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The uncertainties in neutron star radii and crust properties due to our limited knowledge of the equation of
state are quantitatively analyzed. We first demonstrate the importance of a unified microscopic description for the
different baryonic densities of the star. If the pressure functional is obtained matching a crust and a core equation
of state based on models with different properties at nuclear matter saturation, the uncertainties can be as large
as ∼30 % for the crust thickness and 4% for the radius. Necessary conditions for causal and thermodynamically
consistent matchings between the core and the crust are formulated and their consequences examined. A large
set of unified equations of state for purely nucleonic matter is obtained based on twenty-four Skyrme interactions
and nine relativistic mean-field nuclear parametrizations. In addition, for relativistic models fifteen equations of
state including a transition to hyperonic matter at high density are presented. All these equations of state have in
common the property of describing a 2M� star and of being causal within stable neutron stars. Spans of ∼3 and ∼4
km are obtained for the radius of, respectively, 1.0M� and 2.0M� stars. Applying a set of nine further constraints
from experiment and ab initio calculations the uncertainty is reduced to ∼1 and 2 km, respectively. These residual
uncertainties reflect lack of constraints at large densities and insufficient information on the density dependence
of the equation of state near the nuclear matter saturation point. The most important parameter to be constrained
is shown to be the symmetry energy slope L. Indeed, this parameter exhibits a linear correlation with the stellar
radius, which is particularly clear for small mass stars around 1.0M�. The other equation-of-state parameters do
not show clear correlations with the radius, within the present uncertainties. Potential constraints on L, the neutron
star radius, and the equation of state from observations of thermal states of neutron stars are also discussed. The
unified equations of state are made available in the Supplemental Materials and via the CompOSE database.
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I. INTRODUCTION

Simultaneous measurements of the masses and radii of
neutron stars (NS), if sufficiently precise, will impose strong
constraints on the equation of state (EOS) of dense matter
significantly above (standard) nuclear (baryon number) density
n0 = 0.16 fm−3. The value of n0 is a suitable unit to measure
the baryon (number) density in NS cores. In fact, the two
most massive pulsars PSR J0348+0432 and PSR J1614−2230
alone, with a mass close to 2M� [1–3], already put quite
stringent constraints on the EOS in the 5n0–8n0 density range.
These mass measurements are particularly relevant to assess
the possible existence of exotic phases of dense matter in the
cores of massive NS.

Significant effort has been put into the determination of the
radii of NS, but presently there is still a large uncertainty
associated with this quantity; see the discussion in [4–6].
Particularly interesting is the measurement of radii for the
stellar mass range 1.3M�–1.5M�, where on the one hand
many precise NS mass measurements exist, and on the other
hand dense matter theories predict a nearly constant value
of R (albeit different for various dense matter theories). We
expect that up to 2n0–3n0 NS matter involves nucleons only
and therefore that the radius for the “canonical” NS mass
1.4M�, denoted usually as R1.4, characterizes the EOS in
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the nucleon segment. Recently, a new constraint has been
added to this discussion. According to Ref. [7], an EOS with
Mmax > 2M� should produce R1.4 � 10.7 km in order to avoid
being noncausal at highest NS densities.

We expect that future simultaneous determinations of the
mass and radius of a NS with a 5% precision will be possible
through the analysis of the x-ray emission of NS, thanks to
the forthcoming NICER [8], Athena [9] and LOFT-like [10]
missions. It is therefore important to be able to quantify the
uncertainties introduced in the NS mass and radius calculations
simultaneously by the approximations used when constructing
the complete EOS for stellar matter, by the scarcely available
constraints on the EOS at high densities and large isospin
asymmetries, and by the lack of information about the possible
exotic states of the matter existing in the interior of a NS.

In the present work we aim to understand how the
calculation of the NS radii are affected by the EOS of the
crust, having in mind that the EOS constructed to describe NS
matter are typically non-unified, i.e., built piecewise starting
from different models for each sector of NS matter. This is
to be contrasted with unified EOS, where all segments (outer
crust, inner crust, liquid core) are calculated starting from the
same nuclear interaction. In practice, for a NS crust with n �
10−4n0 one uses experimental nuclear masses. For higher crust
densities, where the relevant experimental nuclear masses are
not available, they should be calculated theoretically. Usually,
one employs an effective nuclear Hamiltonian (or Lagrangian)
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and a many-body method that makes the calculation feasible
(e.g., the Thomas-Fermi approximation or the compressible
liquid-drop model). It should be mentioned that some minor
matching problems exist already at the transition between the
experimentally based low-density segment of the EOS and
that obtained with an effective nuclear interaction, if the latter
does not fit perfectly experimental nuclear masses. However,
examples in the present paper show that resulting uncertainty in
R is very small. The calculated EOS for the crust will depend
on the assumed effective nuclear interaction, but the phase
transition between the inner crust (including a possibility of a
bottom layer with nuclear pastas) and the liquid core will be
described correctly. The EOS is then continuous through the
whole NS core, and yields a unique R(M) for each effective
interaction, with negligible residual model dependence.

In contrast, in the standard case of a non-unified EOS model,
the resulting R(M) depends on the procedure of matching the
crust and core EOS segments. As an example, in [11] it is
proposed that the Baym-Pethick-Sutherland (BPS) EOS [12]
be chosen to describe the crust and a matching of the crust
EOS to the core one is performed at 0.01 fm−3, while the core
is described within a relativistic mean field (RMF) approach
allowing for fitting several parameters of nuclear matter at
saturation. Similarly a parametrization of the high-density
equation of state based on piecewise polytropes is presented
in [13] and allows one to systematically study the effect of
observational constraints on the EOS of cold stellar matter.
Although for the high density range several models have
been considered, for low densities a single EOS, the one
of Douchin and Haensel [14] based on a specific Skyrme
interaction, namely SLy4 [15], is used. In an equivalent way,
the authors of [5] have studied constraints on the NS structure
by considering two classes of EOS models, and in both the
BPS EOS was taken for the low density EOS, alone or
supplemented by the Negele-Vautherin EOS [16]. Both of
these models are based on old energy functionals which do
not fulfill present experimental nuclear physics constraints. In
all these examples, one can wonder by how much the simplified
choice for the subnuclear density EOS affects the conclusions
obtained from experimental and observational constraints on
the EOS. In fact, in [17] it has been argued that, depending
on the assumed properties of the low density EOS, it is
possible to obtain pressures at the crust-core transition large
enough to explain the large Vela glitches, even considering the
entrainment effect. This indicates that a proper description of
the crust and the crust-core transition as well as a sensitivity
study and a systematic uncertainty evaluation are required.

In the present paper, we will first study how the matching of
the crust EOS with the core one affects the NS radius and the
crust thickness, when models that describe the crust and the
core EOS are not the same. In order to reduce the uncertainties
introduced on the calculation of the star structure, some general
indications will be presented on how to build a non-unified
EOS.

Next we will take a set of unified EOS obtained in the
framework of the RMF models and Skyrme interactions. For
both frameworks we restrict ourselves to EOS that are able to
describe a 2M� star and remain causal; a nontrivial condition
for the second set of nonrelativistic models.

In the case of the RMF models one can consider also
their extensions allowing for the presence of hyperons. Vector-
meson couplings to hyperons are obtained assuming the SU(6)
symmetry. Repulsion in the hyperon sector associated with
their coupling to a hidden-strangeness vector-isoscalar meson
φ allows for M > 2M�. We also study how adding the hidden-
strangeness scalar-isoscalar meson σ � to get a weak ��
attraction softens the EOS. In principle the same exercise could
be done for the nonrelativistic models. However, the present
uncertainties in the hyperon-nucleon and hyperon-hyperon
interactions are such that the introduction of hyperon degrees
of freedom is still extremely model dependent. In particular,
the most sophisticated many-body approaches available in
the literature [18] either did not yet succeeded in producing
2M� stars, or cannot deal with the full baryonic octet [19].
However even in the case of RMF, strong uncertainties are
associated to the couplings. We make all the EOS used here
available in the Supplemental Material and via the CompOSE
database [20].

Within our large set of unified EOS we will study the
dependence of the NS radius and the thickness of the crust
on the mass in order to pin down the residual uncertainties
due to our imperfect knowledge of the EOS parameters. As
we remind in Sec. II, the EOS of nuclear matter near n0

and for small neutron excess is constrained by the semi-
empirical evaluations of nuclear matter parameters extracted
from nuclear physics data. We will seek the correlations
between theoretically calculated nuclear matter parameters
near n0 and NS structure. We will specifically show that the
best correlation is obtained between the radius of light NS
with M � 1.4M� and the symmetry energy slope L. This
confirms that indeed the L parameter is the most important
one to be constrained from laboratory experiments and/or ab
initio calculations. A most crucial constraint could potentially
come from the threshold density above which the direct Urca
(DUrca) process operates. Indeed the interval of L which is
compatible with terrestrial constraints largely overlaps with the
one for which the nucleonic DUrca process does not operate
in massive NS. In turn, the presence of nucleonic DUrca
appears to be needed in order to explain the thermal states
of accreting neutron stars [21]. This means that combining
radii measurements with observations of thermal states of NS
might constitute a very stringent test for the EOS.

