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1. Introduction

In this paper we study some aspects of the Bogoyavilesky Toda sys-
tems of typeA,,, B, andC,,. We mainly compute the hierarchy of Poisson
brackets and master symmetries in the natuyap) coordinates instead
of the more common Flaschka coordinatesb). There are some ad-
vantages for doing this. Some interesting connections with fundamental
invariants of the corresponding Lie group, namely the exponents of the
Lie group, become more transparent in these coordinates. To be more
specific, the exponents of the Lie group appear through the action of the
master symmetries on the Hamiltonian vector fields. The exponents are
also realized as the degrees of the polynomial Poisson brackets generated
by the recursion operator. This observation was predicted a long time ago
(1986) by Hermann Flaschka, but at that time not too many people be-
lieved it would be true. The Toda lattice is a system of particles on the
line where each patrticle interacts with its neighbour with an exponential
force. The original Toda system with an infinite number of particles was
considered by Toda [26] in 1967. The integrability of the system is due
to Flaschka [8], Henon [12] and Manakov [17] all in 1974. The explicit
solution of the finite lattice is due to Moser [19] in 1975. We restrict our
attention to the finite, non-periodic version of the Toda lattice. The Pois-
son tensors, master symmetries and recursion operators for Toda systems
in the Flaschka coordinatés, b) were computed in [3-5]. In the case of
A, these results were duplicated(ip, p) coordinates by Das and Okubo
[6], and Fernandes [7]. In principle their method is general and may work
for other finite dimensional systems as well. The procedure is the follow-
ing: One defines a second Poisson bracket in the space of canonical vari-
ables(q1, ..., q., p1, ..., p,). This gives rise to a recursion operator. The
presence of a conformal symmetry as defined in Oevel [23] allows one,
by using the recursion operator, to generate an infinite sequence of mas-
ter symmetries. These, in turn, project to the space of the new variables
(a, b) to produce a sequence of master symmetries in the reduced space.
This approach was also used in [21] in the case of the Relativistic Toda
lattice.

The equations for the Toda systems in consideration will be written in
the form

1) L(t) =[B(), L()].
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The pair of matriced., B is known as a Lax pair. In the case of the
finite nonperiodic Toda latticé is a symmetric tridiagonal matrix angl

is the projection onto the skew-symmetric part in the decomposition of
L into skew-symmetric plus lower triangular. In the caseBpfand C,
Toda systems the matrik will lie in the corresponding Lie algebra and

B will again be obtained fronl. by some projection associated with a
decomposition of the Lie algebra. The decomposition plays an important
role in the solution of the equations by factorization.

In the case of Toda lattice the Lax equation is obtained by the use
of a transformation due to H. Flaschka [8] which changes the original
(¢, p) variables to new reduced variables b). The symplectic bracket
in the variables(qg, p) transforms to a degenerate Poisson bracket in
the variableSa, b). This linear bracket is an example of a Lie-Poisson
bracket. The functionsd, = nltrL” are in involution. A Lie algebraic
interpretation of this bracket can be found in [14]. We denote this bracket
by 1. A quadratic Toda bracket, which we cal} appeared in a paper
of Adler [1]. It is a Poisson bracket in which the Hamiltonian vector field
generated by, is the same as the Hamiltonian vector field generated by
H, with respect to ther, bracket. This is an example of a bi-Hamiltonian
system, an idea introduced by Magri [16]. A cubic bracket was found
by Kupershmidt [15] via the infinite Toda lattice. We found the explicit
formulas for both the quadratic and cubic brackets in some lecture notes
by H. Flaschka. The Lenard relations are also in these notes. The Lenard
relations show that the system is bi-Hamiltonian. In a situation like this,
if one of the tensors is invertible one can find a recursion by inverting
the symplectic tensor. The recursion operator is then applied to the initial
symplectic bracket to produce an infinite sequence. However, in the case
of Toda lattice (in Flaschka variablgg, b)) both operators are non-
invertible and therefore this method fails. The absence of a recursion
operator for the finite Toda lattice is also mentioned in Morosi and
Tondo [18] where a Nijenhuis tensor for the infinite Toda lattice is
calculated.

In [3], master symmetries were used to generate nonlinear Poisson
brackets for the Toda lattice. For the definition and examples of master
symmetries see [10,22,11].

