. [7], the authors consider, instead of the MIT bag

model, the SU(3) Nambu-Jona-Lasinio (NJL) model to
describe the quark phase. It is shown that a pure quark
phase does not occur inside a neutron star, although quarks
might exist as part of a non-homogenous quark-hadronic
mixed phase in the center of the star, in stars with a mass
close to the maximum allowed mass, ∼1.7 M⊙. As in [4],
hadronic matter is described within a relativistic mean field
(RMF) model. Similar results are obtained applying a
Brueckner Hartree-Fock approach to describe the hadronic
phase, and even if a superconducting quark phase is
considered for the quark phase within the NJL model
[8]. Maximum mass stars obtained have a mass ∼1.8 M⊙,
becoming unstable as soon as quark matter sets in. At finite
temperature [9] it was possible to obtain pure quark matter
in the star center describing quark matter within NJL model
but masses below 1.9 M⊙ were obtained.
However, contrary to [8], a stable cold hybrid star with a

diquark condensation in the quark phase was obtained in
[10] within a SU(2) NJL model. This different behavior
was attributed in [11], to the different vacuum constituent
quark masses obtained in both calculations, and, in par-
ticular, it was shown that the hadron-quark phase transition
is controlled by the constituent mass of the nonstrange
quarks in vacuum, and that smaller vacuum constituent
masses favor the appearance of a pure quark phase because
the zero pressure is shifted to smaller chemical potentials.
A stable cold quark phase has also been obtained within

SU(3) NJL model by the introduction of a bag constant, B�,
which guarantees that the partial restoration of chiral
symmetry coincides with the transition from hadronic to
the quark matter [12]. This constant shifts the effective bag
constant as defined in [13] to smaller values and favors the
hadron-quark transition. However, no two solar mass hybrid
stars were predicted. In Ref. [14] the fixing condition of the
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bag constantB� was relaxed and the deconfinement baryonic
density, which was chosen beforehand, was used to deter-
mine the bag constant. Starswith over two solarmasses and a
quark core in a color super-conducting phase were obtained
with a vector interaction added to the NJL Lagrangian
density. In Ref. [15] the consequences of quark nucleation
were studied and it was shown that not all two solar mass
hybrid star configurations are populated after nucleation.
Multiple other studies of the quark-hadron phase tran-

sition in neutron stars, involving several approaches for the
description of the quark matter and the hadronic matter
have been performed. The topical issue [16] includes
several articles that review different aspects of this problem.
Some other approaches used to describe quark matter are
the field correlator method [17], perturbative QCD [18], the
chromo-dielectric model [19,20], also a new class of two-
phase EoS for hybrid stars was discussed in [21]. In [22], a
unified approach to the EoS of a hybrid star was proposed
with both nuclear and quark matter described within the
framework of the NJL model, and, moreover, the internal
quark structure of the free nucleon was taken into account.
However, stable hybrid stars were only possible with a
quite strong pairing interaction and maximum masses
below 1.5 M⊙ were obtained. More recently in [23], hybrid
stars were also described in the framework of the NJL
model for both the hadronic and the quark phases, but
structureless nucleons were considered in the hadronic
phase and the couplings were fitted independently in each
one of the phases, contrary to [22]. However, in [23], the
nucleonic EoS satisfies experimental and theoretical con-
straints at subsaturation, saturation and suprasaturation
densities and 2M⊙ stable hybrid stars have been obtained.
The role of the vector interaction, responsible for the

excitations of vector and pseudovectormesons, in the proper-
ties of compact stars has been extensively studied within the
SU(3) NJL model (see for example [12,14,15,23–31]). It is
known that for a positiveGV thevector interaction provides a
repulsive interaction between quarks. This aspect is very
important because it stiffens the NJL EoS, which is essential
to describe high-mass hybrid stars. Models with a largerGV
give larger maximum star masses [14,26].
Concerning the effect of the vector interaction on theQCD

phase diagram, namely on the chiral first-order transition, it
has been shown that when GV is positive (negative) it
contributes to weaken (strengthen) the first-order transition
due to repulsive (attractive) nature of the interaction [32].
Indeed, a repulsive interaction shrinks the first-order tran-
sition region, which forces the critical endpoint to occur at
smaller temperatures, and as GV increases the first-order
transition occurs at higher baryonic chemical potentials.
However, in spite of its importance, the value of the

vector coupling, GV , has not yet been definitively settled:
its value in the vacuum can be determined by fitting the
vector meson spectrum [33,34] but it is not evident that
the value of GV in the medium has to be the same as in the

vacuum [32]. In fact, finite-density environment might give
rise to a vector interaction, described by a finite GV , even
though the contribution of this interaction is zero in the
vacuum [32]. On the other hand, recent studies of the QCD
phase diagram using the extended version of the NJL model
with Polyakov loop suggest that the magnitude of GV may
be comparable to or larger than the coupling GS [35,36], so
as most works we will also consider GV as a free parameter
and vary its magnitude in the range 0 ≤ GV=GS ≤ 1.
The main objective of the present work is to study the

possibility of obtaining two solar mass hybrid stars with a
quark core described within the NJL model considering a
more generalized interaction than the one used in previous
works. The hadronic sector will be described within an
RMFmodel. We will perform a complete study considering
both the SU(2) and SU(3) NJL versions, however, only the
latter allows the inclusion of strangeness which will
probably exist inside compact stars. In fact, it is expected
that in the interior of a neutron star strangeness will be
present either in the form of hyperons, kaon condensation
or deconfined quark matter [4].
Previous studies have shown that a quark phase is

favored if a smaller vacuum constituent quark mass than
the one obtained with the SU(3) NJL parametrization given
in [37] is used and if a bag constant B� is included. We will,
therefore, investigate how the choice of the hadron and
quark EoS, obtained from two independent models, one for
the hadronic phase and another for the quark phase, for the
calculation of a hybrid star EoS, allows the description of
2 M⊙ stars. In particular, we will consider: (a) a low
vacuum constitutent quark mass; (b) that the deconfinement
phase transition coincides with the partial restoration of
chiral symmetry. The first condition is implemented by
fitting the NJL parameters including a constraint on the
vacuum constituent mass and the second by introducing an
effective bag constant, B�, which guarantees that the chiral
symmetry transition.1 coincides with the transition from the
hadronic to the quark matter [12]. Wewill analyze the effect
of the vector interaction in the properties of compact stars
under the conditions described above.
This work is structured as follows. In Sec. II we present

the EoS for hadronic matter used at low densities, and the
EoS for quark matter obtained within the SU(3) NJL model
including vector interaction [the SU(2) model is also
presented for comparison purposes]. We also discuss the
conditions of matter in β-equilibrium and the Gibbs phase
equilibrium conditions together with the procedure used to
fix the effective bag constant, B�, within NJL models.
Section III is devoted to present the results for the possible
existence of hybrid stars within the SU(2) NJL model and
within the extension to the SU(3) NJL model in order to

1In the present work chiral symmetry transition refers to the
transition to the phase where chiral symmetry is partially restored.

PEREIRA, COSTA, and PROVIDÊNCIA PHYSICAL REVIEW D 94, 094001 (2016)

094001-2



take into account strangeness. Finally, Sec. IV is dedicated
to concluding remarks.

