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1. Introduction

In this paper we study some aspects of the Bogoyavlesky Toda sys-
tems of typeAn,Bn andCn. We mainly compute the hierarchy of Poisson
brackets and master symmetries in the natural(q,p) coordinates instead
of the more common Flaschka coordinates(a, b). There are some ad-
vantages for doing this. Some interesting connections with fundamental
invariants of the corresponding Lie group, namely the exponents of the
Lie group, become more transparent in these coordinates. To be more
specific, the exponents of the Lie group appear through the action of the
master symmetries on the Hamiltonian vector fields. The exponents are
also realized as the degrees of the polynomial Poisson brackets generated
by the recursion operator. This observation was predicted a long time ago
(1986) by Hermann Flaschka, but at that time not too many people be-
lieved it would be true. The Toda lattice is a system of particles on the
line where each particle interacts with its neighbour with an exponential
force. The original Toda system with an infinite number of particles was
considered by Toda [26] in 1967. The integrability of the system is due
to Flaschka [8], Henon [12] and Manakov [17] all in 1974. The explicit
solution of the finite lattice is due to Moser [19] in 1975. We restrict our
attention to the finite, non-periodic version of the Toda lattice. The Pois-
son tensors, master symmetries and recursion operators for Toda systems
in the Flaschka coordinates(a, b) were computed in [3–5]. In the case of
An these results were duplicated in(q,p) coordinates by Das and Okubo
[6], and Fernandes [7]. In principle their method is general and may work
for other finite dimensional systems as well. The procedure is the follow-
ing: One defines a second Poisson bracket in the space of canonical vari-
ables(q1, . . . , qn,p1, . . . , pn). This gives rise to a recursion operator. The
presence of a conformal symmetry as defined in Oevel [23] allows one,
by using the recursion operator, to generate an infinite sequence of mas-
ter symmetries. These, in turn, project to the space of the new variables
(a, b) to produce a sequence of master symmetries in the reduced space.
This approach was also used in [21] in the case of the Relativistic Toda
lattice.

The equations for the Toda systems in consideration will be written in
the form

L̇(t)= [B(t),L(t)].(1)
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The pair of matricesL, B is known as a Lax pair. In the case of the
finite nonperiodic Toda latticeL is a symmetric tridiagonal matrix andB
is the projection onto the skew-symmetric part in the decomposition of
L into skew-symmetric plus lower triangular. In the case ofBn andCn
Toda systems the matrixL will lie in the corresponding Lie algebra and
B will again be obtained fromL by some projection associated with a
decomposition of the Lie algebra. The decomposition plays an important
role in the solution of the equations by factorization.

In the case of Toda lattice the Lax equation is obtained by the use
of a transformation due to H. Flaschka [8] which changes the original
(q,p) variables to new reduced variables(a, b). The symplectic bracket
in the variables(q,p) transforms to a degenerate Poisson bracket in
the variables(a, b). This linear bracket is an example of a Lie-Poisson
bracket. The functionsHn = 1

n
trLn are in involution. A Lie algebraic

interpretation of this bracket can be found in [14]. We denote this bracket
by π1. A quadratic Toda bracket, which we callπ2 appeared in a paper
of Adler [1]. It is a Poisson bracket in which the Hamiltonian vector field
generated byH1 is the same as the Hamiltonian vector field generated by
H2 with respect to theπ1 bracket. This is an example of a bi-Hamiltonian
system, an idea introduced by Magri [16]. A cubic bracket was found
by Kupershmidt [15] via the infinite Toda lattice. We found the explicit
formulas for both the quadratic and cubic brackets in some lecture notes
by H. Flaschka. The Lenard relations are also in these notes. The Lenard
relations show that the system is bi-Hamiltonian. In a situation like this,
if one of the tensors is invertible one can find a recursion by inverting
the symplectic tensor. The recursion operator is then applied to the initial
symplectic bracket to produce an infinite sequence. However, in the case
of Toda lattice (in Flaschka variables(a, b)) both operators are non-
invertible and therefore this method fails. The absence of a recursion
operator for the finite Toda lattice is also mentioned in Morosi and
Tondo [18] where a Nijenhuis tensor for the infinite Toda lattice is
calculated.