The Toda lattice has been generalized in several directions. In this pa-
per we consider the generalized Toda systems defined by Bogoyavlen-
sky [2] and studied in Kostant [14] and Olshanetsky and Perelomov [25].
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The Toda system is generalized to the tridiagonal coadjoint orbit of the
Borel subgroup of an arbitrary simple Lie group. Therefore, for each sim-
ple Lie group there is a corresponding mechanical system of Toda type.

In Section 2 we present the necessary background on bi-Hamiltonian
systems and master symmetries. We also define the exponents of a simple
Lie group.

Section 3 is a review of the classical finite nonperiodic Toda lattice.
This system was investigated in [8,9,12,13,19,20,26]. We define the
quadratic and higher Toda brackets and show that they satisfy certain
Lenard-type relations. We briefly describe the construction of master
symmetries and the new Poisson brackets as in [3,4]. We also describe
the method of Fernandes [7].

In Section 4 we define the integrable Toda systems associated with
simple Lie groups. We present in detail the systems of ®pandC,.

We make the computations both in Flaschka coordinates) and also

in (¢, p) variables. In each case we compute invariants, Poisson tensors,
recursion operators and master symmetries. The invaridntély, .. .,

are of even degree. Legt denote the Hamiltonian vector field generated
by H; and letZ; denote a master symmetry. Then we have

(Zi, xj1=F()Xivj-

The values of f(j) corresponding to independent; generate the
exponents. The exponents also appear as the degrees of the Poisson
tensors, i.e., for the Toda systems of typg, B, and C,, the degrees

of the higher Poisson brackets coincide with the exponents of the
corresponding Lie group.

2. Background

Let M be aC* manifold equipped with two Poisson tensaxgand
1. The two tensors are called compatiblerif + 7, is Poisson. Ifzg is
symplectic, we call the Poisson péitg, 771) non-degenerate. In this case,
the (1, 1)-tensorR defined by

(2) R= 7'[17[0_1

is called therecursion operatormassociated with the non-degenerate pair.
Recursion operators were introduced by Olver [24].
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A bi-Hamiltonian systems defined by specifying two Hamiltonian
functions Hy, H, satisfying:

(3) X=7T0VH1=T[1VHQ,

wherer;, i = 0,1, denotes the Poisson matrix of the tenspr The
theory of bi-Hamiltonian systems was developed by Magri [16]. He
established the existence a hierarchy of mutually commuting functions
Ho, Hy, ..., allin involution with respect to both brackets. They generate
mutually commuting bi-Hamiltonian flowg; satisfying the Lenard
recursion relations.

We recall the definition and basic properties of master symmetries
following Fuchssteiner [11]. Consider a differential equation on a
manifold M, defined by a vector fielgt. We are mostly interested in the
case wherg is a Hamiltonian vector field. A vector field is asymmetry
of the equation if

A vector field Z will be called amaster symmetrij

[[Z, x1, x] =0,
but

[Z, x]#0.

Suppose that we have a bi-Hamiltonian system defined by the Poisson
tensors g, w1 and the HamiltoniansH,, H;. Assume thatmg is
symplectic. We define the recursion operafor= m7; %, the higher
flows

4) xi =Ry,

and the higher order Poisson tensors
(5) 7 = R'mo.

For a non-degenerate bi-Hamiltonian system, master symmetries can be
generated using a method due to Oevel [23].
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THEOREM 1. —Suppose thak, is a conformal symmetry for botty,
w1 and Hp. i.e., for some scalars, 1, andv, we have

(6) L 7,70 = Ao, Lz,mw1 = Qi Lz,Ho = v Ho.

Then the vector fields
(7) Zi=R'Zo

are master symmetries and we have

(8) [Zi, xj]1=(n+v+ G =D —21)) Xty
9 [Zi, Z;]=(u—2)(j —DZiyj,
(10) Lopmj=(u+ (G —i—=D(u—21)m,,
(11) LzHj= v+ (+D(n—A)Hy,.