The plan of the paper is as follows. In Sec. II we
give a very general overview of nuclear matter in NS. We
also establish notations for nuclear matter and its relation
to the semi-empirical nuclear-matter parameters. Section III
describes the different techniques that are used to match the
crust and core EOS, and the resulting uncertainty associated
with the star radius and the crust thickness. The relativistic
and nonrelativistic unified EOS employed for this work are
described in Sec. IV, and the corresponding M(R) relations
are given. Section V contains the main results of this work.
The predictions for the radius and crust thickness are given,
the correlation between the radius and the EOS parameters
is discussed, and the different unified EOS are compared
to the terrestrial constraints. Potential constraints from the
necessity of DUrca processes to explain low-luminosity NS
are presented. Finally Sec. VI concludes the paper.
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II. NUCLEAR MATTER IN NEUTRON STARS
AND SEMI-EMPIRICAL PARAMETERS

Consider the NS interior from the very basic point of view
of nuclear matter states relevant for each main NS layer. The
T = 0 approximation can be used since the Fermi energy of
the nucleons is much larger than the thermal energy associated
with the temperatures of ∼107–109 K expected inside NS.
The outer core consists of a lattice of nuclear-matter droplets
permeated by an electron gas. The inner crust is made of a
lattice of nuclear-matter droplets coexisting with a neutron gas.
With increasing pressure, droplets can become unstable with
respect to merging into infinite nuclear matter structures (rods,
plates) immersed in a neutron gas. The plates of nuclear matter
then glue together leaving tubes filled with neutron gas, then
the tubes break into bubbles of neutron gas in nuclear matter.
Both the inner crust and the (possible) mantle of nuclear pastas
form inhomogeneous two-phase states of nucleon matter.

At the edge of the outer core, inhomogeneous nucleon
matter coexists with uniform homogeneous nuclear matter.
To model it, we consider a mixture of strongly interacting
neutrons and protons, with Coulomb interactions switched
off. Let us define the baryon number density n = nn + np and
the neutron excess parameter δ = (nn − np)/n. The energy
per nucleon (excluding the nucleon rest energy) is ENM (n,δ).
Theoretical models of nuclear matter give ENM (n,δ) and yield a
set of parameters that characterize the EOS near the saturation
point (minimum of ENM ) and for small δ. For a given model,
the minimum of energy per nucleon, Es, is reached at the
saturation density n = ns and for δ = 0.

The difference between the calculated values for the
saturation density ns and the commonly used normal nuclear
density n0 defined in the first sentence of Sec. I deserves a
comment. The values of ns are model dependent and vary
between 0.146 and 0.154 fm−3 for the RMF models (Table II)
and between 0.151 and 0.165 fm−3 for the Skyrme models
(Table IV). The use of a precise value of ns is crucial for the
correct calculation of the EOS. In contrast, n0 is just a chosen
baryon number density unit.

Let us define the so-called symmetry energy,

Esym(n) = 1

2

(
∂2ENM

∂δ2

)
δ=0

, (1)

and its value at saturation,

J = Esym(ns). (2)

Two additional parameters related to the first and second
derivatives of the symmetry energy at the saturation point are,
respectively, the symmetry-energy slope parameter L,

L = 3ns

(
dEsym

dn

)
ns

, (3)

and the symmetry incompressibility Ksym,

Ksym = 9n2
s

(
d2Esym

d2n

)
ns

. (4)

Finally, the incompressibility at saturation K is

K = 9n2
s

(
∂2ENM

∂n2

)
ns,δ=0

. (5)

Knowledge of parameters {ns,Es,K,J, . . . ,} is sufficient
to reproduce theoretical EOS of nuclear matter near the
saturation point, a situation characteristic of laboratory nuclei.
However, after being fine-tuned at the saturation point, the
energy-density functionals are actually extrapolated up to n ∼
8ns � 8n0 and δ � 1, characteristic of the cores of massive
NS. Therefore, making {ns,Es,K,J, . . . ,} consistent with the
semi-empirical evaluations of these parameters obtained, using
a wealth of experimental data on atomic nuclei, yields con-
straints on the corresponding EOS of NS, and consequently,
NS models, and in particular NS radii.

III. NON-UNIFIED EQUATIONS OF STATE
AND CORE-CRUST MATCHING

In the present section we will discuss the problem of the
core-crust matching of the EOS when a non-unified EOS is
used to describe stellar matter. The use of a non-unified EOS
will be shown not to affect the determination of the NS mass
but to have a significant influence on the radius calculation.

A. Different procedures for core-crust matching

The determination of the mass and radius of a NS is
possible from the integration of the Tolman-Oppenheimer-
Volkoff (TOV) equations for spherical and static relativistic
stars [22], given the EOS of stellar matter P (ρ), where P is
the pressure and ρ the energy density. The EOS for the whole
NS is generally obtained by the matching of three different
segments: the first one for the outer crust, the second one for
the inner crust, and the last one for the core. The EOS for
the outer crust, which extends from the surface to the neutron
drip density, requires knowledge of the masses of neutron-rich
nuclei [12,23–25]. This information comes from experiments
or, when no information exists, from some energy-density
functional calculations. The inner crust corresponds to a
nonhomogeneous region between the neutron drip and the
crust-core transition. This region may include nonspherical
nuclear clusters, generally known as pasta phases [26], and has
been described within several approaches [27–34]. Finally the
core formed by a homogeneous liquid composed of neutrons,
protons, electrons, muons, and possibly exotic matter, in β
equilibrium, extends from the crust-core transition to the center
of the star. It should be pointed out, however, that in addition
to exotic phases which can possibly appear at high densities,
matter may also be nonhomogeneous in the core, e.g., in the
form of a mixed hadron-quark phase [35]. In the present work
we consider a homogeneous core.

Since the core accounts for most of the mass and radius
of the star, authors frequently work with a non-unified EOS,
and match the core EOS to one for the crust, in particular the
Baym-Pethick-Sutherland (BPS) [12] together with the Baym-
Bethe-Pethick (BBP) [36], the Negele-Vautherin (NV) [16],
or the Douchin-Haensel (DH) [14]. The matching is generally
done so that the pressure is an increasing function of the energy
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FIG. 1. Mass versus radius (left) and crust thickness lcr versus
mass (right) for the relativistic mean field model GM1, using different
matching procedures (see text).

density. This condition still leaves a quite large freedom in
the matching procedure. In principle the matching procedures
done at a specific density should be performed using a Maxwell
construction, i.e., at constant baryonic chemical potential, so
that the pressure is an increasing function of both the density
and the chemical potential.

In the following a non-unified EOS is built from two
different EOS. The one for the crust defined by Pcr, ρcr, ncr is
used up to P1, ρ1, n1, while another one for the core, Pco, ρco,
nco, is considered above P2, ρ2, n2. The matching is performed
in the region of pressure P1 � P � P2, and if P1 �= P2 a linear
interpolation between (P1,ρ1) and (P2,ρ2) is considered. The
pressures P1 and P2 are generally defined at a reference density
such as the neutron drip density nd, the crust-core transition
density nt, the saturation density n0, and the density nc where
the two EOS cross.

In Fig. 1 we plot the radius-mass curves (left) and the crust
thickness (right) versus the star mass obtained with the GM1
parametrization [37] with a purely nucleonic core obtained for
different gluing procedures:

(1) Unified: by unified we mean an EOS built with the
DH EOS for the outer crust (n � 0.002 fm−3) and the
inner crust and core obtained within the same model,
here GM1. The inner crust was calculated within a
Thomas-Fermi calculation of the pasta phase [38] and
the core EOS matches the inner crust at the crust-core
transition density nt;

(2) n1 = 0.01 fm−3: the crust BPS+BBP EOS is glued to
the core EOS at 0.01 fm−3 as indicated in [11];

(3) n1 = nc: the gluing is done at the density where the
DH EOS and the core EOS cross as in [13];

(4) n1 = nt: the DH EOS is considered for the crust and
homogeneous matter EOS for n > nt.

(5) n1 = n0: the DH EOS is used for n < n0 and the core
EOS above the saturation density n0.

(6) n1 = 0.5n0, n2 = n0: DH EOS is used for n < 0.5n0,
the homogeneous matter EOS is used above n0.

TABLE I. NS radii R1 and R1.4 (in km) and crust thicknesses
lcr
1 and lcr

1.4 (in km) for masses of 1.0M� and 1.4M� for different
matchings between the core and the crust. 
x (in %) for a given
quantity x corresponds to the relative difference between the value of
x for unified EOS and the one for a given matching. Three functionals
are considered: NL3, NL3ωρ, and GM1.

R1 
R1 R1.4 
R1.4 lcr
1 
lcr

1 lcr
1.4 
lcr

1.4

GM1

unified 13.71 13.76 1.62 1.09
n = 0.01 13.86 1.09 13.86 0.73 1.78 9.88 1.19 9.17
nt 14.12 2.99 13.92 1.16 1.64 1.23 1.10 0.92
n0 13.61 −0.73 13.70 −0.44 2.04 25.93 1.36 24.77
0.5n0–n0 13.96 1.82 13.92 1.16 2.00 23.46 1.33 22.02
0.1n0–nt 14.27 4.08 14.12 2.62 2.18 34.57 1.44 32.11
Max. diff. 0.66 0.42 0.56 0.35

NL3
unified 14.54 14.63 1.91 1.30
n = 0.01 14.78 1.65 14.78 1.03 2.15 12.57 1.45 11.54
nc 14.97 2.96 14.91 1.91 2.35 23.04 1.58 21.54
nt 14.96 2.89 14.90 1.85 2.34 22.51 1.57 20.77
n0 14.00 −3.71 14.26 −2.53 2.02 5.76 1.42 9.23
0.5n0–n0 14.47 −0.48 14.57 −0.41 2.17 13.61 1.50 15.38
0.1n0–nt 15.09 3.78 14.97 2.32 2.46 28.80 1.65 26.92
Max. diff. 1.09 0.71 0.55 0.35

NL3ωρ

unified 13.42 13.75 2.02 1.43
n = 0.01 13.51 0.67 13.81 0.44 2.11 4.46 1.49 4.20
nc 13.5 1.12 13.85 0.73 2.18 7.92 1.53 6.99
nt 13.5 0.60 13.8 0.36 2.1 3.96 1.48 3.50
n0 13.49 0.52 13.8 0.36 2.1 3.96 1.48 3.50
0.5n0–n0 13.51 0.67 13.81 0.44 2.11 4.46 1.49 4.20
0.1n0–nt 13.49 0.52 13.8 0.36 2.1 3.96 1.48 3.50
Max. diff. 0.15 0.10 0.16 0.10

(7) n1 = 0.1n0, n2 = nt: a low matching of the EOS is
considered. The DH EOS is used for n < 0.1n0 and
the core EOS above nt.