In [3], master symmetries were used to generate nonlinear Poisson
brackets for the Toda lattice. For the definition and examples of master
symmetries see [10,22,11].

The Toda lattice has been generalized in several directions. In this pa-
per we consider the generalized Toda systems defined by Bogoyavlen-
sky [2] and studied in Kostant [14] and Olshanetsky and Perelomov [25].
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The Toda system is generalized to the tridiagonal coadjoint orbit of the
Borel subgroup of an arbitrary simple Lie group. Therefore, for each sim-
ple Lie group there is a corresponding mechanical system of Toda type.

In Section 2 we present the necessary background on bi-Hamiltonian
systems and master symmetries. We also define the exponents of a simple
Lie group.

Section 3 is a review of the classical finite nonperiodic Toda lattice.
This system was investigated in [8,9,12,13,19,20,26]. We define the
quadratic and higher Toda brackets and show that they satisfy certain
Lenard-type relations. We briefly describe the construction of master
symmetries and the new Poisson brackets as in [3,4]. We also describe
the method of Fernandes [7].

In Section 4 we define the integrable Toda systems associated with
simple Lie groups. We present in detail the systems of typeBn andCn.
We make the computations both in Flaschka coordinates(a, b) and also
in (q,p) variables. In each case we compute invariants, Poisson tensors,
recursion operators and master symmetries. The invariantsH2,H4, . . . ,

are of even degree. Letχi denote the Hamiltonian vector field generated
byHi and letZi denote a master symmetry. Then we have

[Zi,χj ] = f (j)χi+j .
The values off (j) corresponding to independentχj generate the
exponents. The exponents also appear as the degrees of the Poisson
tensors, i.e., for the Toda systems of typeAn, Bn andCn, the degrees
of the higher Poisson brackets coincide with the exponents of the
corresponding Lie group.

2. Background

Let M be aC∞ manifold equipped with two Poisson tensorsπ0 and
π1. The two tensors are called compatible ifπ0+ π1 is Poisson. Ifπ0 is
symplectic, we call the Poisson pair(π0, π1) non-degenerate. In this case,
the(1,1)-tensorR defined by

R= π1π
−1
0(2)

is called therecursion operatorassociated with the non-degenerate pair.
Recursion operators were introduced by Olver [24].
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A bi-Hamiltonian systemis defined by specifying two Hamiltonian
functionsH0,H1 satisfying:

X= π0∇H1= π1∇H0,(3)

whereπi, i = 0,1, denotes the Poisson matrix of the tensorπi . The
theory of bi-Hamiltonian systems was developed by Magri [16]. He
established the existence a hierarchy of mutually commuting functions
H0,H1, . . . , all in involution with respect to both brackets. They generate
mutually commuting bi-Hamiltonian flowsχi satisfying the Lenard
recursion relations.

We recall the definition and basic properties of master symmetries
following Fuchssteiner [11]. Consider a differential equation on a
manifoldM , defined by a vector fieldχ . We are mostly interested in the
case whereχ is a Hamiltonian vector field. A vector fieldZ is asymmetry
of the equation if

[Z,χ] = 0.

A vector fieldZ will be called amaster symmetryif[[Z,χ], χ]= 0,

but

[Z,χ] 6= 0.

Suppose that we have a bi-Hamiltonian system defined by the Poisson
tensors π0, π1 and the HamiltoniansH0, H1. Assume thatπ0 is
symplectic. We define the recursion operatorR = π1π

−1
0 , the higher

flows

χi =Ri−1χ1,(4)

and the higher order Poisson tensors

πi =Riπ0.(5)

For a non-degenerate bi-Hamiltonian system, master symmetries can be
generated using a method due to Oevel [23].
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THEOREM 1. –Suppose thatZ0 is a conformal symmetry for bothπ0,
π1 andH0. i.e., for some scalarsλ, µ, andν, we have

LZ0π0= λπ0, LZ0π1= µπ1, LZ0H0= νH0.(6)