II. FORMALISM

In order to perform our investigation, quark matter is
described by the NJL model, in both SU(2) and SU(3)
versions, with vector interactions. The SU(3) NJL model
will allow us to explore the influence of strangeness in the
quark EoS. Indeed, for densities above ∼2 − 3ρ0 there is
enough energy in the system for strangeness to become
relevant. The central densities inside a neutron star are well
above this value, therefore, a model that includes strange-
ness represents a more realistic study of these systems.
Comparing both SU(2) and SU(3) versions of the NJL
model will allow us to infer the role of strangeness in the
system.
Hadron matter is described by a RMF nuclear model. To

describe the mixed phase we impose local electric charge
neutrality and the Gibbs criteria: the pure hadronic phase
and the quark phase are connected to each other through
mechanical, thermal and chemical equilibrium.

A. Hadronic matter

The relativistic mean-field model NL3ωρ [38,39] will be
used to describe the hadronic (confined) phase of the
system in β-equilibrium. The Lagrangian density of the
model reads

L ¼
X
N¼p;n

ψ̄N

�
γμ
�
i∂μ − gωNωμ −

1

2
gρNτ · ρμ

�

− ðmN − gσNσÞ
�
ψN þ 1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

1

4
ΩμνΩμν

þ 1

2
m2

ωω
μωμ −

1

4
ρμν · ρμν þ

1

2
m2

ρρμ · ρμ

−
1

3
bmNðgσNσÞ3 −

1

4
cðgσNσÞ4

þ Λωðg2ωωμω
μÞðg2ρρμ · ρμÞ: ð1Þ

This model contains several nonlinear terms: besides the
usual cubic and quartic terms on the σ-meson, there is also a
quartic term that mixes the ω and the ρ-meson and which
results in a softening of the symmetry energy at large
densities. However, since it does not include a quartic term
on the ω-meson it has a quite stiff EoS at large densities. No
hyperons are included in the present study. The onset of
hyperons will certainly compete with the quark onset. But,

as shown in Ref. [39] the onset of hyperons for NL3ωρ
occurs at 0.31 fm−3, above the onset of quark matter as we
will see in Sec. III B. Therefore, we will only consider
nucleonic matter in the hadronic phase because the appear-
ance of hyperons in some cases only would make the
comparisons difficult.
The NL3ωρ model has the following saturation proper-

ties (see [38,39]): saturation density ρ0 ¼ 0.148 fm−3,
binding energy E=A ¼ −16.30 MeV, incompressibility
K ¼ 271.76 MeV, symmetry energy J ¼ 31.7 MeV, sym-
metry energy slope L ¼ 55.5 MeV and effective mass
M�=M ¼ 0.60. In [39] it was shown that this model
satisfies a reasonable amount of constraints: experimental,
astrophysical and theoretical from microscopic neutron
matter calculations. In particular, the maximum possible
neutron star mass is 2.75 M⊙, well above the 2 M⊙
constraint imposed by the pulsars J1614 − 2230 and
J0348þ 043.

B. The NJL model

The quark phase of the EoS is described within the SU(3)
NJL model including, besides the four quark interaction
and the ’t Hooft determinant that breaks the UAð1Þ
symmetry, vector and pseudovector terms (both vector-
isoscalar and vector-isovector will be considered).
The Lagrangian density is written as,

L ¼ ψ̄ði∂ þ m̂þ γ0μ̂Þψ þ GS

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�

−GD½detðψ̄ð1þ γ5ÞψÞ þ detðψ̄ð1 − γ5ÞψÞ� − Lvec;

ð2Þ

with,

Lvec ¼ Gω½ðψ̄γμλ0ψÞ2 þ ðψ̄γμγ5λ0ψÞ2�

þ Gρ

X8
a¼1

½ðψ̄γμλaψÞ2 þ ðψ̄γμγ5λaψÞ2�; ð3Þ

where λa (a ¼ 1; 2…8) are the Gell-Mann matrices of the

SU(3) group and λ0 ¼
ffiffi
2
3

q
1.

The values of the vector-type couplings in Eq. (3) can be
fixed by fitting the meson properties in the vacuum [33],
however, we will adopt a different strategy. We start by
taking three scenarios for Lvec:

Lvec ¼

8>><
>>:

GV
P

8
a¼0½ðψ̄γμλaψÞ2 þ ðψ̄γμγ5λaψÞ2�; with Gω ¼ Gρ ¼ GV ↦ model NJLðVþ Pþ VIþ PIÞ

GV ½ðψ̄γμλ0ψÞ2 þ ðψ̄γ5γμλ0ψÞ2�; with Gρ ¼ 0;Gω ¼ GV ↦ model NJLðVþ PÞ
GV

P
8
a¼1½ðψ̄γμλaψÞ2 þ ðψ̄γμγ5λaψÞ2�; with Gω ¼ 0;Gρ ¼ GV ↦ model NJLðVIþ PIÞ

: ð4Þ
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We will take the ratio ξ ¼ GV=GS as a free parameter, with
GS fixed as usual in the NJL-type models. As pointed out in
[32], there is still no constraint on GV at finite density, even
if there are attempts in that direction [35]. Having no
definitive knowledge not even on its sign, GV can be seen
as describing effects induced in dense quark matter and
might be related to an in-medium modification [32].
We can also argue that the couplings GS and GD are not

well constrained in the medium either, but we follow the
usual strategy and fix their values to the vacuum meson
properties and take these values for all densities (and/or
temperatures).2

In model NJLðVþ Pþ VIþ PIÞ we take for the vector-
type couplings the particular choice Gω ¼ Gρ ≡GV

(independently of the value of GV this choice makes the
ω and ρ mesons degenerate in the vacuum [34]).
The thermodynamic potential density (subtracting the

zero-point energy contribution Ω0) for Gω ≠ Gρ is

Ω −Ω0 ¼ 2GSðσ2u þ σ2d þ σ2sÞ − 4GDσuσdσs

−
2

3
Gωðρu þ ρd þ ρsÞ2 −Gρðρu − ρdÞ2

−
1

3
Gρðρu þ ρd − 2ρsÞ2 − 2Nc

Z
d3p
ð2πÞ3

×
X

i¼u;d;s

½Ei þ T lnð1þ e−ðEiþ ~μiÞ=TÞ

þ T lnð1þ e−ðEi−~μiÞ=TÞ�; ð5Þ

where σi is the i-quark flavor condensate, ρi is the i-quark
flavor density (both presented in the Appendix) and
Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p
. The effective chemical potentials for

the quarks in the general case are given by3:

~μi ¼ μi −
4

3
½ðGω þ 2GρÞρi þ ðGω −GρÞρj þ ðGω −GρÞρk�;

i ≠ j ≠ k ∈ fu;d; sg: ð6Þ

In the mean field approximation, we obtain the following
gap equations:

Mi −mi ¼ −4GSσi þ 2GDσjσk;

i ≠ j ≠ k ∈ fu; d; sg: ð7Þ

To understand the role of strangeness in neutron stars we
will also adopt a SU(2) NJL model with vector interaction
(see for example Ref. [41]). Again, we study three cases for
vector interactions. In SU(2) they are obtained from Eq. (3)
by substituting the Gell-Mann matrices, λa, by the SU(2)

Pauli matrices τ matrices that act in flavor space
(with τ0 ¼ 1).
The thermodynamic potential density (subtracting the

zero-point energy contribution Ω0) is now given by

Ω −Ω0 ¼ GSðσu þ σdÞ2 −Gωðρu þ ρdÞ2 −Gρðρu − ρdÞ2

− 2Nc

Z
d3p
ð2πÞ3

X
i¼u;d

½Ei þ T lnð1þ e−ðEiþ ~μiÞ=TÞ

þ T lnð1þ e−ðEi−~μiÞ=TÞ�: ð8Þ

The replacement of the Gell-Mann matrices in SU(3) by the
Pauli matrices in SU(2) has a direct effect on the effective
chemical potentials. Indeed, for the general case (Gρ ≠ Gω)
they became4:

~μi ¼ μi − 2Gωðρi þ ρjÞ − 4tiGρðρi − ρjÞ; ð9Þ

where ti is the isospin projection and takes the value þ1=2
for the u-quark. Finally, the gap equations are,

Mi −mi ¼ −4GSðσi þ σjÞ; i ≠ j ∈ fu; dg: ð10Þ

In the limit T → 0 matter inside neutron stars is
degenerate. The pressure, and the energy density,

ϵ ¼ Ωþ
X
i¼u;d

μiρi; ð11Þ

are given in the Appendix.