Finally, let us recall the definition of exponents for a semi-simple group
G. Let G be a connected complex simple Lie GroGp We form the
de Rham cohomology groug#’ (G, C) and the corresponding Poincaré
polynomial ofG:

po(t) =Y dit',

whered; = dim H(G, C). A theorem of Hopf shows that the cohomol-
ogy algebra is a finite product 6t rank of G spheres of odd dimension.
This theorem implies that

(12) po(®) =[x+,

1

The positive integerge, e, ..., ¢} are called theexponentof G. One

can also extract the exponents from the root space decompositidn of
In this paper we propose another method of obtaining the exponents.
The connection with the invariant polynomials is the following: Let
H,, H,, ..., H; be algebraically independent homogeneous polynomials
of degreesny, mo, ..., m;. Thenm; = ¢; + 1. The exponents of a simple
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Lie algebra of typed,,_; are given by

while for type B, or C,

3. Finite, non-periodic A,, Toda lattice

The Toda lattice is a completely integrable classical mechanical system
consisting ofn particles on the line and subject to a system of springs
which behave exponentially. The Hamiltonian function of the system is

"1 n—1 o
(13)  H(qu oG Proees P) =3 Sp5 4D €70,
j=1 j=1

whereg; (1) is the position of thg'th particle andp; (¢) is the correspond-
ing momentum. Hamilton’s equations are

p] — eQ,ifl—‘Ij — eq]'_q_/”rl‘

To determine the set of independent functiofi,, ..., H,} which
are constants of motion for Hamilton’s equations, one uses Flaschka’s
transformation:

1. 1
1 . — Z,3@i—aqiv1) = _Tp.
( 5) a; Ze , bz 2191
Then,
(16) a; = a;(biy1 — b)),

by =2(a? —a? ;).
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These equations can be written as a Lax ﬁa&t [B, L], whereL is the
symmetric Jacobi matrix

b1 a1 o ... ce 0
aq bz a :
(17) L=|9 @ bs
B ap—-1
0 ap-1 bn
and
0 a0 0
—dy 0 ay
(18) p=| 9 —a O
: . ap—1
0 . e —a,_1 0

Consider R?" with coordinates(qx, ..., gn, p1.-.., pn), the standard
symplectic bracket and the mappifg R?" — R?'~* defined by

(19) F:(qla"’aqn’pl""’p}’l)ﬁ(al""aanflabla""bn)'

The standard symplectic bracket 83" reduces, under the mapping
F, to a linear bracket oR?~* determined by

(20) {ai, bj} = —a;,

{ai, bit1} = a;;

all other brackets are zero. We denote this Poisson tensey.3yhe only
Casimir isHy = b1 + b + --- + b,,. The Hamiltonian turns out to be
H, = tr L? and the functiond; are in involution.

There is also a quadratic bracket which appeared in a paper of
Adler [1] in 1979. The defining relations for the new bracketare:

{ai,ai11} = za;a;41,

2
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(21) {ai, bi} = —a;b;,
{a;, biy1} = a;bi1,
{bi,bii1} = 2£l,~2;

all other brackets are zero. This bracket has/das Casimir andd; =
tr L is the Hamiltonian. The eigenvalues bfare still in involution and

(22) oV )‘j Z)\jﬂ’lv )‘j V_]
It follows easily that
(23) 7T2VH1 = 7T1VH1+1.

These relations are similar to the Lenard relations for the KdV equation.
They show that the Toda lattice is a bi-Hamiltonian system.

Since it is impossible to find a recursion operator for the non-periodic
Toda lattice we use a different method to generate invariants. The idea is
to define master symmetries, and use Lie derivatives to generate higher
invariants.

We describe the construction following Refs. [3,4]. We denote the
master symmetries by,. These vector fields generate an infinite
sequence of contravariant 2-tensars for n > 1. We summarize the
properties ofX, and,,:

THEOREM 2. —
() =, are all Poisson.

(i) The functionsH,, = ,—lltrL” are in involution with respect to all of
thern,.

(iii) X, (Hy) = (n +m) Hy .

(IV) ‘CanTm =(m—n-— 2)”n+m-

(V) 7, V H =m,_1 V H 1, wherer, denotes the Poisson matrix of
the tensorr,,.

To define the vector field¥, we consider expressions of the form
(24) L=[B, L1+ L"

This equation is similar to a Lax equation, but in this case the eigenvalues
satisfyr = A" instead ofA = 0.
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There is another method of finding the master symmetries due to
Fernandes [7] which we describe briefly:

The first step is to define a second Poisson bracket on the space of
canonical variableggy, ..., q.,, p1, ..., p,). This bracket appears in Das
and Okubo [6] and Fernandes [7]. We follow the notation from [7]. Let
Jo be the symplectic bracket d®?* and define/; as follows:

{gi.q;} =1,
(25) {pi.qi} = pi.