Then the vector fields

Zi =RiZ0(7)

are master symmetries and we have

[Zi,χj ] = (µ+ ν + (j − 1)(µ− λ))χi+j ,(8)

[Zi,Zj ] = (µ− λ)(j − i)Zi+j ,(9)

LZiπj =
(
µ+ (j − i − 1)(µ− λ))πi+j ,(10)

LZiHj =
(
ν + (j + i)(µ− λ))Hi+j .(11)

Finally, let us recall the definition of exponents for a semi-simple group
G. Let G be a connected complex simple Lie GroupG. We form the
de Rham cohomology groupsHi(G,C) and the corresponding Poincaré
polynomial ofG:

pG(t)=
∑

dit
i ,

wheredi = dimHi(G,C). A theorem of Hopf shows that the cohomol-
ogy algebra is a finite product ofl = rank ofG spheres of odd dimension.
This theorem implies that

pG(t)=
∏
i

(
1+ t2ei+1).(12)

The positive integers{e1, e2, . . . , el} are called theexponentsof G. One
can also extract the exponents from the root space decomposition ofG.
In this paper we propose another method of obtaining the exponents.
The connection with the invariant polynomials is the following: Let
H1,H2, . . . ,Hl be algebraically independent homogeneous polynomials
of degreesm1,m2, . . . ,ml . Thenmi = ei + 1. The exponents of a simple
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Lie algebra of typeAn−1 are given by

1,2,3, . . . , n− 1,

while for typeBn orCn

1,3,5, . . . ,2n− 1.

3. Finite, non-periodicAn Toda lattice

The Toda lattice is a completely integrable classical mechanical system
consisting ofn particles on the line and subject to a system of springs
which behave exponentially. The Hamiltonian function of the system is

H(q1, . . . , qn, p1, . . . , pn)=
n∑
j=1

1

2
p2
j +

n−1∑
j=1

eqj−qj+1,(13)

whereqj (t) is the position of thej th particle andpj (t) is the correspond-
ing momentum. Hamilton’s equations are

q̇j = pj ,
ṗj = eqj−1−qj − eqj−qj+1.

(14)

To determine the set of independent functions{H1, . . . ,Hn} which
are constants of motion for Hamilton’s equations, one uses Flaschka’s
transformation:

ai = 1

2
e

1
2 (qi−qi+1), bi =−1

2
pi.(15)

Then,

ȧi = ai(bi+1− bi),
ḃi = 2(a2

i − a2
i−1).

(16)
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These equations can be written as a Lax pairL̇= [B,L], whereL is the
symmetric Jacobi matrix

L=



b1 a1 0 · · · · · · 0

a1 b2 a2 · · · ...

0 a2 b3
. . .

...
. . .

. . .
...

...
. . .

. . . an−1

0 · · · · · · an−1 bn


(17)

and

B =



0 a1 0 · · · · · · 0

−a1 0 a2 · · · ...

0 −a2 0
. . .

...
. . .

. . .
. . .

...
...

. . .
. . . an−1

0 · · · · · · −an−1 0


.(18)

Consider R2n with coordinates(q1, . . . , qn,p1, . . . , pn), the standard
symplectic bracket and the mappingF : R2n→R2n−1 defined by

F : (q1, . . . , qn,p1, . . . , pn)→ (a1, . . . , an−1, b1, . . . , bn).(19)

The standard symplectic bracket onR2n reduces, under the mapping
F , to a linear bracket onR2n−1 determined by

{ai, bi} =−ai,
{ai, bi+1} = ai;

(20)

all other brackets are zero. We denote this Poisson tensor byπ1. The only
Casimir isH1 = b1 + b2 + · · · + bn. The Hamiltonian turns out to be
H2= 1

2 trL2 and the functionsHj are in involution.
There is also a quadratic bracketπ2 which appeared in a paper of

Adler [1] in 1979. The defining relations for the new bracketπ2 are:

{ai, ai+1} = 1

2
aiai+1,
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{ai, bi} = −aibi,(21)

{ai, bi+1} = aibi+1,

{bi, bi+1} = 2a2
i ;

all other brackets are zero. This bracket has detL as Casimir andH1 =
trL is the Hamiltonian. The eigenvalues ofL are still in involution and

π2∇ λj = λjπ1∇ λj ∀j.(22)

It follows easily that

π2∇Hl = π1∇Hl+1.(23)

These relations are similar to the Lenard relations for the KdV equation.
They show that the Toda lattice is a bi-Hamiltonian system.