1. Parameters of the models

In the SU(2) NJL model, when equal current masses for
each quark flavor are considered, there are three free
parameters: the current quark mass mu ¼ md ¼ m, the
coupling GS, and the cutoff, Λ, that regularizes the model.
Indeed, the NJL model is not renormalizable and there
are different ways to regularize the model (see for
example [42]). In this work, we will consider a sharp
cutoff, Λ, in 3-momentum space.
The parameters of the model are fixed in order to

reproduce the experimental values for the mass and
decay constant of the pion (mπ ¼ 135.0 MeV and
fπ ¼ 92.4 MeV) and the value of the quark condensate
in the vacuum.
Since we are interested in studying hybrid neutron stars

containing a hadronic and a quark phase, a NJL model
parametrization that reproduces in the vacuum the same
baryonic chemical potential as the hadronicmodel should be
considered, i.e. a parametrization that gives, in the vacuum,
Mu ¼ Md ≈ 313 MeV, about one third of the vacuum

2For example, the study on how the influence of the density in
GD affects mesons properties were made in Ref. [40].

3The full expressions for each case are given in the Appendix.

4The full expressions for each case in SU(2) are given in the
Appendix.
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nucleon mass. We propose the new set of parameters for the
SU(2) model, see Table I, that gives mπ ¼ 135 MeV, fπ ¼
92.4 MeV and hūui ¼ ð−248.2 MeVÞ3.
As already mentioned, the parameter GV in the vectorial

terms is seen as a “free” parameter and consequently, in the
present work we study several values of the ratio
ξ ¼ GV=GS.
In the T ¼ 0 limit for stellar matter application, we

define the ratio between the Fermi’s moment for each flavor
of quark ðλFi

Þ, and the model’s cutoff (Λ) as the limit of
applicability of our model: the model is valid for densities
and/or chemical potentials that verify λFi

=Λ ≤ 1. In SU(2),
the studied models are still valid at about ρB ≈ 11ρ0 (where
ρ0 ¼ 0.16 fm−3 is the saturation density), a far larger
density than the ones found inside neutron stars.
As previously in the SU(2) case, we propose a

new parametrization for the SU(3) case which reproduces
the same baryonic chemical potential at zero density in
both quark and hadronic phases (implying that
Mu ¼ Md ≈ 313 MeV). This new parametrization is pre-
sented in Table II. In Table III, we compare the values of the
calculated observables with the respective experimental
values.
As in the SU(2) case, we restrict the applicability of the

models in SU(3), in the T → 0 limit, to the density at which
the ratio λFi

=Λ ≤ 1. The models in SU(3) are valid until at
least 15ρ0, densities well above those found inside neu-
tron stars.

C. β-equilibrium matter

In order to study cold stellar matter, β-equilibrium and
charge neutral matter must be imposed and, therefore, a
leptonic contribution must be added to the Lagrangian
densities (1) and (2),

Ll ¼
X
l¼e;μ

ψ̄ lði∂ þmlÞψ l: ð12Þ

The leptonic contribution to thermodynamic potential
densities of the models considered is

Ωl ¼ 2T
X
l¼e;μ

Z
d3p
ð2πÞ3 ½lnð1þ e−ðElþμlÞ=TÞ

þ lnð1þ e−ðEl−μlÞ=TÞ�; ð13Þ

where El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

l

q
, and the sum is over electrons and

muons. At T ¼ 0 the mean free path of neutrinos is larger
than the star radius and we will consider that they escape
and that they have a zero chemical potential.
Neutrality and β-equilibrium for the hadronic matter

results in the conditions

ρp ¼ ρe þ ρμ: ð14Þ

and

μn − μp ¼ μe; ð15Þ

The corresponding conditions for quark matter read

1

3
ð2ρu − ρd − ρsÞ − ρe − ρμ ¼ 0 ð16Þ

and,

μd ¼ μs ¼ μu þ μe: ð17Þ

In the SU(2) NJL model, s-quarks are not present and,
therefore, ρs ¼ 0.
All thermodynamic quantities of interest, e.g. the pres-

sure and the energy density are presented in the Appendix
(in the limit T → 0).

TABLE I. Sets of parameters used throughout the work and
reproduced observables in the vacuum, for each parametrization.
Λ is the model cutoff, mu;d is the quark current mass, and GS is
the coupling constant. The results for the u-quark condensate,
hūui, and for the constituent masses, Mu;d, are also presented.

Set
Λ

[MeV]
mu;d
[MeV] GSΛ2

−hūui1=3
[MeV]

Mu;d
[MeV]

SU(2) 648.0 5.1 2.110 248.2 312.6

TABLE II. Λ is the model cutoff, mu;d and ms are the quark
current masses, GS and GD are coupling constants. Mu;d and Ms

are the resulting constituent quark masses in the vacuum.

Set
Λ

[MeV]
mu;d
[MeV]

ms
[MeV] GSΛ2 GDΛ5

Mu;d
[MeV]

Ms
[MeV]

SU(3) 630.0 5.5 135.7 1.781 9.29 312.2 508

TABLE III. Masses and decay constants of several mesons
within the model and the respective experimental values.

SU(3) Experimental [43]

mπ� [MeV] 138.5 139.6
fπ� [MeV] 90.7 92.2
mK� [MeV] 493.5 493.7
fK� [MeV] 96.3 110.4
mη [MeV] 478.2 547.9
mη0 [MeV] 953.7 957.8

TWO-SOLAR-MASS HYBRID STARS: A TWO MODEL … PHYSICAL REVIEW D 94, 094001 (2016)

094001-5



D. Phenomenological bag constant
and Gibbs construction

As pointed out in Ref. [12] the pressure within the NJL-
type models is defined up to a constant B, similar to the
MIT bag constant. This constant is usually fixed by
requiring that the corrected pressure P goes to zero at
vanishing baryonic chemical potential (a detailed study of
the bag pressure in NJL model was done in Ref. [9]).
However, the procedure used to fix the effective bag

constant within NJL models is crucial for the stability of the
star when the phase transition to quark matter is considered.
In the same work [12], the bag constant B� is introduced
and is fixed imposing that the deconfinement occurs at the
same baryonic chemical potential, μcritB , as the chiral phase
transition. In the present work we consider the NL3ωρ
model (see Sec. II A) to describe the hadronic phase and
compute the transition to quark matter imposing Gibbs
conditions and the coincidence between the deconfinement
phase transition and the partial restoration of the chiral
symmetry. This is achieved by adding to the quark EoS
[Eq. (5) in SU(3) and Eq. (8) in SU(2)] the suitable value of
the bag constant, B�. For comparison we will also study the
B� ¼ 0 case. Including B� modifies the quark matter EoS in
the following way:

Peff ¼ Pþ B�; ϵeff ¼ ϵ − B�; ð18Þ

and, therefore, shifts the pressure to larger values for a
given baryonic chemical potential, favoring the hadron-
quark phase transition.
To build the hybrid EoS we use the Gibbs conditions:

both phases must be in chemical, thermal and mechanical
equilibrium

μHB ¼ μQB ∧ pH
B ¼ pQ

B ∧ TH
B ¼ TQ

B ¼ 0; ð19Þ

where the H and Q indices represent, respectively, the
confined (hadronic) and deconfined (quark) phases.
The chiral symmetry transition point (μcritB ) is defined in

the following way: if the phase transition is of first-order,
we search for the μB at which there is a discontinuity in the
quark condensate (the order parameter): the stable solutions
of the gap equations are realized by the minimum of the
thermodynamic potential or, equivalently, maximum of the
pressure (see Ref. [44] for details). If the transition is a
crossover, we search for the zeros of the second derivative
of the light quark condensates, ∂2hq̄iqii=∂μB2 ¼ 0. In the
cases where there are different chemical potentials for each
quark flavor (different phase transitions for each flavor), the
chemical potential used in the Gibbs condition is given by
the average of the baryonic chemical potentials at the
corresponding phase transitions.