{pi, Pi+l} — e‘!i*‘lﬂrl’

all other brackets are zero. Also define

n

n 2 n—1
(26) h0=2pi, hl:zp_zi"i_zeqi_qurl.
i=1 i=1

i=1

Since we have a non-degenerate pdy, J1), there exists a recursion
operator defined bR = J;J;*. It follows easily that the vector field

@7) ZO:Zn+1—2i a +Zpii

i=1 2 8ql i=1 8pl

is a conformal symmetry fafy, J; andhg and therefore, Oevel’s theorem
applies. The constants in Theorem 1 turn out tovbe —1, « =0 and
v = 1. We end up with the following deformation relations:

(28) [Zi, xj1=JXi+j
(29) LzJj=(—i—=DJiyj,
(30) [Zi, Z;1=( —D)Ziy;.

Taking into account the way we defined the linear braekedn R,

the mappingF is a Poisson mapping betweely and ;. But it is

also a Poisson mapping betweénandr,. In fact, the Poisson tensor

J1 reduces, under the mappirfg, to 7. The Hamiltoniansig and 2,
correspond to the reduced HamiltoniaBs and H, respectively. The
recursion operatoR cannot be reduced. Actually, it is easy to see that
there exists no recursion operator in the reduced space. The kernels of
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the two Poisson structures; and 7, are different and, therefore, it is
impossible to find an operator that maps one to the other.

The deformation relations (28), (29), (30) also reduce and become
precisely the deformation relations of Theorem 2. Of course, one has to
replacej by j — 1 in the formulas involving/, because of the difference
in notation between [3] and [7].

Note that (28) gives a procedure for generating the exponents of a
simple Lie group of typed,,.

4. Orthogonal Toda systems
4.1. Definition of the systems

In this section we consider mechanical systems which generalize the
finite, nonperiodic Toda lattice. These systems correspond to Dynkin
diagrams. It is well known that irreducible root systems classify simple
Lie groups. So, in this generalization for each simple Lie algebra there
exists a mechanical system of Toda type.

The generalization is obtained from the following simple observation:
In terms of the natural basig of weights, the simple roots of,,_; are

q1 — 42,42 — 43, ..., dn—-1 — Y4n-

On the other hand, the potential for the Toda lattice is of the form
641*(12 + efIZ*fIS + .. + eQn—1*Qn.

We note that the angle betwegn ; — ¢; andg; — ¢;.1 IS %’f and the
lengths ofg; — ¢;.1 are all equal. The Toda lattice corresponds to a
Dynkin diagram of typed,,_;.

Similarly, the potential

e‘ll*fIZ + equqs + .. + e%—l*% + e]‘ln

corresponds t®, for j =1 andC, for j = 2.

These systems are interesting not only because they are integrable, but
also for their fundamental importance in the theory of semi-simple Lie
groups. For example Kostant in [14] shows that the integration of these
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systems and the theory of the finite dimensional representations of semi-
simple Lie groups are equivalent.

4.2. Arecursion operator for B, Toda systems in Flaschka
coordinates

In this section, we show that higher polynomial brackets exist also in
the case oBB, Toda systems. Using Flaschka coordinates, we will prove
that these systems possess a recursion operator and we will construct an
infinite sequence of compatible Poisson brackets in which the constants
of mation are in involution.

The Hamiltonian forB,, is

1 n
(31) H = E E pjz. 4N 4. pIn-17n | pln,
1

We make a Flaschka-type transformatiéi,R?* — R?" defined by

F:(ql’---’qn’pla"~’pn)_>(al’---’anabla"~’bn)

with
(32) a; = }e%(fji*%#l), a, = }e%q”,
2 2
b — 1
[ Zp,
Then
(33) ai=ai(biya—b) i=1...n,

bi=2a?—a?,) i=1...,n,

with the convention thaig = b, ;1 = 0.
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These equations can be written as a Lax [Iiaiﬁ [B, L], whereL is
the symmetric matrix

by ap
ay
ap—1
a,_ b a
(34) n—1 n n ’
a, 0 —q,
—day _bn
. —ay
—a; —by

andB is the skew-symmetric part @f (in the decomposition, lower Borel
plus skew-symmetric).

The mappingF :R? — R?', (¢:, pi) — (a:, b;), defined by (32),
transforms the standard symplectic bracigtinto another symplectic
bracketr; given by

Wbt =—a; i=1,...
(35) {al’ bl} al l Y ’ na
{ai,biH}:ai l:1,,l’l—1

The invariant polynomials foB,,, which we denote by
Hy, Hy, ... Hy,

are defined byH,; = %TrLZ". The degrees of the firat (independent)
polynomials are 24, ..., 2n and the exponents of the corresponding Lie
group are 13,...,2n — 1.