Since it is impossible to find a recursion operator for the non-periodic
Toda lattice we use a different method to generate invariants. The idea is
to define master symmetries, and use Lie derivatives to generate higher
invariants.

We describe the construction following Refs. [3,4]. We denote the
master symmetries byXn. These vector fields generate an infinite
sequence of contravariant 2-tensorsπn, for n > 1. We summarize the
properties ofXn andπn:

THEOREM 2. –
(i) πn are all Poisson.
(ii) The functionsHn = 1

n
trLn are in involution with respect to all of

theπn.
(iii) Xn(Hm)= (n+m)Hn+m.
(iv) LXnπm = (m− n− 2)πn+m.
(v) πn ∇ Hl = πn−1 ∇ Hl+1, whereπn denotes the Poisson matrix of

the tensorπn.

To define the vector fieldsXn we consider expressions of the form

L̇= [B,L] +Ln.(24)

This equation is similar to a Lax equation, but in this case the eigenvalues
satisfyλ̇= λn instead oḟλ= 0.
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There is another method of finding the master symmetries due to
Fernandes [7] which we describe briefly:

The first step is to define a second Poisson bracket on the space of
canonical variables(q1, . . . , qn,p1, . . . , pn). This bracket appears in Das
and Okubo [6] and Fernandes [7]. We follow the notation from [7]. Let
J0 be the symplectic bracket onR2n and defineJ1 as follows:

{qi, qj } = 1,

{pi, qi} = pi,
{pi,pi+1} = eqi−qi+1,

(25)

all other brackets are zero. Also define

h0=
n∑
i=1

pi, h1=
n∑
i=1

p2
i

2
+

n−1∑
i=1

eqi−qi+1.(26)

Since we have a non-degenerate pair(J0, J1), there exists a recursion
operator defined byR= J1J

−1
0 . It follows easily that the vector field

Z0=
n∑
i=1

n+ 1− 2i

2

∂

∂qi
+

n∑
i=1

pi
∂

∂pi
(27)

is a conformal symmetry forJ0, J1 andh0 and therefore, Oevel’s theorem
applies. The constants in Theorem 1 turn out to beλ = −1, µ = 0 and
ν = 1. We end up with the following deformation relations:

[Zi,χj ] = jχi+j ,(28)

LZiJj = (j − i − 1)Ji+j ,(29)

[Zi,Zj ] = (j − i)Zi+j .(30)

Taking into account the way we defined the linear bracketπ1 on R2n−1,
the mappingF is a Poisson mapping betweenJ0 and π1. But it is
also a Poisson mapping betweenJ1 andπ2. In fact, the Poisson tensor
J1 reduces, under the mappingF , to π2. The Hamiltoniansh0 andh1

correspond to the reduced HamiltoniansH1 andH2 respectively. The
recursion operatorR cannot be reduced. Actually, it is easy to see that
there exists no recursion operator in the reduced space. The kernels of
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the two Poisson structuresπ1 andπ2 are different and, therefore, it is
impossible to find an operator that maps one to the other.

The deformation relations (28), (29), (30) also reduce and become
precisely the deformation relations of Theorem 2. Of course, one has to
replacej by j − 1 in the formulas involvingJk because of the difference
in notation between [3] and [7].

Note that (28) gives a procedure for generating the exponents of a
simple Lie group of typeAn.

4. Orthogonal Toda systems

4.1. Definition of the systems

In this section we consider mechanical systems which generalize the
finite, nonperiodic Toda lattice. These systems correspond to Dynkin
diagrams. It is well known that irreducible root systems classify simple
Lie groups. So, in this generalization for each simple Lie algebra there
exists a mechanical system of Toda type.