If the matching is defined at a given density nm = n1, the
gluing is done imposing P2 = P1. The curves do not coincide
because the matching has been performed in different ways.
While the maximum mass allowed for a stable star is not
affected by the chosen crust-core matching, the same is not
true for the radius and crust thickness of stars with a standard
mass of ∼1.4M�. The two EOS considered in this example
for the crust and the core have quite different properties at
saturation density, in particular for the density dependence
of the symmetry energy; see Table II. This situation is,
however, common in the literature. In fact, the GM1 EOS was
parametrized to describe both nuclear saturation properties and
neutron star properties.

In Table I, the radius and crust thickness of 1.0 and 1.4M�
NS are given for three models, GM1, NL3 [39], and NL3ωρ
[40], and several matching schemes, together with relative
differences with respect to the value for the unified EOS.

As expected the crust-core matching affects more strongly
the less massive stars. Depending on the matching procedure,
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the differences in the radius and the crust thickness for a 1.0M�
star can be as large as ∼1 and ∼0.5 km, respectively. This
corresponds to relative differences as large as ∼4% for the
radius and ∼30% for the crust thickness. This is to be compared
with the expected precision of ∼5% on the radius measurement
from future x-ray telescopes (NICER, Athena, . . . ). Similarly
the crust thickness differs by ∼0.5 km depending on the gluing.
This quantity is particularly important for the study of the ther-
mal relaxation of accreting NS [41,42], the glitch phenomenon
[17,43,44], the torsional crustal vibrations, and the maximum
quadrupole ellipticity sustainable by the crust [45].

The differences between matchings are much smaller if
the NL3ωρ core EOS is considered, because this model has
nuclear matter saturation properties similar to the ones of the
SLy4 parametrization [15] used in the DH EOS.

B. Matching and thermodynamic inconsistency

Two basic methods can be used in order to match two EOS
for the crust and the core: the first based on the P (n) relation
and the second on the P (ρ) function.

The first method consists of treating the baryon number
density as an independent variable. Consider an EOS for the
crust, Pcr(n) and ρcr(n), and another one for the core, Pco(n)
and ρco(n).

Let us assume that the matching region lies between two
densities, n1 and n2 > n1. First let us build the matched P (n)
function. For n < n1, P (n) = Pcr(n) and for n > n2, P (n) =
Pco(n). In the matching region, one can assume a form (usually
linear or logarithmic) for the function P (n) such that P (n1) =
P1 = Pcr(n1) and P (n2) = P2 = Pco(n2).

Then one needs to build the function ρ(n). For n < n1,
ρ(n) = ρcr(n). Let us define the chemical potential at the den-
sity n1: μ1 = [P1 + ρcr(n1)]/n1. By imposing thermodynamic
consistency, the value of chemical potential μ at a density n in
the matching region can be derived using the P (n) relation:

μ(n) = μ1 +
∫ n

n1

dP (n)

n
. (6)

The matched energy density equals

ρ(n) = nμ(n) − P (n). (7)

However this technique generally leads to thermodynamic
inconsistency with the core EOS: the value of chemical
potential μ2 at the density n2 obtained from Eq. (6) differs
from μco(n2) = [P2 + ρco(n2)]/n2. As a consequence ρ(n2)
given by Eq. (7) is different from ρco(n2). In order to get a
thermodynamically consistent EOS for n > n2 one has to add
a constant value (an energy shift):


μ = μ(n2) − μco(n2) (8)

to the chemical potential in the core. Then the energy density
ρ(n) for n > n2 is

ρ(n) = ρco(n) + n
μ. (9)

Of course, such a procedure affects the whole EOS for the
core, but the main effect on the M(R) relation is for NS with
a central pressure close to P2.

The second method considers the energy density ρ as an
independent variable. This can be motivated by the TOV
equations since this quantity and the function P (ρ) actually
enter the stress-energy tensor in the Einstein equations. Thus
the EOS can be written in the form Pcr(ρ) and ncr(ρ) for the
crust and Pco(ρ) and nco(ρ) for the core. The matching region
is defined such that ρ1 < ρ < ρ2.

The first step consists of obtaining the function P (ρ).
For ρ < ρ1, P (ρ) = Pcr(ρ) and for ρ > ρ2, P (ρ) = Pco(ρ).
Similarly to the first method one can assume a form for the
function P (ρ) in the matching region such that P (ρ1) = P1 =
Pcr(ρ1), P (ρ2) = P2 = Pco(ρ2).

Then one wants to derive the relation n(ρ). For ρ < ρ1

one has n(ρ) = ncr(ρ). Let us define n1 = ncr(ρ1). Assuming
thermodynamic consistency, in the matching region, i.e., ρ1 �
ρ < ρ2, one gets

n(ρ) = n1 exp

(∫ ρ

ρ1

dρ

P (ρ) + ρ

)
. (10)

However, as for the first method, this construction does not
ensure that n(ρ2) obtained from the previous formula is equal to
nco(ρ2). A similar conclusion can be reached for the chemical
potential at ρ2. Thus one has to modify the n(ρ) dependence for
the core EOS in order to ensure thermodynamic consistency.
For ρ > ρ2, the matched EOS is

n(ρ) = nco(ρ)
n(ρ2)

nco(ρ2)
. (11)

This approach does not affect the P (ρ) relation (nor the
gravitational mass and the radius), but strictly speaking the
microscopic model of dense matter is changed since it is
the baryon number density which is the basic quantity for
the theoretical calculations, within the many-body theory, of
dense matter properties. Of course the accepted procedure
given by Eq. (11) also influences the value of a baryon chemical
potential (dividing it by the same factor).

C. Thermodynamic consistency and causality

In principle, when gluing two EOS one should match all
thermodynamic quantities: the pressure P , the energy density
ρ, and the baryonic density n. In other words, a pair of
functions for the pressure and the energy density should be
constructed so that thermodynamic consistency is fulfilled.

Let us consider the EOS for the core and the crust, this
time in terms of the chemical potential μ, Pcr(μ) in the crust
and Pco(μ) in the core. The matching region is defined by
μ1 < μ < μ2. Let us define Pcr(μ1) = P1 and Pco(μ2) = P2.
The function P (μ) in the matching region and its first
derivative, which is the baryon number density n, should fulfill
the conditions of continuity given by

P (μ1) = P1, P (μ2) = P2. (12)

Thermodynamic consistency and causality imply that the
following conditions on the derivatives must be fulfilled in the
matching region:

(1) n is an increasing function of P , i.e., P (μ) is increasing
and convex;
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FIG. 2. Pressure P versus chemical potential μ, for the NL3 EOS
for the core (black solid line) and DH for the crust EOS (red solid line).
The presented situation corresponds to a matching between n1 =
0.09 fm−3 and n2 = n0 = 0.16 fm−3. The dashed lines correspond
to the condition of thermodynamical consistency and are given by
Eqs. (14) and (15). The dotted lines are given by the causality limit,
Eqs. (16) and (17). The area defined by these lines corresponds to
the shaded region and is a bit smaller than the region allowed for a
thermodynamically consistent matching between points 1 and 2 (see
insets).

(2) (dP/dρ)1/2 = vsound/c � 1, with the energy density
ρ(μ) = n(μ)μ − P (μ).

From the first requirement one can derive a necessary
condition (using Lagrange’s mean value theorem),

n1 <
P2 − P1

μ2 − μ1
< n2,

with n1 =
(

dPcr

dμ

)
μ1

and n2 =
(

dPco

dμ

)
μ2

. (13)

If the above inequality is not fulfilled, a matching of the
crust and core EOS using a continuous P (μ) function cannot
be obtained.

Figure 2 shows an example of the matching between the
DH EOS for the crust and the NL3 EOS for the core, with
n1 = 0.09 fm−3 and n2 = n0. The points 1 and 2 have the
coordinates (n1,P1(μ1)) and (n2,P2(μ2)), respectively.

Any thermodynamically consistent EOS is located in the
triangle defined by the two tangents at the points 1 and 2,

P = P1 + n1(μ − μ1), P = P2 + n2(μ − μ2) (14)

and the straight line connecting these two points,

P = P1 + (P2 − P1)
μ − μ1

μ2 − μ1
. (15)

FIG. 3. Pressure P versus chemical potential μ, for the NL3 EOS
for the core (black solid line) and DH for the crust EOS (red solid line).
The points A2 and B2 correspond to two different values of n2: nt, the
core-crust transition density, and n0/2, respectively. The dashed lines
indicate the condition of thermodynamical consistency and the dotted
lines mark the causality limit. They are almost indistinguishable. The
points A1 and B1 correspond to the higher limits on μ or equivalently
n, such that a thermodynamically consistent gluing with the core at
the points A2 and B2 exists.

However the bounds defined by Eqs. (14–15) describe incom-
pressible matter with a constant baryon number density equal
to n1, n2, (P2 − P1)/(μ2 − μ1), respectively.

The additional constraint resulting from the causality
requirement reduces the allowed region, but the change is very
small (see zoomed inserts in Fig. 2). Instead of the tangents
at the points 1 and 2 given by Eq. (14) the causality limit
corresponds to

P = Pi + ni(μ − μi)
μ + μi

2μi

, i = 1,2. (16)

The line connecting the two points and fulfilling the causality
condition is

P = P1 + (P2 − P1)
μ2 − μ2

1

μ2
2 − μ2

1

. (17)

In Fig. 3 the matching conditions for the same EOS as in
Fig. 2 but for lower n2 (or equivalently μ2) are presented. The
points A2 and B2 correspond to n2 = nt, the transition density
between the core and the crust, and n2 = n0/2, respectively.
In these cases, for a given n2 two upper limits on n1 can be
obtained: the first one by the crossing point between the tangent
at the point 2 given by Eq. (13) and the crust EOS, and the
second one by the intersection of the line defined by Eq. (16)
and the crust EOS. Here both upper limits are actually almost
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identical and correspond to the points A1 and B1, obtained for
the points A2 and B2, respectively.