μcritB ¼
μcritBðuÞ þ μcritBðdÞ

2
: ð20Þ

III. RESULTS AND DISCUSSION

In the present section we present our results and discuss
the possible existence of hybrid stars within the NJL model,
for the three scenarios previously defined. The neutron star
mass and radius are obtained solving the Tolmann-
Oppenheimer-Volkov (TOV) equations [45,46]. In particu-
lar, for each star we calculate the maximum gravitational
mass and the respective central density, radius and maxi-
mum baryonic mass. We also investigate the role of
strangeness in the EoS. For each case we consider
ξ ¼ GV=GS ¼ 0, 0.25, 0.5, and 0.75, with GS fixed.

A. Results without strangeness

We first study the SU(2) NJL case, which means that no
strangeness is present in the system. We recall that the
parameters of the model have been determined so that in the
vacuum the model has the same baryonic chemical poten-
tial as the hadronic model.
Table IV shows the order of the chiral symmetry

transition for different values of ξ, which were taken at
B� ¼ 0, but are independent of the bag constant. It can be
seen that for the studied values of ξ ≠ 0, the chiral
transition is a crossover instead of a first-order phase
transition. Besides, the transition occurs for smaller chemi-
cal potentials for ξ ≠ 0.
Several β-equilibrium stellar matter EoS with nonzero

B�, taking into account the hadron-quark phase transition,
are shown in Fig. 1 [panels (a), (b), and (c)], for the
different vector contributions. These EoS will be used to
determine compact star properties in the following dis-
cussion. The maximum mass star configuration determines
the maximum central density attained in a star described
within a given model. Therefore, in these plots the large
colored circles indicate the central density of the maximum

TABLE IV. Type of the chiral symmetry phase transition and
respective baryonic chemical potential (μcritB ), for each value of ξ,
model and parameter set.

Model (SU(2)) ξ Type μcritB [MeV]

NJL 0.00 1st-order 1119
NJLðVþ Pþ VIþ PIÞ 0.25 Crossover 1055

0.50 Crossover 1099
0.75 Crossover 1149

NJLðVþ PÞ 0.25 Crossover 1051
0.50 Crossover 1089
0.75 Crossover 1134

NJLðVIþ PIÞ 0.25 Crossover 1022
0.50 Crossover 1025
0.75 Crossover 1029
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mass configuration and we do not show the EoS
above this density. Small black diamonds indicate the
hadron-quark phase transition. In each plot results for
both B� ¼ 0 and B� ≠ 0 are included. From the analysis
of these figures some comments may be drawn: (a) the
inclusion of B� ≠ 0 shifts the deconfinement phase

transition to smaller densities, allows the appearance
of a quark phase even for a large value of ξ and
gives rise to larger central densities; (b) increasing the
coupling ξ in models with vector-isoscalar terms makes the
EoS harder as shown previously, see [12,14,24,25], and
central densities of maximum mass configurations are

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.4

0.8

1.2

1.6

2.0 ξ = 0.00
ξ = 0.25
ξ = 0.50
ξ = 0.75

w/o Bag w/ Bag

M
max

phase transitions

NJL (V+P+VI+PI)

P
(f

m
-4

)

ρ
Β
(fm-3)

(a)

11 12 13 14 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/M

su
n

R (Km)

NJL (V+P+VI+PI)

0.1 0.5 0.9 1.3

ρ
C

(fm-3)

w/o Bag w/ Bag

ξ = 0.00
ξ = 0.25
ξ = 0.50

ξ = 0.75

M
max

phase
transitions

(d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.4

0.8

1.2

1.6

2.0 ξ = 0.00
ξ = 0.25
ξ = 0.50
ξ = 0.75

w/o Bag w/ Bag

M
max

phase transitions

NJL(V+P)

P
(f

m
-4

)

ρ
Β
(fm-3)

(b)

11 12 13 14 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/M

su
n

R (Km)

NJL (V+P)

0.1 0.5 0.9 1.3

ρ
C

(fm-3)

w/o Bag w/ Bag

ξ = 0.00
ξ = 0.25
ξ = 0.50

ξ = 0.75

M
max

phase
transitions

(e)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.4

0.8

1.2

1.6

2.0 ξ = 0.00
ξ = 0.25
ξ = 0.50
ξ = 0.75

w/o Bag w/ Bag

M
max

phase transitions

NJL(VI+PI)

P
(f

m
-4

)

ρ
Β
(fm-3)

(c)

11 12 13 14 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
/M

su
n

R (Km)

NJL (VI+PI)

0.1 0.5 0.9 1.3

w/o Bag w/ Bag

ξ = 0.00
ξ = 0.25
ξ = 0.50

ξ = 0.75

M
max

phase
transitions

ρ
C

(fm-3)

(f )

FIG. 1. Left panels: EoS for several values of ξ, for the SU(2) models of NJLðVþ Pþ VIþ PIÞ [panel (a)], NJLðVþ PÞ [panel (b)]
and NJLðVIþ PIÞ [panel (c)] models. The star maximum mass, central density and confinement-deconfinement phase transitions are
highlighted. Right panels: mass-radius and mass-central density diagrams for several values of ξ for the SU(2) NJLðVþ Pþ VIþ PIÞ
[panel (d)], NJLðVþ PÞ [panel (e)] and NJLðVIþ PIÞ [panel (f)] models. The star maximum mass, central density and confinement-
deconfinement phase transitions are highlighted. The light-gray bar represents the mass constraint of the J0348þ 043 pulsar
(M ¼ 2.01� 0.04 M⊙) [1] while the dark-gray bar the J1614 − 2230 pulsar (M ¼ 1.928� 0.017 M⊙) [3].
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smaller; (c) the vector-isovector term [NJLðVIþ PIÞ]
has a much smaller effect than the vector-isoscalar
term [NJLðVþ PÞ], although qualitatively similar;
(d) the model labeled NJLðPþ Vþ PIþ VIÞ incorporates
the effects of models NJLðPþ VÞ and NJLðPIþ VIÞ and,
therefore, may give rise to larger central pressures [see
panel (a) of Fig. 1]; (e) the harder the quark EoS the larger
the deconfinement density, the effect being much stronger
if the vector-isoscalar term is included; (f) the EoS which
only includes the vector-isovector term originates smaller
deconfinement densities and smaller density gaps between
the hadronic and the quark density at deconfinement, i.e. a
smaller mixed phase. Within this interaction larger central
densities, larger quark fractions and smaller radii are
attained; (g) for all cases, the vector-isoscalar interaction
allows that the star reaches 2 M⊙ if ξ is large enough (the
respective values are given in Table V).
We have calculated the mass and radius of hybrid stars

integrating the TOVequations [45,46]. In Fig. 1 [panels (d),
(e) and (f)], the mass versus radius and mass versus central
density curves of the families of stars described by the EoS

discussed above are plotted, respectively, in left and right
side of each panel. We have considered the Baym-Pethick-
Sutherland EoS [47] for the outer crust and for the inner
crust the inner crust NL3ωρ EoS that describes the pasta
phases within a Thomas-Fermi approach [48] and links
smoothly to the core NL3ωρ EoS.
Some properties of the hybrid stars, in particular of the

maximum mass configurations are summarized in Table V.
These properties include: the bag constant B�, the baryonic
chemical potential at the transition μH−Q