The generalization is obtained from the following simple observation:
In terms of the natural basisqi of weights, the simple roots ofAn−1 are

q1− q2, q2− q3, . . . , qn−1− qn.
On the other hand, the potential for the Toda lattice is of the form

eq1−q2 + eq2−q3 + · · · + eqn−1−qn.

We note that the angle betweenqi−1 − qi and qi − qi+1 is 2π
3 and the

lengths ofqi − qi+1 are all equal. The Toda lattice corresponds to a
Dynkin diagram of typeAn−1.

Similarly, the potential

eq1−q2 + eq2−q3 + · · · + eqn−1−qn + ejqn

corresponds toBn for j = 1 andCn for j = 2.
These systems are interesting not only because they are integrable, but

also for their fundamental importance in the theory of semi-simple Lie
groups. For example Kostant in [14] shows that the integration of these
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systems and the theory of the finite dimensional representations of semi-
simple Lie groups are equivalent.

4.2. A recursion operator for Bn Toda systems in Flaschka
coordinates

In this section, we show that higher polynomial brackets exist also in
the case ofBn Toda systems. Using Flaschka coordinates, we will prove
that these systems possess a recursion operator and we will construct an
infinite sequence of compatible Poisson brackets in which the constants
of motion are in involution.

The Hamiltonian forBn is

H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + eqn.(31)

We make a Flaschka-type transformation,F : R2n→R2n defined by

F : (q1, . . . , qn,p1, . . . , pn)→ (a1, . . . , an, b1, . . . , bn)

with

ai = 1

2
e

1
2(qi−qi+1), an = 1

2
e

1
2qn,(32)

bi =−1

2
pi.

Then

ȧi = ai(bi+1− bi) i = 1, . . . , n,

ḃi = 2(a2
i − a2

i−1) i = 1, . . . , n,
(33)

with the convention thata0= bn+1= 0.
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These equations can be written as a Lax pairL̇ = [B,L], whereL is
the symmetric matrix

b1 a1

a1
. . .

. . .
. . .

. . . an−1

an−1 bn an
an 0 −an

−an −bn . . .
. . .

. . . −a1

−a1 −b1


,(34)

andB is the skew-symmetric part ofL (in the decomposition, lower Borel
plus skew-symmetric).

The mappingF : R2n → R2n, (qi, pi) → (ai, bi), defined by (32),
transforms the standard symplectic bracketJ0 into another symplectic
bracketπ1 given by

{ai, bi} = −ai i = 1, . . . , n,

{ai, bi+1} = ai i = 1, . . . , n− 1.
(35)

The invariant polynomials forBn, which we denote by

H2,H4, . . .H2n

are defined byH2i = 1
2i TrL2i. The degrees of the firstn (independent)

polynomials are 2,4, . . . ,2n and the exponents of the corresponding Lie
group are 1,3, . . . ,2n− 1.

We look for a bracketπ3 which satisfies

π3 ∇ H2= π1 ∇ H4.(36)

Using trial and error, we end up with the following homogeneous cubic
bracketπ3:

{ai, ai+1} = aiai+1bi+1,

{ai, bi} = −aib2
i − a3

i i = 1,2, . . . , n− 1,
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{an, bn} = −anb2
n − 2a3

n,

{ai, bi+2} = aia2
i+1,(37)

{ai, bi+1} = aib2
i+1+ a3

i ,

{ai, bi−1} = −a2
i−1ai,

{bi, bi+1} = 2a2
i (bi + bi+1).

We summarize the properties of this new bracket in the following:

THEOREM 3. –The bracketπ3 satisfies:
(1) π3 is Poisson.
(2) π3 is compatible withπ1.
(3) H2i are in involution.

DefineR = π3π
−1
1 . ThenR is a recursion operator. We obtain a

hierarchy

π1, π3, π5, . . .

consisting of compatible Poisson brackets of odd degree in which
the constants of motion are in involution.

(4) πj+2 gradH2i = πj gradH2i+2 ∀i, j .

The proof of this result is in [4,5].