For the matching of the NL3 EOS with the DH crust if we
choose n2 = n0/2 (point B2 in the figure) then the condition
given by Eqs. (13)–(16) results in n1 < 0.02 fm−3 (point B1).
It means that the matching region in terms of n and P should
be extremely large, with n2 > 4n1 and P2 > 16P1.

A similar estimation for the point A2 with n2 = nt results
in n1 < 0.0075 fm−3 (upper limit marked by the point A1) and
the matching described in Sec. III A for the NL3 model (n1 =
0.1n0, n2 = nt) cannot be performed in a thermodynamically
consistent and causal way, unless one changes the core EOS,
as described in Sec. III B. As a consequence not all matchings
presented in Sec. III B are thermodynamically consistent
and/or causal.

It should be mentioned that limits defined by Eqs. (14)–(17)
correspond to a very high stiffness of matter [incompressible
fluid for Eqs. (14) and (15) and sound speed equal to the
speed of light for Eqs. (16) and (17)]. In reality the sound
speed in the matching region is much smaller. Assuming linear
dependence between the pressure and energy density in this
region, P = a(ρ − ρ̃), with a being the square of sound speed
(in the units of c) we obtain a general formula for the P (μ)
dependence which is thermodynamically consistent:

P = P1 + (P2 − P1)
μb − (μ1)b

(μ2)b − (μ1)b
, b = 1 + a

a
. (18)

Then Eqs. (15) and (17) are special cases of Eq. (18) for
a = ∞ and a = 1, respectively. Thermodynamically correct
linear matching for a given a generally leads to density
discontinuities (first-order phase transitions) at P = P1 and
P = P2 (for details see the Appendix). There exists a minimum
value of a (amin) for which such a procedure is possible (with
only one density jump) and in general it is larger than the slope
of the line connecting points (ρ1,P1) and (ρ2,P2) (equality
being reached for a very specific relation between P , ρ, and μ
at the boundaries of a matching region).

In Fig. 4 we visualize the crucial role of the thermodynamic
consistency for a determination of the stellar radius. For a ther-
modynamically consistent matching between core and crust,
the radii of NS models with M > 1.0M� are very similar even
for a very different matching functions (e.g., for a = 0.33 and
a = 0.0913). For a simplest P (ρ) matching (linear function
without density jumps) we get a = (P2 − P1)/(ρ2 − ρ1) =
0.088; smaller than the minimum value amin = 0.0913 allowed
by the condition of thermodynamical consistency (for details
see Appendix). The requirement that the matching function
P (ρ) is continuous at P1 and P2 results in a discontinuity in
the μ(P ) function (i.e., a shift in the baryon chemical potential
μ) and leads to thermodynamical inconsistency.

IV. UNIFIED EQUATIONS OF STATE

We introduce a set of unified EOS which were built within
a RMF approach or using nonrelativistic Skyrme interactions.
The choice of models takes into account the astrophysical
constraints on the maximum NS mass and the speed of sound:

Mmax � 2M�, vsound(2M�) < c.

FIG. 4. Linear matching between core and crust. Upper panel,
solid line: direct connection between (ρ1,P1) and (ρ2,P2) which
is thermodynamically inconsistent (a = 0.088); dotted and dashed
lines: thermodynamically consistent gluing for a = 0.33 (dotted)
and a = amin = 0.0913 (dashed) accompanied by a density jump
(jumps) defined by ρ ′

1, ρ ′
2 (dotted line). Bottom panel: M(R) for

these matchings; thermodynamically consistent solutions give very
similar radii for M > 1.0M�. Stars with central pressure equal to P2

have masses ∼0.6M�.

To these two constraints we will add experimental and
theoretical constraints on nuclear matter properties and we
will discuss the uncertainty on the determination of the
radius and the crust thickness of 1.0M�, 1.4M�, and 1.8M�
stars.
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TABLE II. Nuclear and astrophysical properties of the RMF models. Energy per nucleon (Es), compression modulus (K), symmetry energy
(J ), slope (L), and incompressibility (Ksym) of the symmetry energy at the saturation point of uniform symmetric nuclear matter of density ns.
The density at the edge of the liquid uniform core is denoted as nt. In the column “Pasta,” the type(s) of pasta phase in the bottom layer (mantle)
above the edge of the core is indicated: s stands for slab, r for rod, and d for droplet phases. MnoY

max is the maximum mass for a purely nucleonic
core composition. nDU and MDU are respectively the baryon density and NS mass threshold above which the nucleonic DUrca is switched on
for a purely nucleonic core.

Model ns Es K J L Ksym nt Pasta MnoY
max nDU MDU Ref.

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (fm−3) (M�) (fm−3) (M�)

NL3 0.149 −16.2 271.6 37.4 118.9 101.6 0.056 d 2.77 0.20 0.84 [39]
GM1 0.154 −16.3 300.7 32.5 94.4 18.1 0.064 d 2.36 0.28 1.10 [37]
TM1 0.146 −16.3 281.2 36.9 111.2 33.8 0.058 d 2.18 0.21 0.81 [46]
DDHδ 0.153 −16.3 240.3 25.6 48.6 91.4 0.080 s, r, d 2.14 0.58 1.90 [47]
BSR2 0.149 −16.0 239.9 31.5 62.0 −3.1 0.065 s,r,d 2.38 0.37 1.61 [48,49]
BSR6 0.149 −16.1 235.8 35.6 85.7 −49.6 0.061 d 2.44 0.27 1.00 [48,49]

NL3ωρ 0.148 −16.2 271.6 31.7 55.5 −7.6 0.082 s, r, d 2.75 0.50 2.55 [40]
DDME2 0.152 −16.1 250.9 32.3 51.2 −87.1 0.072 s, r, d 2.48 [50]
DD2 0.149 −16.0 242.6 31.7 55.0 −93.2 0.067 s, r, d 2.42 [51]

Some of the proposed EOS, namely the RMF EOS, are not
fully unified since the outer crust is not calculated within the
framework of the model that defines the rest of the EOS, but
we have checked that since most of the outer crust is defined by
experimental results, the use of other EOS for the outer crust,
such as [23,24], does not significantly affect the star radius
with a mass above 1.0M�.

A. RMF unified EOS

In the present study we consider two different types of
models within the relativistic mean field (RMF) approach:
(i) nonlinear Walecka models (NLWM) with constant cou-
pling parameters, and (ii) density-dependent hadronic models
(DDH) with density-dependent coupling parameters. The only
condition that has been imposed a priori is that the models
describe a 2M� star. Within the first category a set of
models that span a quite large range of nuclear saturation
properties was chosen: NL3 [39] with a large symmetry
energy slope and incompressibility at saturation and which
was fitted to the ground state properties of both stable and
unstable nuclei; NL3ωρ [40] which, compared to NL3, has a
softer density dependence of the symmetry energy through
the inclusion of a nonlinear ωρ term; GM1 [37] fitted to
describe nuclear matter saturation properties subject to NS
mass-radius constraints; TM1 [46] which includes nonlinear
ω meson terms in order to soften the matter at high densities
and is one of the classical supernova EOS [52,53]; and two
parametrizations, BSR2 and BSR6, with several nonlinear
terms mixing the ω, ρ, and σ mesons [48,49]. Within the
second type, three EOS were considered: DDME2 [50], DD2
[54], and DDHδ [47], the last one also including the δ meson.
Some properties of the set of models we use are indicated in
Table II.

We have built unified EOS for these models in the following
way: (a) for the outer crust we take the EOS proposed in [24];
(b) for the inner crust we perform a Thomas-Fermi calculation
and allow for nonspherical clusters according to [38,55]; (c)
for the core we consider the homogeneous matter EOS. The

transition between the inner crust and the core is smooth. The
maximum mass stars in Table II have been obtained with the
unified EOS.

Two compositions are considered: purely nucleonic and
baryonic matter with both nucleons and hyperons. The nu-
cleonic models, the so-called noY models, include the scalar
σ , vector ω, and vector-isovector ρ meson fields (possibly
also the δ meson) together with the nucleon doublet: neutron
n and proton p. The Y and Yss models denote hyperonic
EOS and, with respect to the noY models, they also include
the six lightest hyperons (�0, the �+,�0,�− triplet, and the
0,− doublet) and the hidden-strangeness vector-isoscalar
φ meson for the Y models, or the φ meson together with the
hidden-strangeness scalar-isoscalar σ ∗ for the Yss models.