B , the central
baryonic density ρc, the gravitational Mm and baryonic
mass Mbm of the maximum mass configuration, and
respective radius Rm, and the radius of the 1.4 M⊙ star.
The results show that even taking B� ¼ 0 we have found

stable hybrid stars with a pure quark core at the center
(ρc > ρQ). All values of ξ give rise stable hybrid stars if
B� ≠ 0, but for B� ¼ 0 stable hybrid stars are possible only if
the vector-isoscalar interaction is not too strong, (see TableV).
We verify that the vector-isoscalar has a very strong

effect on the star structure giving rise to more massive stars,
with larger radii and smaller quark contents, while the

TABLE V. Baryonic chemical potential (μH−Q
B ), hadron (ρH) and quark (ρQ) baryonic density at deconfinement and respective value of

the parameter B�. Values of central baryonic density (ρc), maximum gravitational mass (Mm), maximum baryonic mass (Mbm), radius
(Rm), and radius of the 1.4 M⊙ (R1.4), for each model and ξ value, for the different models in SU(2). In bold we present the approximate
values of ξ at which 2 M⊙ are obtained.

Model ξ
B�

[MeV fm−3]
μH−Q
B

[MeV]
ρH

[fm−3]
ρQ

[fm−3]
ρc

[fm−3]
Mm
[M⊙]

Mbm
[M⊙]

Rm
[km]

R1.4
[km]

NJL 0.00 0 1134 0.306 0.434 1.015 1.82 2.07 11.62 13.74
0.11 1204 0.344 0.472 0.823 2.00 2.30 12.56 13.74

NJL 0.25 0 1308 0.396 0.528 0.603 2.27 2.67 13.81 13.74
ðVþ Pþ VIþ PIÞ 0.50 1548 0.506 0.658 0.580 2.63 3.19 13.72 13.74

0.75 1869 0.648 0.824 0.756 2.75 3.38 13.16 13.74
0.12 1202 0.344 0.470 0.823 2.00 2.30 12.56 13.74

NJL 0.25 0 1289 0.388 0.518 0.616 2.23 2.61 13.72 13.74
(Vþ P) 0.50 1497 0.484 0.630 0.501 2.58 3.12 13.80 13.74

0.75 1769 0.604 0.771 0.700 2.74 3.36 13.34 13.74
0.25 1148 0.316 0.442 0.967 1.86 2.12 11.85 13.74

NJL 0.50 0 1163 0.324 0.450 0.928 1.90 2.17 12.04 13.74
(VIþ PI) 0.75 1177 0.332 0.458 0.884 1.94 2.22 12.26 13.74

1.13 1200 0.344 0.470 0.814 2.00 2.29 12.61 13.74

NJL 0.00 9.84 1020 0.222 0.232 1.068 1.84 2.11 11.14 12.48
0.13 12.32 1063 0.260 0.293 0.948 2.00 2.31 11.77 13.74

NJL 0.25 15.16 1116 0.296 0.328 0.851 2.14 2.50 12.30 13.74
ðVþ Pþ VIþ PIÞ 0.50 22.09 1313 0.398 0.445 0.695 2.44 2.91 13.25 13.74

0.75 30.84 1616 0.536 0.611 0.660 2.69 3.27 13.50 13.74
0.15 12.40 1067 0.264 0.298 0.941 2.00 2.32 11.80 13.74

NJL 0.25 14.50 1105 0.290 0.323 0.866 2.12 2.46 12.22 13.74
(Vþ P) 0.50 20.54 1268 0.378 0.419 0.718 2.39 2.83 13.11 13.74

0.75 28.10 1519 0.494 0.558 0.647 2.63 3.19 13.55 13.74
0.25 10.29 1027 0.230 0.250 1.045 1.87 2.15 11.26 12.67

NJL 0.50 10.75 1034 0.236 0.261 1.020 1.90 2.19 11.38 12.83
(VIþ PI) 0.75 11.22 1041 0.242 0.270 0.999 1.92 2.22 11.49 12.99

1.75 13.13 1074 0.268 0.301 0.921 2.00 2.33 11.92 13.74
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effect of the vector-isovector term on the maximum mass is
very small [as it can be seen in Fig. 1 by comparing panels
(d) and (e) with (f)], and to get masses about ∼2 M⊙ high
values of ξ (∼1.75) are needed, see Table V. However,
adding the vector-isoscalar interaction with a weak cou-
pling would be enough to attain M ≳ 2 M⊙.

B. The role of strangeness

In the previous section the strange degree of freedom
was not considered, however it is expected that at large
densities strangeness will set in. In this section we take
strangeness into account, and as before, we will consider a
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FIG. 2. Left panels: EoS for each value of ξ, for the NJLðVþ Pþ VIþ PIÞ [panel (a)], NJLðVþ PÞ [panel (b)] and NJLðVIþ PIÞ
[panel (c)] models. The star maximum mass, central density and confinement-deconfinement phase transitions are highlighted. Right
panels: mass-radius and mass-central density diagrams for each value of ξ for the NJLðVþ Pþ VIþ PIÞ [panel (d)], NJLðVþ PÞ
[panel (e)] and NJLðVIþ PIÞ [panel (f)] models. The star maximum mass, central density and confinement-deconfinement phase
transitions are highlighted. The light-gray bar represents the mass constraint of the J0348þ 043 pulsar (M ¼ 2.01� 0.04 M⊙) [1]
while the dark-gray bar the J1614 − 2230 pulsar (M ¼ 1.928� 0.017 M⊙) [3].
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parametrization that predicts a vacuum constituent u and
d-quark mass equal to ≈313 MeV, and that describes
reasonably well the vacuum properties of several mesons,
see Table II. All the features discussed in the previous

section remain valid, as we may conclude analysing
Table VI where the type of phase transition is given for
different strengths of the vector interaction, and Fig. 2
where the EoS [panels (a), (b) and (c)], and the mass/radius
and mass/density plots [panels (d), (e) and (f)] are pre-
sented. The same conventions of Fig. 1 are adopted.
The effect of B� and ξ are the same as discussed in the

previous section within the SU(2) NJL model. It should,
however, be referred that care should be taken when
comparing the SU(2) and SU(3) parametrizations: due to
the different normalization of the Pauli and Gell-Mann
matrices and the t’ Hooft term. Two solar mass stars are
obtained if the vector-isoscalar interaction is strong enough,
ξ≳ 0.17–0.28 depending whether B� ¼ 0 or ≠ 0, see
Table VII). Including only the vector-isovector interaction,
it is not possible to obtain a 2 M⊙ star with a quark core.
We will next study the onset of strangeness describing

quark matter within the SU(3) NJL model. Since the onset
of hyperons for NL3ωρ occurs at 0.31 fm−3 [39], above the

TABLE VI. Type of the chiral symmetry phase transition and
respective baryonic chemical potential (μcritB ), for each value of ξ.