4.3. A bi-Hamiltonian formulation for Bn Toda systems in natural
(q,p) coordinates

Now we will define a bi-Hamiltonian formulation forBn Toda systems
in natural(qi, pi) coordinates. Consider the following bracket in(qi, pi)
coordinates:

{qi, qi−1} = {qi, qi−2} = · · · = {qi, q1} = 2pi i = 2, . . . , n,

{pi, qi−2} = {pi, qi−3} = · · · = {pi, q1} = 2
(
eqi−1−qi − eqi−qi+1

)
i = 3, . . . , n− 1,

{pn, qn−2} = {pn, qn−3} = · · · = {pn, q1} = 2
(
eqn−1−qn − eqn),

(38)

{qi,pi} = p2
i + 2eqi−qi+1 i = 1, . . . , n− 1,

{qn,pn} = p2
n + 2eqn,

{qi+1,pi} = eqi−qi+1,
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{qi,pi+1} = 2eqi+1−qi+2 − eqi−qi+1 i = 1, . . . , n− 2,

{qn−1,pn} = 2eqn − eqn−1−qn,
{pi,pi+1} = −eqi−qi+1(pi + pi+1).

Denote this Poisson tensor byJ1. A simple computation leads to the
following:

THEOREM 4. –The bracketJ1 satisfies:
(1) J1 is Poisson.
(2) J1 is compatible withJ0.
(3) The mappingF given by(32) is a Poisson morphism betweenJ1

and the cubic bracketπ3.

Thus, in(q,p) coordinates we also have a non-degenerate pair(J0, J1)

for Bn Toda and so we may define a recursion operatorN = J1J
−1
0 . We

have then a hierarchy of mutually compatible Poisson tensors defined by
Ji =N iJ0.

The vector field

Z0=
n∑
i=1

2(n− i + 1)
∂

∂qi
+

n∑
i=1

pi
∂

∂pi
(39)

is a conformal symmetry for the Poisson tensorsJ0 andJ1 and for the
Hamiltonian

h0= 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + eqn.(40)

We compute:

LZ0J0=−J0, LZ0J1= J1, LZ0h0= 2h0.

So Oevel’s theorem applies. WithZi =N iZ0 one calculates easily that

[Zi,χj ] = (2j + 1)χi+j ,(41)

[Zi,Zj ] = 2(j − i)Zi+j ,(42)

LZiJj = (2(j − i)− 1)Ji+j ,(43)
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LZihj = 2(i + j + 1)hi+j .(44)

Note that (41) gives a procedure for generating the exponents of a simple
Lie group of typeBn.

4.4. A recursion operator for Cn Toda systems in Flaschka
coordinates

We now considerCn Toda systems. Using Flaschka coordinates, we
will prove that these systems also possess a recursion operator and we
will construct an infinite sequence of compatible Poisson brackets as in
theBn case.

The Hamiltonian forCn is

H = 1

2

n∑
1

p2
j + eq1−q2 + · · · + eqn−1−qn + e2qn.(45)

We make a Flaschka-type transformation,

F : R2n→R2n, (q1, . . . , qn,p1, . . . , pn)→ (a1, . . . , an, b1, . . . , bn)

with

ai = 1

2
e

1
2 (qi−qi+1), an = 1√

2
eqn,(46)

bi =−1

2
pi.

The equations in(a, b) coordinates are:

ȧi = ai(bi+1− bi) i = 1, . . . , n− 1,

ȧn =−2anbn,(47)

ḃi = 2(a2
i − a2

i−1) i = 1, . . . , n,

with the convention thata0= 0.
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These equations can be written as a Lax pairL̇ = [B,L], whereL is
the matrix

b1 a1

a1
. . .

. . .
. . .

. . . an−1

an−1 bn an
an −bn −an−1

−an−1
. . .

. . .

. . .
. . . −a1

−a1 −b1


,(48)

andB is the skew-symmetric part ofL.
The mappingF : R2n→ R2n defined by (46) transforms the standard

symplectic bracketJ0 into another symplectic bracketπ1 given by

{ai, bi} = −ai i = 1,2, . . . , n− 1,

{ai, bi+1} = ai i = 1,2, . . . , n− 1,(49)

{an, bn} =−2an.

The invariant polynomials forCn, which we denote by

H2,H4, . . .H2n

are defined byH2i = 1
2i TrL2i .