The vector meson-hyperon coupling constants are always
calculated assuming SU(6) symmetry (see, e.g., [56–58]):

1

3
gωN = 1

2
gω� = 1

2
gω� = gω ,

2gφ� = 2gφ� = gφ = −2
√

2

3
gωN ,

gρN = 1

2
gρ� = gρ , (19)

gφN = 0 ,

gρ� = 0 ,

where N stands for nucleons. For models with the density
dependent couplings, we define the hyperon-meson couplings
as giY (n) = xiY gNY (n) (see [59]), where n is the total baryonic
density and the ratios xiY are constants. The gσY couplings,
where Y stands for hyperons (Y = �,�,), are obtained from
the hyperon potential in symmetric nuclear matter, U

(N)
Y ,

U
(N)
Y = −(gσY + g′

σY ρs)s0 + (gωY + g′
ωY ns)w0, (20)

with s0 and w0 the mean-field values of the σ and ω meson
fields, respectively, and ρs the scalar density, all quantities
calculated at saturation density. The terms involving the
derivatives of the couplings with respect to the total density
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only occur for models with density dependent couplings. Here
we adopt the following values at saturation density: U (N)

� (ns) =
−28 MeV, U

(N)
 (ns) = −18 MeV, and U

(N)
� (ns) = 30 MeV

[60] (see also the discussion in [61]).
In the Yss model the σ ∗ meson is also included. It is

assumed that it does not couple to a nucleon, i.e., gσ ∗N = 0.
The � potential in � matter is given by

U
(�)
� = −gσ�s0 − gσ ∗�s∗

0 + gω�w0 + gφ�f0 , (21)

with s∗
0 and f0 the mean-field values of the σ ∗ and φ meson

fields, respectively. Taking U
(�)
� (ns) = −5 MeV [62] (see also

the discussion in [61]), the value of gσ ∗� can then be fixed.
This is, however, only an indicative effect that should be
taken with care, since the hyperon-meson couplings should
be constrained by fitting the experimental binding energy of
hyperons in hypernuclei [63]. This subject requires further
investigation. Since the definition of the hyperon-meson
couplings in density dependent couplings involves several
choices, we considered that presenting results including the
σ ∗ meson would introduce further uncertainties and, therefore,
decided not to show results with the σ ∗ meson for these
models. The two remaining coupling constants can be derived
taking gσ ∗� = gσ ∗� and assuming that U

()
 � 2U

(�)
� . The

 potential, U
()
 , in symmetric 0-− matter is given by

an expression similar to Eq. (21), replacing � by . For
DDHδ we only present the Y results because even in this
case the maximum mass is far from 2M�, and the presence
of the δ meson brings extra unknowns in the definition of the
hyperon-meson couplings.

Unified EOS are built for all the models and the TOV
equations solved. The mass-radius relations M-R of all
models, nucleonic and hyperonic, are plotted in Fig. 5. The
models were chosen such that nucleonic EOS predict stars with
a mass above 2M�. We can observe that the same occurs for all
Y models, except for the one built with DDHδ. With respect to
the Yss models, only the ones built with NL3 or NL3ωρ satisfy
the constraint set by PSR J0348+0432. Although models have
been distributed between two figures so that they are not too
crowded, it is still possible to see that the radius of a 1.5M�
star varies between ∼ 12.6 and 14.6 km. Another conclusion
is that the onset of hyperons occurs for a mass ∼1.4M� or
above, except for the DDHδ model.

Models with the largest values of L only predict droplet-like
clusters in the inner crust, in accordance with the results of
[64]; see Table II.

In Table III we gather some of the properties of the
hyperonic stars, including the central baryonic density, the
maximum mass, the onset density of each hyperon and the
corresponding mass of the star. It is seen that, for the choice of
meson-hyperon couplings described above, the first hyperon
to set in in all models is the � meson. The second hyperon is
the − hyperon, again in all models. This hyperon is favored
with respect to �− because of the attractive  potential in
nuclear matter. The third meson to set in, when it exists in a
stable NS, is either �− or 0. �− appears only when the σ ∗
meson is not included in the calculation, because the attractive
effect of the σ ∗ meson is stronger for  hyperons due to their
double strangeness charge.

FIG. 5. Mass-radius relation for the various RMF models: noY,
Y, and Yss. The horizontal lines indicate the constraints set by the
pulsars PSR J0348+0432 and PSR J1614− 2230.

B. Nonrelativistic unified EOS

To construct nonrelativistic unified equations of state we
proceed as follows. We select a large set of different Skyrme
functionals proposed in the recent nuclear physics literature.
At low density we variationally determine the nucleus A and
Z number, as well as the volume VWS of the Wigner-Seitz
cell and the density of the free neutron component ng after
neutron drip, employing the same Skyrme functional for both
the nucleus and the free neutrons [65]. The baryonic part of
the Wigner-Seitz cell energy is written as

EWS(A,Z,ng,VWS) = VWSESky + Evac + δE. (22)

Here, ESky(ng) is the energy density of homogeneous neutron
matter as given from the chosen Skyrme functional, Evac(A,Z)
is the vacuum energy of a nucleus of mass number A and
charge Z, and the extra term δE = δEbulk + δEsurf + δECoul

corresponds to the bulk, surface, and Coulomb in-medium
modifications.

For the vacuum energy, we employ a compressible liquid-
drop (CLDM) parametrization [66]. The coefficients of this
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TABLE III. Properties of hyperonic RMF models. For given EOS and hyperonic model, the central density nmax (in fm−3) at the maximum
mass Mmax (in M�) is given. The next columns list the type of hyperons Yi , the values of the onset densities nYi

(in fm−3), and the corresponding
NS masses: MYi

(in M�). The last two columns indicate the density and mass threshold, nDU and MDU respectively above which the nucleonic
DUrca process operates.

EOS Model nmax MY
max Y1 nY1 MY1 Y2 nY2 MY2 Y3 nY3 MY3 nDU MDU

(fm−3) (M�) (fm−3) (M�) (fm−3) (M�) (fm−3) (M�) (fm−3) (M�)

NL3 Yss 0.77 2.07 �0 0.28 1.52 − 0.33 1.75 0 0.57 2.03 0.20 0.84
Y 0.78 2.31 �0 0.28 1.52 − 0.35 1.85 0.20 0.84

NL3ωρ Yss 0.80 2.14 �0 0.31 1.59 − 0.34 1.74 0 0.65 2.13 0.42 1.91
Y 0.79 2.34 �0 0.31 1.58 − 0.34 1.78 �− 0.49 2.17 0.43 2.07

DDME2 Y 0.93 2.12 �0 0.34 1.41 − 0.37 1.55 �− 0.41 1.66
GM1 Yss 0.82 1.85 �0 0.35 1.48 − 0.40 1.64 0 0.70 1.84 0.28 1.10

Y 0.92 1.99 �0 0.35 1.48 − 0.41 1.67 0.28 1.10
TM1 Yss 0.73 1.78 �0 0.35 1.52 − 0.39 1.63 0 0.72 1.78 0.21 0.81

Y 0.85 1.92 �0 0.32 1.40 − 0.42 1.70 0.21 0.81
DDHδ Y 1.05 1.79 �0 0.37 1.30 − 0.52 1.60 �− 0.70 1.74 0.62 1.69
DD2 Y 0.93 2.10 �0 0.37 1.52 − 0.38 1.55 �− 0.45 1.75
BSR2 Yss 0.84 1.84 �0 0.34 1.37 − 0.39 1.54 0.39 1.55

Y 0.89 2.00 �0 0.34 1.38 − 0.42 1.65 �− 0.51 1.81 0.39 1.56
BSR6 Yss 0.84 1.84 �0 0.33 1.34 − 0.38 1.54 0 0.81 1.83 0.27 0.95

Y 0.87 2.03 �0 0.33 1.36 − 0.42 1.67 �− 0.57 1.91 0.26 0.93

mass formula are fitted out of Hartree-Fock calculations in
slab geometry, using the same Skyrme effective interaction
which is employed for the free neutron component. The
absence of shell effects and curvature terms in this analytic
parametrization implies that a mass shift which, depending on
the Skyrme interaction, can be as high as 0.5 MeV/nucleon,
is observed with respect to experimentally measured masses.
As a consequence, the EOS of the external part of the
outer crust differs from the one we would get employing
experimental data. This is true even for recent sophisticated
Skyrme functionals which have shown, if full HFB calculations
are performed, a very good agreement with experimentally
measured nuclear masses [67]. An example is given in
Fig. 6, which shows for a representative Skyrme functional
the discontinuity in the baryonic pressure obtained if an
EOS using experimental masses is matched with the unified
prescription.

However, the deviation between the CLDM-based EOS and
the one obtained when the experimental mass data are used is
small enough to impact the M(R) relation to less than 1%, as
one can see in the lower panel of Fig. 6.

The bulk in-medium correction to the nuclear energy δEbulk

is approximated by

δEbulk(A,Z,ng) = − A

ns
ESky, (23)

where A/ns(δ) represents the equivalent cluster volume
corresponding to the given isospin asymmetry δ, evaluated
in the nuclear bulk. For a nucleus in the vacuum we take for
the bulk asymmetry the estimation from the droplet model
[68],

δ = δ0 =
[(

1 − 2
Z

A

)
+ 3ac

8Q

Z2

A5/3

]/(
1 + 9J

4QA1/3

)
.

(24)

In this equation, J is the symmetry energy per nucleon at
the saturation density of symmetric matter, Q is the surface
stiffness coefficient, and ac is the Coulomb parameter. In the
presence of an external neutron gas of density ng, the bulk
asymmetry defined by Eq. (24) is generalized to account for
the contribution of the gas as [69]

δ(A,Z,ng) =
(

1 − ng

ns(δ)

)
δ0 + ng

ns(δ)
, (25)

where δ0 is the asymmetry value given by Eq. (24) considering
only the bound part of the cluster. For details, see [65,69,70].

The Coulomb energy shift δECoul is due to the screening
effect of the electrons, and it is evaluated in the standard
Wigner-Seitz approximation [36]. The residual energy shift
corresponds to the in-medium modification of the surface
tension in the inner crust. This term can be evaluated in
the extended Thomas-Fermi approximation [70–72]. For the
applications of the present paper, this correction has been
neglected. The error induced by this approximation on the
M(R) relation is quantified below in this section, and shown
to be reasonably small. However, this effect, together with
the curvature terms which are also neglected, is important
for a precise determination of the transition density. For this
reason we leave the study of the functional dependence of the
transition density to future work.

Since the droplet phase is known to be the dominant pasta
phase in β equilibrium [33], we have not considered possible
deviation from spherical symmetry in the nucleus functional.