Model (SU(3)) ξ Type μcritB [MeV]

NJL 0.00 1st-order 999

NJLðVþ Pþ VIþ PIÞ 0.25 Crossover 1023
0.50 Crossover 1052
0.75 Crossover 1087

NJLðVþ PÞ 0.25 Crossover 1013
0.50 Crossover 1028
0.75 Crossover 1045

NJLðVIþ PIÞ 0.25 Crossover 1008
0.50 Crossover 1018
0.75 Crossover 1028

TABLE VII. Baryonic chemical potential (μH−Q
B ), hadron (ρH) and quark (ρQ) baryonic density at deconfinement and respective value

of the parameter B�. Values of central baryonic density (ρc), maximum gravitational mass (Mm), maximum baryonic mass (Mbm), radius
(Rm), radius of 1.4 M⊙ stars (R1.4), and the ratio of total number of strange quarks to the total baryon number (Ns=NB) [24] of the
respective neutron star, for each model and value of ξ, for the SU(3) parameter set. In bold we present the approximate values of ξ at
which 2 M⊙ are obtained. The last line corresponds to the combination of Gρ and Gω, in terms of ξρ ¼ Gρ=GS and ξω ¼ Gω=GS, at
which two solar mass are attained.

Model ξ
B�

[MeV fm−3]
μH−Q
B

[MeV]
ρH

[fm−3]
ρQ

[fm−3]
ρc

[fm−3]
Mm
[M⊙]

Mbm
[M⊙]

Rm
[km]

R1.4
[km]

Ns=NB
[%]

NJL 0.00 0 1093 0.282 0.384 0.951 1.76 2.00 11.91 13.39 1.32
0.17 1190 0.338 0.442 0.734 2.00 2.29 13.08 13.74 0.93

NJL 0.25 0 1247 0.368 0.475 0.635 2.13 2.48 13.64 13.74 0.53
ðVþ Pþ VIþ PIÞ 0.50 1410 0.444 0.640 0.578 2.47 2.94 13.96 13.74 0.04

0.75 1541 0.504 0.755 0.757 2.63 3.18 13.76 13.74 0.01

NJL 0.25 0 1179 0.332 0.434 0.816 2.00 2.30 12.64 13.74 0.50
(Vþ P) 0.50 1285 0.386 0.496 0.663 2.25 2.63 13.46 13.74 0.02

0.75 1412 0.444 0.568 0.612 2.48 2.96 13.85 13.74 ∼0
NJL 0.25 1147 0.314 0.416 0.766 1.83 2.08 12.88 13.74 1.80
(VIþ PI) 0.50 0 1208 0.348 0.469 0.578 1.96 2.24 13.82 13.74 0.85

0.60 1225 0.356 0.507 0.429 2.00 2.30 14.00 13.74 0.31
0.75 1243 0.366 0.558 0.515 2.07 2.39 14.07 13.74 0.01

NJL 0.00 6.60 999 0.198 0.205 0.974 1.78 2.05 11.55 12.33 1.43
0.22 9.49 1087 0.278 0.315 0.806 2.00 2.29 12.61 13.63 2.07

NJL 0.25 10.09 1100 0.286 0.322 0.789 2.02 2.33 12.73 13.71 2.14
ðVþ Pþ VIþ PIÞ 0.50 14.62 1287 0.386 0.445 0.637 2.29 2.69 13.67 13.74 1.85

0.75 20.57 1431 0.454 0.581 0.626 2.51 3.00 13.88 13.74 0.46
0.25 8.61 1049 0.250 0.282 0.896 1.98 2.28 12.08 13.26 0.98

NJL 0.28 8.85 1057 0.256 0.290 0.885 2.00 2.31 12.14 13.35 0.91
(Vþ P) 0.50 10.92 1132 0.306 0.344 0.814 2.15 2.51 12.58 13.74 0.48

0.75 13.63 1246 0.366 0.414 0.727 2.33 2.75 13.08 13.74 0.12

NJL 0.25 7.92 1029 0.232 0.259 0.856 1.80 2.05 12.21 12.95 2.83
(VIþ PI) 0.50 9.33 1072 0.268 0.301 0.772 1.81 2.06 12.75 13.52 4.12

0.75 10.90 1129 0.304 0.342 0.688 1.84 2.08 13.24 13.74 4.77n ξρ ¼ 0.75
ξω ¼ 0.15

− 12.44 1190 0.338 0.389 0.649 2.00 2.29 13.52 13.74 3.90
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onset of quark matter when B� is included, see Table VII,
except for three cases, we will only consider nucleonic
matter in the hadronic phase in order to allow a comparison
between parametrizations. In Fig. 3 the s, d and u quark
fractions Yi ¼ ρi=ð3ρBÞ are plotted. As soon as the s-quark
sets in the fraction of d-quarks suffers a strong reduction,
the fractions of d and s-quarks approach ∼0.33, asymp-
totically, the first from above and the second from below.
Taking the vector-isoscalar interaction alone the strange

fraction does not change with ξ [see panel (b) in Fig. 3],

which is simply explained because the interaction energy
does not depend separately on each flavor [27]. The vector-
isovector interaction distinguishes the flavors and the larger
ξ the earlier occurs the s-quark onset [see panels (a) and (c)
of Fig. 3]. The u quark fraction is practically independent of
density, with a value close to 1=3, except for a deviation
that can be as high as 0.005 if ξ ¼ 0.75. This deviation from
1=3 is compensated by the presence of electrons in order to
turn matter electrically neutral. The onset of strangeness at
quite high densities, generally above 3ρ0 ≈ 0.5 fm−3, is
linked to the high constituent mass of the s-quark since the
partial restoration of chiral symmetry for the s-quark occurs
at high densities [41].
Properties of hybrid stars, including maximum mass

configurations, obtained with the SU(3) parametrization
are presented in Table VII with B� ¼ 0 and B� ≠ 0. All
B� ≠ 0 cases considered show a pure quark matter in the
center of the star. Besides the quantities included in Table V,
the fraction of strangeness inside the star is also given. If a
large ξ parameter is considered the amount of strangeness in
the star is residual except for theNJLðVIþ PIÞmodel: in this
case the strangeness fraction increases with larger values of ξ.
Looking into the details of the NJLðVIþ PIÞ model, we

conclude that when ξ is increased the EoS becomes harder
before the onset of strangeness: the slope of the curve P
versus ρ is larger immediately after the hadron-quark
transition [see Fig. 2, panel (c)] allowing stars with a
greater mass. However, the higher ξ the lower the density
for the onset of strangeness [as already seen in panel (c) of
Fig. 3]. After the onset of the s-quarks, the EoS becomes
softer since the Fermi pressure is distributed among a larger
number of degrees of freedom. These two combined effects
result in stars with larger masses and lower central
densities, but larger fractions of strangeness.
Analyzing the radius of the 1.4 M⊙ stars obtained within

the different parametrizations, see Tables V and VII, we
conclude that most of these stars have R ¼ 13.74 km
corresponding to hadronic stars with no quark content.
However, some models with B� ≠ 0 predict the existence of
quark matter inside low mass stars with M < 1.4 M⊙.
These stars have the particularity of having smaller radii. In
fact, it is possible to get 1.4 M⊙ stars with R < 13.74 km
within families that predict 2 M⊙ stars. For SU(3) NJL, the
smallest radius obtained is 13.35 km above the 10.1–
11.1 km prediction of [49] from the analysis of spectro-
scopic radius measurements during thermonuclear bursts or
in quiescence or even the 12.1� 1.1 km obtained in [50]
from experimental constraints and causality restrictions.
However, in [51] radii above 13 km were obtained for
X-ray bursting NS and in [52] it has been shown that
causality together with the 2 M⊙ constraints imposes
R > 10.7 km. For a recent review of the current status
of measurements of radius of neutron stars see [53].
Stronger constraints on neutron star radii are expected
from future X-ray telescopes like NICER and Athena. The
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FIG. 3. Fractions of each flavor of quark (Yi) in function of the
baryonic density (ρB). The central density (ρc) and initial quark
phase density (ρQ) are shown (full and dashed vertical lines,
respectively). The threshold for the emergence of strange quarks
in the NJLðVþ PÞmodel does not depend on ξ (GV) (black line).
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measurement of the radius of low mass stars such as the
pulsar PSR J1918-0642 with a mass the 1.18þ0.10