We look for a brackeir; which satisfies

(36) 7T3VH2=7T1VH4.

Using trial and error, we end up with the following homogeneous cubic
bracketrs:

{ai,ai11} = aia;11bi41,
{ai, b)) =—a;b? —a® i=1,2,....,n—1,

i
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{an, bn} = _anbyzl - 2[13,

(37) {ai, b2} = aiai2+1,
{ai, biy1} = Clibl-2+1 + al-g,
{ai,bi_1} = —Cliz_lai,

{bi, bis1} = 2aZ(b; + biy1).
We summarize the properties of this new bracket in the following:

THEOREM 3. —The bracketr; satisfies

(1) m3is Poisson.

(2) m3is compatible withr;.

(3) Hy; are in involution.
DefineR = w3 . ThenR is a recursion operator. We obtain a
hierarchy

1,73, T5, ...

consisting of compatible Poisson brackets of odd degree in which
the constants of motion are in involution.
(4) mj2gradHy = 7r; gradHy; 2 Vi, j.

The proof of this result is in [4,5].

4.3. A bi-Hamiltonian formulation for B, Toda systems in natural
(g, p) coordinates

Now we will define a bi-Hamiltonian formulation fa8, Toda systems
in natural(g;, p;) coordinates. Consider the following bracket(in, p;)
coordinates:

i g1} =1qi.qi-2} = ={qi.q1} =2p; i=2,...,n,

{pl., qi—Z} — {pi, %’—3} — ... = {pis Q1} — 2(6%717(1!' _ e(Ii*(IiJrl)
i=3,...,n—1,

{Pns Gn—2} ={Pn. Gn—3} = - = {pn. q1} = 2(e® 171" — &™),

(38)
{gi, pit = p,»2+26q"7q"+1 i=1....,n—1,
{Gn. pu} = D]+ 2¢",

{C]i+l, pl} — e‘{i*(IiJrl’



J.M. NUNES DA COSTA, P.A. DAMIANOU / Bull. Sci. math. 125 (2001) 49-69 63

{5]1', pi+l} = 2elit174qi+2 _ p4i—94i+1 | — 1, = 2,
{anla pn} — Zeqn _ e(Infl*(ln’
{Pi, pivat = —e" " (pi + piy1)-

Denote this Poisson tensor by. A simple computation leads to the
following:

THEOREM 4. —The bracket/; satisfies

(1) Jyis Poisson.

(2) Jy is compatible with/g.

(3) The mappingF given by(32) is a Poisson morphism betweédh
and the cubic brackets.

Thus, in(g, p) coordinates we also have a non-degenerate(ggit,)
for B, Toda and so we may define a recursion operafor J;J; . We
have then a hierarchy of mutually compatible Poisson tensors defined by
Ji =N'Jp.

The vector field

(39) ZQ:iZ(n—i—i-l) 9

- 0
+ Pim—
i=1 aql ; 8pl

is a conformal symmetry for the Poisson tensdgsand ./, and for the
Hamiltonian

1 n
(40) ho= E Z pjz. 4792 ... -1 pln
1

We compute:
LrJo=—Jo,  LzJi=Ji,  Lzho=2ho.
So Oevel's theorem applies. With = N Z, one calculates easily that
(41) [Zi, xj1=2j + Dxivj>
(42) [Zi, Z;1=2(j —i)Ziy;,

(43) Lo0;= Q0 —i) = Vi),
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(44) Lzh; =204 j+Dh;y;.
Note that (41) gives a procedure for generating the exponents of a simple

Lie group of typeB,,.

4.4. A recursion operator for C, Toda systems in Flaschka
coordinates

We now considelC,, Toda systems. Using Flaschka coordinates, we
will prove that these systems also possess a recursion operator and we
will construct an infinite sequence of compatible Poisson brackets as in
the B, case.