The Wigner-Seitz energy density from Eq. (22) is min-
imized with respect to its arguments with the additional
requirement of β equilibrium, thus leading to the equilibrium
composition of the neutron star crust at each baryonic density
value [65]. In the absence of deformation degrees of freedom
the crust-core transition occurs via a narrow phase coexistence
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FIG. 6. (n,p,e) matter in β equilibrium. Upper panel: total
pressure versus total energy density for the unified EOS (solid lines)
and using experimental masses when available (dashed lines). Lower
panel: relative deviation of the NS radius as a function of mass with
the two prescriptions shown on the top part. The SkI4 functional is
used.

domain [65]. The transition to the core is defined by the high
density border of this first-order phase transition region.

As stated above, a precise treatment of this transition
requires proton shell effects, curvature terms, modifications
of the surface tension, and deformation degrees of freedom.
However the energy density landscape turns out to be ex-
tremely flat close to the transition point [65,71]. This means
that the approximations employed in Eq. (22) prevent a precise
determination of the transition density, but do not affect the
density behavior of the pressure.

The M(R) relation is then obtained integrating the TOV
equations. Only the functionals which produce, without
hyperonic degrees of freedom, maximum NS masses of at
least, within 1% accuracy, 2M�, and which are causal up to
the highest densities met in such massive stars are kept for the
following analysis. The list of the functionals which have been
retained, and the corresponding EOS parameters, are listed in
Table IV. With the exception of BSk20 and BSk26 models,
the causality condition actually holds also up to the maximum
mass. The resulting M(R) relation is shown in Fig. 7. It is seen
that 1.0M�–1.5M� stars span a radius range ∼3 km wide,
from ∼11.5 to ∼14.2 km.

In the case of some of the Skyrme functionals developed
by the Brussels group [84,85], the M(R) relation has already
been calculated with a unified EOS obtained by numerically
solving in the crust the full Hartree-Fock-Bogoliubov problem
in the Wigner-Seitz cell [86,87]. A comparison with our results
using the simplified CLDM allows quantifying the error which
occurs because of the different approximations employed
to get an analytic model, namely the lack of shell effects,
curvature terms, and in-medium modifications of the surface
tension. This comparison is shown in Fig. 8. We can see that
the estimation of the maximum mass is never affected by the
approximations (the dashed and full lines are very similar for
M � 1M�) while for a fixed mass a deviation is observed in the
radius; deviation which increases as expected with decreasing
mass. We consider that this comparison is representative of
the systematic error which occurs for all functionals due
to the limitations of the model. We have checked that this
mass-dependent error bar is always smaller than the size of the
symbols and width of the lines of all the figures of the present
paper.

V. RESULTS

In the present section we discuss the uncertainties on the
determination of the radius and the crust thickness of a star
associated with the models presented in the previous section.
In the next subsection we will also discuss how the radius
and the crust thickness of NS are related with two properties
at saturation: the incompressibility and the symmetry energy
slope. We will then proceed to impose a set of terrestrial
constraints and select the models that satisfy all constraints,
or miss at most two by less than 10%, and will discuss how
the uncertainties on the determination of the radius and the
crust thickness of a star previously obtained are affected.
The final subsection focuses on the DUrca process and the
possible constraint that could be put on L, the NS radius or the
EOS thanks to the astrophysical observations of thermal states
of NS.

A. Radius and crust thickness

In Fig. 9, the radii of 1.0M�, 1.4M�, and 1.8M� NS for a
purely nucleonic core are plotted as a function of the slope L
and the incompressibility K . We can see that the radii for the
various EOS differ at most by 2.8, 3.0 and 3.7 km for masses of
1.0M�, 1.4M�, and 1.8M�, respectively. The uncertainty on
the radius is connected with the nuclear properties of the EOS
of the models used [88]. In the next subsection we will restrict
ourselves to the models that also satisfy other constraints both
from experiments and from theoretical calculations of pure
neutron matter and will discuss how much this uncertainty
changes.

We can also see from Fig. 9 that the radius appears well
correlated with the slope of the symmetry energy L, especially
for low mass stars. This correlation is still present for the
more massive stars but the dispersion increases with the
mass, as expected. Indeed, in [89] the authors have shown
that the radius of low mass stars is well correlated with the
neutron skin thickness of 208Pb. On the other hand, it has been
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TABLE IV. Nuclear and astrophysical properties of considered Skyrme functionals. Energy per nucleon (Es), compression modulus (K),
symmetry energy (J ), slope (L) and incompressibility (Ksym) of the symmetry energy at the saturation point of uniform symmetric nuclear
matter of density ns. MnoY

max is the maximum NS mass and v2
sound(2M�) is the square of the sound speed at a density equal to the central density

of the 2M� NS. nDU and MDU are respectively the density and mass threshold above which the nucleonic DUrca is switched on.

Functional ns Es K J L Ksym MnoY
max v2

sound(2M�) nDU MDU Ref.
(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (M�) (c2) (fm−3) (M�)

Ska 0.155 −15.99 263.16 32.91 74.62 −78.46 2.22 0.61 0.37 1.23 [73]
Skb 0.155 −16.00 263.0 33.88 47.6 −78.5 2.20 0.63 [73]
SkI2 0.1575 −15.77 241.0 33.4 104.3 70.7 2.17 0.56 0.26 0.92 [74]
SkI3 0.1577 −15.98 258.2 34.83 100.5 73.0 2.25 0.54 0.26 0.92 [74]
SkI4 0.160 −15.95 247.95 29.50 60.39 −40.56 2.18 0.64 0.52 1.64 [74]
SkI5 0.156 −15.85 255.8 36.64 129.3 159.5 2.25 0.51 0.22 0.86 [74]
SkI6 0.159 −15.89 248.17 29.90 59.24 −46.77 2.20 0.62 0.51 1.66 [75]
SLy2 0.161 −15.99 229.92 32.00 47.46 −115.13 2.06 0.78 [76]
SLy230a 0.160 −15.99 229.90 31.99 44.30 −98.3 2.11 0.72 0.82 2.00 [77]
SLy4 0.159 −15.97 230.0 32.04 46.00 −119.8 2.06 0.79 [15]
SkMP 0.157 −15.56 230.87 29.89 70.31 −49.82 2.11 0.66 0.43 1.32 [78]
SkOp 0.160 −15.75 222.36 31.95 68.94 −78.82 1.98 0.55 0.58 1.53 [79]
KDE0V1 0.165 −16.23 227.54 34.58 54.69 −127.12 1.98 0.57 [80]
Sk255 0.157 −16.33 254.96 37.4 95.0 −58.3 2.15 0.61 0.25 0.76 [81]
Sk272 0.155 −16.28 271.55 37.4 91.7 −67.8 2.24 0.59 0.26 0.80 [81]
Rs 0.157 −15.53 236.7 30.58 85.7 −9.1 2.12 0.62 0.32 1.06 [82]
BSk20 0.1596 −16.080 241.4 30.0 37.4 −136.5 2.17 0.77 [83]
BSk21 0.1582 −16.053 245.8 30.0 46.6 −37.2 2.29 0.60 0.45 1.60 [83]
BSk22 0.1578 −16.088 245.9 32.0 68.5 13.0 2.27 0.56 0.33 1.15 [67]
BSk23 0.1578 −16.068 245.7 31.0 57.8 −11.3 2.28 0.58 0.38 1.34 [67]
BSk24 0.1578 −16.048 245.5 30.0 46.4 −37.6 2.29 0.60 0.45 1.60 [67]
BSk25 0.1587 −16.032 236.0 29.0 36.9 −28.5 2.23 0.58 0.47 1.63 [67]
BSk26 0.1589 −16.064 240.8 30.0 37.5 −135.6 2.18 0.76 [67]
SLy9 0.151 −15.80 229.84 31.98 54.86 −81.42 2.16 0.65 0.56 1.72 [76]

discussed in [40,90,91] that the neutron skin thickness is very
sensitive to the density dependence of the nuclear symmetry
energy and, in particular, to the slope parameter L at the
normal nuclear saturation density. The correlation obtained
in [89] corresponds, therefore, to a correlation between the
star radius and the slope L. The authors take a set of four
different models and within each span a wide range of neutron
skin thicknesses by changing the density dependence of the
symmetry energy. The correlation between the star radius
and the neutron skin thickness of 208Pb is particularly strong
for stars with masses 0.5M� and 0.75M�. For M = 1.4M�,
although a clear correlation is still present, the spread of the
distribution is wider showing a larger model dependence. The
behavior was attributed to the stellar matter densities that were
being explored within each type of star: for low mass the
main contribution comes from densities close to the saturation
density where all models behave similarly because most of
them are fitted to finite nucleus properties. The properties
of stars with larger masses are also determined by the high
density EOS, corresponding to a range of densities where the
higher order coefficients in the density expansion of the energy
functional play an increasing role.

Looking now at the radius as a function of the incom-
pressibility, a linear correlation is also observed as indicated
by the nonzero value of the correlation coefficient. However,
the spread of the data for the three masses considered
is considerably larger than when considering correlations

between L and the radii. This can be quantified by looking
at the result of a fit, using a linear regression, of the radius
R for different masses, with a linear function ax + b, where
x = L or K . The result of the fit, including the error bar on
the two fitting parameters, is represented in Fig. 9 as a shaded
area. In the case of R(L) (upper panel), a well defined linear
behavior can be extracted, even if the importance of higher
order terms in the density expansion [92] can be inferred by
the larger dispersion at high mass. In contrast, the error in
the b parameter is so large that no relevant information on K
can be extracted from the radius. This indicates that, as far
as isoscalar properties are concerned, the influence of higher
order terms cannot be neglected. An analytic parametrization
for radii of NS with different masses in terms of properties
of symmetric saturated matter was first discussed in [88]
and a quite complex dependence on K , skewness parameter
K ′ = 27n3

s (∂3ENM/∂n3)ns,δ=0, and L was highlighted.
The crust thickness for the RMF models is plotted as a

function of the star mass in Fig. 10. We do not show results
for the Skyrme parametrizations because the method used to
describe the crust in these models does not allow for a precise
calculation of the crust-core transition density, as explained
before. For the models represented in Fig. 10, no correlations
were found between the crust thickness and the slope L or the
incompressibility K for stars with masses 1.0M�, 1.4M�, and
1.8M�. Excluding the DDHδ model that predicts the smallest
thickness, we have obtained 1.6 < lcr < 2.1 km for a star with
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FIG. 7. Mass-radius relations for Skyrme models. As in Fig. 5,
the horizontal lines indicate the constraints set by the pulsars PSR
J0348+0432 and PSR J1614−2230.