We look for a bracketπ3 which satisfies

π3 ∇ H2= π1 ∇ H4.(50)

We obtain the following homogeneous cubic bracketπ3:

{ai, ai+1} = aiai+1bi+1 i = 1,2, . . . , n− 2,

{an−1, an} = 2an−1anbn,

{ai, bi} = −aib2
i − a3

i i = 1,2, . . . , n− 1,

{an, bn} = −2anb
2
n − 2a3

n,

{ai, bi+2} = aia2
i+1,(51)

{ai, bi+1} = aib2
i+1+ a3

i i = 1,2, . . . , n− 2,
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{an−1, bn} = a3
n−1+ an−1b

2
n − an−1a

2
n,

{ai, bi−1} = −a2
i−1ai i = 2,3, . . . , n− 1,

{an, bn−1} = −2a2
n−1an,

{bi, bi+1} = 2a2
i (bi + bi+1).

We summarize the properties of this bracket in the following:

THEOREM 5. –The bracketπ3 satisfies:
(1) π3 is Poisson.
(2) π3 is compatible withπ1.
(3) H2i are in involution.

DefineR = π3π
−1
1 . ThenR is a recursion operator. We obtain a

hierarchy

π1, π3, π5, . . .

consisting of compatible Poisson brackets of odd degree in which
the constants of motion are in involution.

(4) πj+2 gradH2i = πj gradH2i+2, ∀i, j .

The proofs are precisely the same as in the case ofBn.

4.5. A bi-Hamiltonian formulation for Cn Toda systems in natural
(q,p) coordinates

As in the case ofBn we will define a bi-Hamiltonian formulation for
Cn Toda systems in(qi, pi) coordinates.

Consider the following bracket in(q,p) coordinates:

{qi, qi−1} = {qi, qi−2} = · · · = {qi, q1} = 2pi i = 2, . . . , n,

{pi, qi−2} = {pi, qi−3} = · · · = {pi, q1} = 2
(
eqi−1−qi − eqi−qi+1

)
i = 3, . . . , n− 1,

{pn, qn−2} = {pn, qn−3} = · · · = {pn, q1} = 2eqn−1−qn − 4e2qn,

(52)

{qi,pi} = p2
i + 2eqi−qi+1 i = 1, . . . , n− 1,

{qn,pn} = p2
n + 2e2qn,

{qi+1,pi} = eqi−qi+1,

{qi,pi+1} = 2eqi+1−qi+2 − eqi−qi+1 i = 1, . . . , n− 2,



J.M. NUNES DA COSTA, P.A. DAMIANOU / Bull. Sci. math. 125 (2001) 49–69 67

{qn−1,pn} = 4e2qn − eqn−1−qn,
{pi,pi+1} = −eqi−qi+1(pi + pi+1).

Denote this Poisson tensor byJ1. As in the case of theBn Toda systems,
we have the following:

THEOREM 6. –The bracketJ1 satisfies:
(1) J1 is Poisson.
(2) J1 is compatible withJ0.
(3) The mappingF given by(46) is a Poisson morphism betweenJ1

and the cubic bracketπ3.

As in the case of theBn Toda, we also have a non-degenerate pair
(J0, J1) and we may define a recursion operator in(q,p) coordinates,
N = J1J

−1
0 . So there exists a hierarchy of pairing compatible Poisson

tensors, defined byJi =N iJ0.
ForCn, the conformal symmetry is the vector field

Z0=
n∑
i=1

(2n− 2i + 1)
∂

∂qi
+

n∑
i=1

pi
∂

∂pi
,(53)

and we have the same constants as in the case ofBn:

LZ0J0=−J0, LZ0J1= J1, LZ0H0= 2H0.

The relations of Oevel’s theorem are the same of theBn Toda

[Zi,χj ] = (2j + 1)χi+j ,(54)

[Zi,Zj ] = 2(j − i)Zi+j ,(55)

LZiJj = (2(j − i)− 1)Ji+j ,(56)

LZihj = 2(i + j + 1)hi+j .(57)

Note that (54) gives a procedure for generating the exponents of a simple
Lie group of typeCn.
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