−0.11M⊙ could
give some indication on the properties of the EOS at
densities just above saturation density and constrain the
onset density of quark matter. In the present calculation it is
seen that an early onset gives rise to smaller low-mass star
radii. However, the radii differences with respect to pure
nucleonic matter are probably not strong enough to allow
conclusive results mainly because the hadronic EOS itself
has still large uncertainties at those densities.
Finally, we present the results for the combination of Gρ

and Gω, in terms of ξρ ¼ Gρ=GS and ξω ¼ Gω=GS, for
which 2.0 M⊙ are obtained: ξρ ¼ 0.75 and ξω ¼ 0.15.5 This
will allow us to clarify some aspects reported previously.
When the vector-isovector interaction is absent (ξρ ¼ 0),

the EoS is harder at high densities (see red curve in Fig. 4,
left panel) because the fraction of strangeness is very low.
When ξρ and ξω are mixed, the larger ξρ, the lower the onset
density of strangeness and, therefore, the larger the fraction
of strange quarks. Simultaneously the hadron-quark tran-
sition occurs at higher densities and the central densities
decreases: the larger s-quark contribution softens the quark
EoS, and, in order to attain the 2 M⊙ the contribution of the
hadronic star component has to be larger. For example,
taking ξρ ¼ 0.75 and ξω ¼ 0.15, μH−Q

B has the highest
value when compared with NJLðVþ PÞ model for ξ ¼
0.28 and with NJLðVþ Pþ VIþ PIÞ model for ξ ¼ 0.22,
while ρc has the smallest value, as it can be seen in
Table VII and in Fig. 4, right panel (for all three cases the
maximum gravitational mass is 2 M⊙).
Due to the lack of strangeness in the SU(2) case, the

influence of vector-isovector interaction is much smaller when
compared with vector-isoscalar interaction. Taking the 2 M⊙

cases in Table V it can be seen that the hadron-quark phase
transition, and the star properties, are very close for cases with
vector-isoscalar interaction [NJLðVþPþVIþPIÞ and
NJLðVIþ PIÞ models]. To have a 2 M⊙ star with a vector-
isovector it is needed a much stronger coupling, however, the
hadron-quark phase transition and the star properties are not
very different from the other cases (see Table V).

IV. CONCLUSIONS

We have analyzed the possibility of obtaining hybrid
stars with the quark core described within the NJL model
with and without strangeness content. Earlier works have
shown that only under some conditions a pure quark matter
core occurs when quark matter is described within this
model. It is, therefore, important to choose adequately the
properties of the hadron and the quark phases. In the
present work, besides considering the coincidence between
the deconfinement phase transition and the partial restora-
tion of chiral symmetry, two new parametrizations of the
SU(2) and SU(3) NJL models are proposed with a low
vacuum constituent quark mass equal to 313 MeV. As
shown in [11] a smaller vacuum constituent quark mass
favors a hadron-quark phase transition at lower densities
and stable stars with a quark core.
We have considered together with the usual scalar and

pseudoscalar terms in the NJL model also vector-isoscalar
and vector-isovector terms. The vector-isoscalar terms have
an important effect on the order of the chiral phase transition
and turn the EoS harder [12,14,24]. This, in fact, is also true
for the vector-isovector terms, although the EoS does not
become so hard and smaller maximum mass configurations
are obtained. The inclusion of a vector-isovector term allows
larger quark cores, the onset of quark matter at lower
densities, smaller hadron-quark mixed phases, and, in the
SU(3) version, a larger strangeness content for the same
coupling strength. A larger vector-isovector coupling shifts
the deconfinement to larger densities and gives rise to a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
NJL(V+P+VI+PI); ξ = 0.22
NJL(V+P); ξ = 0.28
ξ ω = 0.15, ξ ρ = 0.75

M
max

phase transitions

P
(f

m
-4

)

ρ
Β
(fm-3)

(a)

11 12 13 14 15
0.0

0.4

0.8

1.2

1.6

2.0

2.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

M
/M

su
n

R (Km)

0.1 0.6 1.1

NJL(V+P+VI+PI); ξ = 0.22
NJL(V+P); ξ = 0.28
ξ ω = 0.15, ξ ρ = 0.75

M
max

phase
transitions

ρ
C

(fm-3)

(b)

FIG. 4. The EoS (left panel), and the respective mass-radius curves (right panel) of the families of stars having a 2 M⊙ maximum
mass, for three different combinations of ξω and ξρ: ðξω; ξρÞ ¼ ð0.28; 0Þ or NJLðVþ PÞ with ξ ¼ 0.28, (0.22,0.22) or NJLðVþ Pþ
VIþ PIÞ with ξ ¼ 0.22, and (0.15,0.75).

5By fixing ξρ ¼ 0.75 with ξω ¼ 0 we have the model
NJLðVIþ PIÞ for ξ ¼ 0.75.
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smaller quark contribution to the hybrid star properties,
mainly if the vector-isoscalar is also considered.
We studied the possibility of getting 2 M⊙ stars includ-

ing both vector-isoscalar and vector-isovector terms. It was
shown that for the SU(3) NJL 2 M⊙ configurations always
require the presence of a vector-isoscalar term, and that the
larger the vector-isovector term the larger the strangeness
fraction but the larger the hadron-quark transition density
and, therefore, the smaller the quark contribution to the star.
It is the s-quark with its quite high mass that causes this
behavior. In the case of SU(2) NJL, properties of the 2 M⊙
stars taking different strengths for the vector-isoscalar and
isovector terms are almost indistinguishable.
In the present work we have fixed the bag term B�

imposing that the deconfinement and the chiral phase
transitions coincide. Presently, it is still not clear if both
phase transitions coincide, and other scenarios are possible,
such as a chiral symmetry restoration before the deconfine-
ment is attained, giving rise to a quarkyonic phase.
Imposing different constraints on the B� will have essen-
tially quantitative effects, shifting the onset of quark matter
and giving rise to a smaller or larger density jump at the
first-order phase transition, but the qualitative features are
similar to the ones discussed imposing the coincidence of
the chiral and deconfinement transitions.
The main conclusion of the present work is the impor-

tance of choosing conveniently the quark model parameters
when building a hadron-quark EoS. We have shown that
fixing the vacuum quark constituent mass with a value that is
one third of the vacuum nucleon mass and, therefore, a
baryonic chemical potential at zero density in the quark
phase equal to the one in the hadronic phases allows the
appearance of a pure quark core in the center of a neutron
star. Including a strong enough vector-isoscalar interaction
will result in maximum mass configurations with masses
above 2 M⊙. With a vector-isovector interaction alone this is
not possible within the SU(3) NJL model, on the other hand,
this interaction causes a larger strangeness content and a
softening of the quark EoS. However, as in previous studies
that have included the strangeness degree of freedom, the
strangeness content of these stars is generally very small.
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APPENDIX: QUARK PHASE
EQUATION OF STATE

1. Quark chemical potentials in SU(2) and SU(3)

The expressions for the chemical potentials in SU(3),
defined in Eq. (4), are given by:

(i) for NJLðVþ Pþ VIþ PIÞ, when Gω ¼ Gρ ¼ GV ,

~μi ¼ μi − 4GVρi; i ¼ u; d; s; ðA1Þ

(ii) for NJLðVþ PÞ, when Gρ ¼ 0 and Gω ¼ GV ,

~μi ¼ μi −
4

3
GVðρi þ ρj þ ρkÞ;

i ≠ j ≠ k ∈ fu; d; sg; ðA2Þ

(iii) for NJLðVIþ PIÞ, when Gω ¼ 0 and Gρ ¼ GV ,

~μi ¼ μi −
4

3
GVð2ρi − ρj − ρkÞ;

i ≠ j ≠ k ∈ fu; d; sg: ðA3Þ

The expressions for the chemical potentials in SU(2),
defined in Eq. (4), are given by:

(i) for NJLðVþ Pþ VIþ PIÞ, when Gω ¼ Gρ ¼ GV ,

~μi ¼ μi − 4GVρi; i ∈ fu; dg; ðA4Þ

(ii) for NJLðVþ PÞ, when Gρ ¼ 0 and Gω ¼ GV ,

~μi ¼ μi − 2GVðρi þ ρjÞ; i ≠ j ∈ fu; dg; ðA5Þ

(iii) for NJLðVIþ PIÞ, when Gω ¼ 0 and Gρ ¼ GV ,

~μi ¼ μi − 2GVðρi − ρjÞ; i ≠ j ∈ fu; dg: ðA6Þ

2. Thermodynamic quantities in SU(2) and SU(3)

In SU(2) as well as in SU(3), the quark condensate for
each flavor is given by:

σi ¼ hq̄iqii ¼ −2Nc

Z
d3p
ð2πÞ3

Mi

Ei
ð1 − ni − n̄iÞ; ðA7Þ

where ni and n̄i are the quark and anti-quark occupation
numbers:

ni ¼
1

eðEi−~μiÞ=T þ 1
; ðA8Þ

n̄i ¼
1

eðEiþ~μiÞ=T þ 1
: ðA9Þ

The i-quark number density, ρi ¼ −ð∂Ω=∂μiÞ reads

ρi ¼ 2Nc

Z
d3p
ð2πÞ3 ðni − n̄iÞ: ðA10Þ

The leptonic contribution (β-Equilibrium) to the pressure is
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Pβ-eq ¼ PNJL þ 2T
Z

d3p
ð2πÞ3 ½lnð1þ e−ðEeþμeÞ=TÞ

þ lnð1þ e−ðEe−μeÞ=TÞ�; ðA11Þ

being Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

p
, and to the energy density is

ϵβ-eq ¼ ϵNJL − 2

Z
d3p
ð2πÞ3 Eeðne þ n̄eÞ; ðA12Þ

where ne and n̄e are, respectively,

ne ¼
1

eðEe−μeÞ=T þ 1
ðA13Þ

n̄e ¼
1

eðEeþμeÞ=T þ 1
: ðA14Þ

The electron density (ρe ¼ −ð∂Ωe=∂μeÞ) is given by

ρe ¼ 2

Z
d3p
ð2πÞ3 ðne − n̄eÞ: ðA15Þ

In the limit T ¼ 0:

σi ¼ hq̄iqii ¼ −
Nc

π2

Z
Λ

λFi

dpp2
Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2
i

p ; ðA16Þ

with the Fermi momentum of the respective quark flavor i
given by

λFi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μi
2 −M2

i

q
; ðA17Þ

and the density given by

ρi ¼
Nc

π2
λ3Fi

3
: ðA18Þ

For electrons it comes:

λFe
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μe
2 −m2

e

q
; ðA19Þ

and

ρe ¼
λ3Fi

3π2
: ðA20Þ

a. SU(2)

The pressure and energy density in SU(2) are respec-
tively given by:

PNJL ¼ −Ω0 −GSðσu þ σdÞ2 þGωðρu þ ρdÞ2 þGρðρu − ρdÞ2

þ 2Nc

X
i¼u;d

Z
d3p
ð2πÞ3 ½Ei þ T ln ð1þ e−ðEiþ~μiÞ=TÞ þ T ln ð1þ e−ðEi− ~μiÞ=TÞ�; ðA21Þ

and

ϵNJL ¼ Ω0 þGSðσu þ σdÞ2 −Gωðρu þ ρdÞ2 − Gρðρu − ρdÞ2

− 2Nc

X
i¼u;d

Z
d3p
ð2πÞ3 ½Eið1 − ni − n̄iÞ þ nið ~μi − μiÞ þ n̄iðμi − ~μiÞ�: ðA22Þ

In the limit T ¼ 0 the pressure is given by

PNJL ¼ −Ω0 −GSðσu þ σdÞ2 þ Gωðρu þ ρdÞ2 þ Gρðρu − ρdÞ2 þ
Nc

π2
X
i¼u;d

Z
Λ

λFi

dpp2Ei þ
Nc

π2
X
i¼u;d

~μi
λ3Fi

3
; ðA23Þ

where the quark density of flavor f is given by Eq. (A18), and energy density is given by

ϵNJL ¼ Ω0 þGSðσu þ σdÞ2 −Gωðρu þ ρdÞ2 − Gρðρu − ρdÞ2 −
Nc

π2
X
i¼u;d

Z
Λ

λFi

dpp2Ei þ
Nc

π2
X
i¼u;d

ðμi − ~μiÞ
λ3Fi

3
: ðA24Þ
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b. SU(3)

The pressure and energy density in SU(3) are given by:

PNJL ¼ −Ω0 − 2GSðσ2u þ σ2d þ σ2sÞ þ 4GDσuσdσs þ
2

3
Gωðρu þ ρd þ ρsÞ2 þGρðρu − ρdÞ2 þ

1

3
Gρðρu þ ρd − 2ρsÞ2

þ 2Nc

X
i¼u;d;s

Z
d3p
ð2πÞ3 ½Ei þ T ln ð1þ e−ðEiþ~μiÞ=TÞ þ T ln ð1þ e−ðEi−~μiÞ=TÞ�; ðA25Þ

and

ϵNJL ¼ Ω0 þ 2GSðσ2u þ σ2d þ σ2sÞ − 4GDσuσdσs −
2

3
Gωðρu þ ρd þ ρsÞ2 −Gρðρu − ρdÞ2 −

1

3
Gρðρu þ ρd − 2ρsÞ2

− 2Nc

X
i¼u;d;s

Z
d3p
ð2πÞ3 ½Eið1 − ni − n̄iÞ þ nið ~μi − μiÞ þ n̄iðμi − ~μiÞ�: ðA26Þ

In the limit T ¼ 0 the pressure becomes,

PNJL ¼ −Ω0 − 2GSðσ2u þ σ2d þ σ2sÞ þ 4GDσuσdσs þ
Nc

π2
X

i¼u;d;s

Z
Λ

λFi

dpp2Ei þ
Nc

π2
X
i¼u;d

~μi
λ3Fi

3

þ 2

3
Gωðρu þ ρd þ ρsÞ2 þ Gρðρu − ρdÞ2 þ

1

3
Gρðρu þ ρd − 2ρsÞ2; ðA27Þ

and energy density is,

ϵNJL ¼ Ω0 þ 2GSðσ2u þ σ2d þ σ2sÞ − 4GDσuσdσs −
Nc

π2
X

i¼u;d;s

Z
Λ

λFi

dpp2Ei þ
Nc

π2
X
i¼u;d

ðμi − ~μiÞ
λ3Fi

3

−
2

3
Gωðρu þ ρd þ ρsÞ2 −Gρðρu − ρdÞ2 −

1

3
Gρðρu þ ρd − 2ρsÞ2: ðA28Þ
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