M = 1.0M�, 1.1 < lcr < 1.5 km for 1.4M� and 0.7 < lcr <
1.1 km for 1.8M�. For stars with masses 1.0M� and 1.4M�
the upper limits of the crust thickness are more than 30%
larger than the lower limits. This difference rises to 50% for
the 1.8M� star.

B. Comparison with nuclear constraints

So far, two constraints were imposed on the various EOS
discussed in Sec. IV: the causality and ability to reach the 2M�
mass limit. There are, however, several nuclear constraints
that have been obtained from experiment or microscopic
calculations during the last decade and which set much
stronger conditions on the models. In this subsection we
impose in addition the following set of constraints reviewed in
[95–98]:

(1) Constraint on the energy per particle of neutron matter
as a function of the density n from the calculations of
[94] and of [93] (see Fig. 11 and 12). From [94] we
consider the limiting cases corresponding to the model

FIG. 8. Mass as a function of the radius for the BSk20 and
BSk21 functionals. Full lines: full microscopic HFB calculation from
[84]. Dashed lines: our model for the unified EOS. As in Fig. 5,
the horizontal lines indicate the constraints set by the pulsars PSR
J0348+0432 and PSR J1614−2230.

using a two-nucleon (2N) force without 3N interaction
and to the one with a 2N force and the Urbana IX
3N interaction which approximately cover the present
uncertainty range of ab initio calculations,

(2) Constraint on the incompressibility of infinite nuclear
matter at saturation. Direct fits of ISGMR and IVGMR
experimental data within a macroscopic approach
based on the liquid drop model can lead to very
different values for the K parameter [99–101], but self-
consistent microscopic calculations in the last decade
have lead to a reliable constraint K = 230 ± 40 MeV
[102,103]. The quoted uncertainty include both the
model dependence due to the use of relativistic or
nonrelativistic functionals [102], and the uncertainty
in the extrapolations from the average nuclear density
to the saturation density [103].

(3) Constraints in the J -L plane as compiled in [95,97]
and plotted in Fig. 13:
(a) from neutron skin thickness of 208Pb [104],
(b) from heavy ion collisions (HIC) [105],
(c) from electric dipole polarizability αD [97,106],
(d) from giant dipole resonance (GDR) of 208Pb [107],
(e) from measured nuclear masses [108],
(f) from isobaric analog states (IAS) [109].

In Table V, all our models are confronted with this set
of constraints: Y or N indicate whether the constraint is
satisfied or not, respectively. For the neutron energy per particle
from microscopic calculations we have also considered a
less restrictive constraint increasing by 10% the uncertainty
interval. The constraint on the incompressibility is taken
from [103]. However, in [110] it was discussed that the
uncertainty in the incompressibility is related to the lack of
knowledge of the skewness. Taking both Skyrme interactions
and RMF models, the uncertainty in the skewness is larger
than ±400 MeV, so that the uncertainty of 17% (corresponding
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FIG. 9. Radii of purely nucleonic NS as a function of the symmetry energy slope L (upper plots) and the incompressibility of symmetric
matter K (lower plots) for different masses (1.0M�, 1.4M�, and 1.8M� from left to right). The red dots indicate Skyrme models, the black
ones RMF models. The blue symbols (stars for RMF and a pentagon for SLy9) correspond to models which are at the intersection of all nuclear
constraints in the L-J plane; see Fig. 13. The shaded areas and the solid violet line indicate the result of a linear regression with and without,
respectively, taking into account the error bars in the fitted parameters. The correlation coefficient r is indicated in each plot.

to 40 MeV) obtained for the incompressibility in [103] may
be underestimated taking into account that in their analysis
only three RMF models were considered. We therefore relax
this constraint and consider that NL3, NL3ωρ, and Sk272
also satisfy the constraint corresponding to increasing the
uncertainty from 17% to 18%. This is indicated by the ∗ symbol
in Table V.

Only one model satisfies all the constraints: DDME2.
Increasing the uncertainty interval of the energy per particle
of neutron matter from the calculations of [93] and [94], three
more models can be selected: DD2, NL3ωρ, and SLy9. In
Fig. 9 we present the three selected RMF models with a blue
star and the one Skyrme interaction with a blue pentagon.

In Fig. 14 the mass-radius curves of the selected models
are shown for EOS of purely nucleonic and hyperonic matter
(if available). Although they all have a very similar L—three
of them have L ∼ 55 MeV and for the last one L = 51.2
MeV—the radius uncertainty of a 1.4M� star spanned by these
models is 
R1.4 = 1.30 km defined by the difference between
R1.4(SLy9) = 12.45 km and R1.4(NL3ωρ) = 13.75 km. This
uncertainty reduces to 0.88 km for 1.0M� stars and increases
to 2.34 km for 2.0M� stars. This radius interval is ∼1/3 of the

one that was obtained in Sec. IV for 1.0M� stars and ∼1/2 for
2.0M� stars. The fact that the range of possible radii is larger
for the more massive stars reflects the fact that the high density
range of the EOS is less well constrained than the one close to
and below saturation density.

One property that is very different for all the four models,
represented by a blue mark, is the incompressibility K; see
Fig. 9, bottom panels. The radius of the star is also to some
extent correlated with the incompressibility but, as discussed
above, the uncertainty of the linear correlation is too large to
provide a further constraint.

The same set of experimental constraints employed in this
work has been previously used in [97] with the same aim of
addressing the relation between uncertainties on the nuclear
EOS and NS radii. Using analytic equations between NS radii
and pressure of beta-equilibrated matter, which in turn depends
on L and K , the interval of 12.1 ± 1.1 km was proposed, within
90% confidence, for the radius of 1.4M�.

Finally, let us focus on the crust properties of the se-
lected RMF models, which have been plotted together in
the upper panel of Fig. 10. The dispersion observed in the
crust thickness becomes narrower, corresponding to ∼250 m,
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FIG. 10. Mass vs crust thickness relation for the various RMF
models: noY, Y, and Yss. Line styles correspond to the ones used in
Fig. 5.

which represents ∼30% of the range obtained for all RMF
models.

We can conclude that the present knowledge of L and
K allows determining the NS radius within 1–2 km. This
residual uncertainty appears to be essentially due to the lacking
information on higher order terms, meaning that an increasing
precision in the constraints for L and K is going to improve
this prediction only marginally.

This underlines the importance of independent constraints.
One possibility would be to get information on higher order
coefficients (skewness, symmetry incompressibility, etc.) from
high density laboratory observables.

C. DUrca processes

An interesting way to constrain the EOS could be to exploit
independent astrophysical data, notably from the luminosity
curves of the accreting NS and their interplay with the possible
occurrence of the DUrca process. This connection is explained
in the following.

After their birth in supernova explosions, NS are efficiently
cooled down by neutrino emission during ∼105–106 years (see
[111] and references therein). The simplest possible and most
powerful neutrino process is the so-called nucleonic electron

FIG. 11. Energy per particle of neutron matter as a function of
density n for Skyrme models and constraints by [93] and [94].

DUrca process [112]:

n → p + e− + ν̄e and p + e− → n + νe, (26)

which corresponds to the neutron β decay followed by the
electron capture on the proton. Momentum conservation has
to be satisfied for this process to operate which translates into
the so-called triangle inequalities:

pFn � pFp + pFe, (27)

where pFi is the Fermi momentum of a species i. Such
inequalities impose a minimum proton fraction Y min

p for the
nucleonic DUrca process to occur [113]:

Y min
p = 1

1 + (
1 + x

1/3
e

)3 , (28)

with xe = ne/(ne + nμ). The absence of muons corresponds
to xe = 1 and Y min

p = 1/9 while their inclusion results in an
increase of the value of Y min

p . This minimum proton fraction
translates into a threshold density nDU and mass MDU above
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FIG. 12. Energy per particle of neutron matter as a function of
density n for RMF models and constraints by [93] and [94].

which the DUrca process is active. A process similar to the
one in Eq. (26) but involving muons instead of electrons may
also operate; its threshold density is then slightly larger than
for the electron DUrca process.

Mass and density thresholds for the nucleonic DUrca
process in purely nucleonic cores are given in Tables II and IV
for RMF and Skyrme models, respectively. For some EOS, the
density threshold above which the DUrca process operates
is larger than the central density of the maximum-mass
configuration. In other words, for such EOS the DUrca process
is turned off for all possible masses and does not operate for
any NS configuration. In Fig. 15 the density threshold above

FIG. 13. L and J parameters of all our EOS compared to various
nuclear constraints (see text for details). The white crossed region
corresponds to the intersection of all constraints. EOS fulfilling all
constraints are indicated by blue symbols: a pentagon for the unique
Skyrme model and a star for the three RMF ones.

which the DUrca process operates in a purely nucleonic NS
and the mass of the star with the corresponding central density
are plotted against the slope of the symmetry energy. It reveals
the possible existence of two distinct regions defined by a
threshold on L: LDU � 70 MeV. Every nonhyperonic EOS
with L � LDU has the DUrca process operating in NS above a
mass M < 1.5M�. This is not the case for EOS with L � LDU

as for some EOS the DUrca does not operate at any NS mass
and, for other EOS, it does for masses either above 2M� or
close to 1.5M�. Regarding EOS that fulfill all constraints,
two patterns are to be noted. For SLy9 the DUrca process is
possible for masses larger than 1.72M�. For the three RMF
models, in spite of their similar values of J and L, only the
one with non-density-dependent coupling constants, NL3ωρ,
allows for the DUrca process, although at high density and
masses above 2.5M�.