The Hamiltonian forC, is

1 n
(45) H = 5 Z sz' 4l 4o eIn—17n 4 p2n
1

We make a Flaschka-type transformation,
FRZJ’l_) Rzna (qlv"'aqn’pl""’pn)_) (al""aan’bl""’bn)

with

1., 1
(46) a; == ei(q,—qm)’ a, = —e,

NG

N

b — 1
i = ZP:-

The equations iria, b) coordinates are:

di:ai(bi+l—bi) i:l,...,n—l,
(47) iy = —2a,b,,

bi=2a?—a?,) i=1,...,n,

with the convention thatg = 0.
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These equations can be written as a Lax [Iiaiﬁ [B, L], whereL is
the matrix

by a
ay
ap—1
a,-1 b a
(48) a5 ,
a, _bn ap—1
—dp—1
—a
—a; —by

andB is the skew-symmetric part df.
The mappingF :R?" — R?* defined by (46) transforms the standard
symplectic bracketly into another symplectic bracket given by

{Cli,bi}=—ai i=1,2,...,l’l—1,
(49) {aisbi+1}:ai i:1s2s~~~sn_1s
{an’ bn} = —261,,

The invariant polynomials fo€,,, which we denote by
Hy, Ha, ... Ho,

are defined by, =  Tr L%,
We look for a brackeirs which satisfies

(50) 7T3VH2=7T1VH4.

We obtain the following homogeneous cubic bracket
{ai,ai11) = aia;i1bi1 1=1,2,...,n—2,
{an-1,a,} = 2a,_1a,b,,
{ai, by =—aib? —a® i=1,2,....,n—1,
{an, by} = —2a,b7 — 24,
(51) lai, bis2) = q;a?,
{a;, by =ab?+a® i=12...,n-2,
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{an-1, b} = ay_y + ay_1b? — a, 10},
{ai,bj 1) =—a’aq; i=23,...,n—1,
{an, by_1} = —2a7_,a,,
{bi, bis1} =27 (bi + bita).
We summarize the properties of this bracket in the following:

THEOREM 5. —The bracketr; satisfies

(1) m3is Poisson.

(2) m3is compatible withr;.

(38) Hy; are in involution.
DefineR = w3 . ThenR is a recursion operator. We obtain a
hierarchy

1,773, 5, ...

consisting of compatible Poisson brackets of odd degree in which
the constants of motion are in involution.
(4) 7j429radHy = 7; gradHyi 2, Vi, j.

The proofs are precisely the same as in the cag, of

4.5. A bi-Hamiltonian formulation for C, Toda systems in natural
(g, p) coordinates

As in the case oB, we will define a bi-Hamiltonian formulation for
C, Toda systems iig;, p;) coordinates.
Consider the following bracket i@y, p) coordinates:

(i, gi-1Y =1{qi.qi—2} = =1{qi.q1} =2p; i=2,...,n,

{Pi,qi—2} ={pisqi—z} =+ ={pi, q1} = 2(e¥ 7% — i~ %+1)
i=3,...,n—1,

(P G2} = {Pns Gu3} = -+ = (Pn, g1} = 27270 — 4P,

(52)
{gi piy=pf+2e" 91 i=1,...,n—1,
{Gn. P} = P2+ 2%,
{giv1, pi} = e¥792,

{Qia pi+l} = Qelit174i+2 _ p4i—49i+1 | — 1’ e n— 2’
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(du-1, pa} = de®n — 170,
{pi, Pig1} = —eT 1 (p;i + pit1).

Denote this Poisson tensor by. As in the case of thé, Toda systems,
we have the following:

THEOREM 6. —The bracket/; satisfies

(1) Jyis Poisson.

(2) Jyis compatible with/g.

(3) The mappingF given by(46) is a Poisson morphism betweédhn
and the cubic brackets.

As in the case of theéB, Toda, we also have a non-degenerate pair
(Jo, J1) and we may define a recursion operator(dqn p) coordinates,
N = J1J5t. So there exists a hierarchy of pairing compatible Poisson
tensors, defined by, = N7 Jo.

For C,, the conformal symmetry is the vector field

" 9
(53) Zo=) (2n—2i+1)
i=1 9g;

" 0
+ Z pi PR
i Opi
and we have the same constants as in the caBg:of

LzoJo=—Jo, LzyJi=J1, Lz,Ho=2H,.

The relations of Oevel's theorem are the same ofBhdoda

(54) [Zi, x;]1=2j +Dxiyvj»
(55) (Zi, Z;1=2(j —i)Ziy;,
(56) L7.J; =2 —1)— Dy,
(57) Loh; =20+ j + Dhis.

Note that (54) gives a procedure for generating the exponents of a simple
Lie group of typeC,.
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