On the one hand, the thermal state of SAX J1808.4−3658,
the coldest observed transiently accreting NS, can be explained
as shown in [21] by a very large neutrino emission in the core of
the NS that only the very efficient DUrca process can explain.
Interestingly the region where all nuclear constraints in the L-J
plane overlap, as plotted in Fig. 13, corresponds to values of
L that are strictly smaller than the same LDU below which the
DUrca process does not necessarily operate in massive purely
nucleonic NS. Therefore reconciling the nuclear constraints
on L and J with the astrophysical one that the DUrca process
operates in NS might be challenging, as shown by the fact
that out of four EOS fulfilling our set of constraints only one
(SLy9) allows for the DUrca process below 2M�. In other
words astrophysical observations of NS with a low luminosity
might constrain the value of L and consequently the radius as
discussed in Sec. V A. On the other hand, population synthesis
of isolated NS imposes that the DUrca process does not occur
in NS with masses 1.0M�–1.5M� [114], a constraint that
only a small number of EOS satisfy with L � 70 MeV, as
shown in Fig. 15, unless a strong proton superfluidity occurs
in the core of low mass stars [21]. In particular, among the
EOS consistent with our set of nuclear constraints, SLy9,
NL3ωρ for a purely nucleonic interior and an hyperonic one,
and DD2 with hyperons do not have any DUrca process
below 1.5M�.

DUrca processes similar to the nucleonic ones can also
occur in hyperonic NS [115]. Examples relevant for our EOS
are

� → p + l + ν̄l and p + l → � + νl,

− → � + l + ν̄l and � + l → − + νl, (29)

− → 0 + l + ν̄l and 0 + l → − + νl.

The DUrca process involving a given hyperon turns on at a
density very close to the onset density of this specific hyperon
(with the condition that all other species involved in the process
are also present). These density thresholds, or equivalently
mass thresholds, for our RMF hyperonic EOS are given in
Table III together with the same quantity for the nucleonic
DUrca process. In the presence of hyperons the onset of the
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TABLE V. Confrontation of the EOS with the various constraints. For each model the symbols Y and N indicate whether a given constraint
is fulfilled or not, respectively. For the constraints from [93] and [94] on the energy per particle of neutron matter, the interval of density over
which the constraint is fulfilled is also given (in fm−3). The ∗ symbol indicates models for which the uncertainty on K has been increased from
17% to 18%; see text for details. In boldface we indicate the EOS that satisfy all constraints and that are also represented by blue marks in Fig. 9.

Model Hebeler Hebeler + 10% Gandolfi Gandolfi + 10% K Neutron skin HIC αD GDR masses IAS

NL3 N 0.093–0.108 N 0.084–0.120 N 0.096–0.112 N 0.087–0.125 Y* N N N N N N
NL3ωρ N 0.051–0.155 Y 0.050–0.155 N 0.068–0.155 Y 0.050–0.155 Y* Y Y Y Y Y Y
DDME2 Y 0.050–0.155 Y 0.050–0.155 N 0.063–0.155 Y 0.050–0.155 Y Y Y Y Y Y Y
GM1 N 0.124–0.155 N 0.113–0.155 N 0.130–0.155 N 0.118–0.155 N N Y N N N N
TM1 N 0.089–0.103 N 0.078–0.116 N 0.092–0.109 N 0.082–0.122 N N N N N N N
DDHd N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 Y N Y N N N N
DD2 N 0.079–0.155 Y 0.050–0.155 N 0.090–0.155 N 0.058–0.155 Y Y Y Y Y Y Y
BSR2 N 0.083–0.155 Y 0.050–0.155 N 0.099–0.155 Y 0.050–0.155 Y Y Y Y N Y N
BSR6 N 0.082–0.101 N 0.070–0.120 N 0.086–0.108 N 0.074–0.131 Y N Y Y Y N Y
Ska N 0.099–0.140 N 0.082–0.155 N 0.106–0.153 N 0.088–0.155 Y N Y Y N Y Y
Skb N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 N 0.155–0.155 Y Y N N N N N
SkI2 N 0.123–0.155 N 0.113–0.155 N 0.128–0.155 N 0.118–0.155 Y N N N N N N
SkI3 N 0.110–0.143 N 0.096–0.155 N 0.116–0.151 N 0.102–0.155 Y N Y N N Y N
SkI4 N 0.155–0.155 N 0.139–0.155 N 0.155–0.155 N 0.148–0.155 Y Y Y N N N N
SkI5 N 0.113–0.132 N 0.104–0.145 N 0.116–0.137 N 0.108–0.150 Y N N N N N N
SkI6 N 0.150–0.155 N 0.119–0.155 N 0.155–0.155 N 0.131–0.155 Y Y Y Y N Y N
SLy2 N 0.081–0.155 Y 0.050–0.155 N 0.065–0.155 Y 0.050–0.155 Y Y N N Y Y Y
SLy230a N 0.092–0.155 N 0.061–0.155 N 0.081–0.155 N 0.053–0.155 Y Y N N N Y Y
SLy4 N 0.080–0.155 Y 0.050–0.155 N 0.066–0.155 Y 0.050–0.155 Y Y N N Y Y Y
SLy9 N 0.057–0.155 Y 0.050–0.155 Y 0.050–0.155 Y 0.050–0.155 Y Y Y Y Y Y Y
SkMP N 0.143–0.155 N 0.127–0.155 N 0.149–0.155 N 0.133–0.155 Y Y Y N N N N
SkOp N 0.117–0.155 N 0.099–0.155 N 0.126–0.155 N 0.106–0.155 Y N Y Y N Y N
KDE0v1 N 0.155–0.155 N 0.051–0.155 N 0.125–0.155 Y 0.050–0.155 Y Y N N N N N
Sk255 N 0.082–0.101 N 0.068–0.120 N 0.086–0.108 N 0.073–0.130 Y N N N N N N
Sk272 N 0.070–0.089 N 0.050–0.110 N 0.075–0.096 N 0.058–0.121 Y* N N N N N N
Rs N 0.137–0.155 N 0.125–0.155 N 0.142–0.155 N 0.130–0.155 Y N N N N N N
BSk20 N 0.056–0.155 Y 0.050–0.155 Y 0.050–0.155 Y 0.050–0.155 Y Y N N Y Y Y
BSk21 N 0.057–0.155 Y 0.050–0.155 N 0.050–0.070 Y 0.050–0.155 Y Y Y Y Y Y N
BSk22 N 0.104–0.155 Y 0.050–0.155 N 0.117–0.155 N 0.082–0.155 Y N Y Y N Y N
BSk23 N 0.102–0.155 Y 0.050–0.155 N 0.122–0.155 Y 0.050–0.155 Y Y Y Y N Y N
BSk24 N 0.058–0.155 Y 0.050–0.155 N 0.051–0.072 Y 0.050–0.155 Y Y Y Y Y Y N
BSk25 N 0.072–0.121 N 0.056–0.155 N 0.067–0.091 N 0.051–0.155 Y N N Y Y Y N
BSk26 N 0.056–0.155 Y 0.050–0.155 Y 0.050–0.155 Y 0.050–0.155 Y Y N N Y Y Y

FIG. 14. Mass-radius relations for the models fulfilling all nuclear
constraints. As in Fig. 5, the horizontal lines indicate the constraints
set by the pulsars PSR J0348+0432 and PSR J1614−2230.

nucleonic DUrca process occurs at

(
np

np + nn

)
= 1

1 + (
1 + xY

e
1/3)3 , xY

e = ne

ne + nμ − nch
Y

,

(30)
where nch

Y = −n�− + n�+ − n− .
The hyperonic DUrca processes have weaker emissivities

than their nucleonic counterparts [115], but for some EOS they
actually turn on at densities lower than the threshold for the
nucleonic process. For the hyperonic version of our selected
EOS—DD2, DDME2, and NL3ωρ—the mass thresholds are
1.52M�, 1.41M�, and 1.58M�, respectively. Nevertheless, a
systematic study of the dependence of these thresholds on
the poorly constrained hyperon properties and on the nuclear
parameters (e.g., L) is beyond the scope of this paper and will
be the subject of future works. It should be reminded that in
the presence of hyperons the nucleonic DUrca process occurs
at lower densities than expected in purely nucleonic stars due
to the smaller neutron fraction, because hyperons contribute
to both ρ and charge density. However, the condition for the
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FIG. 15. Density threshold nDU (upper plot) and mass threshold
MDU (lower plot) for the nucleonic DUrca process to operate in
purely nucleonic NS versus the slope of the symmetry energy L. The
convention for colors and symbols is the same as in Fig. 9. Empty
symbols next to the upper x axis indicate EOS for which nDU is larger
than the central density of the most-massive NS. In the lower plot,
the error bars indicate the mass range over which the DUrca process
operates.

nucleon DUrca process is still given by the inequality (27), and
a similar one with electrons replaced by muons. This could be
an indication that it is necessary to take into account hyperons
in order to reconcile an efficient DUrca process and an L
restricted to the interval allowed by terrestrial experiments.

VI. CONCLUSION

The present study has two main objectives: (i) to illustrate
the uncertainty that arises in the star radius determination when
a non-unified EOS is used for the integration of the TOV
equations and (ii) to quantify the same uncertainty taking a
set of causal unified EOS that are consistent with the 2M�
maximum-mass limit, with or without considering an extra set
of constraints.

The unified EOS that are presented have been chosen among
the nuclear RMF models and Skyrme interactions. In the latter
case we have only considered models with causal EOS for
densities at least as high as the central density of a 2M�
star. We have also considered EOS with hyperonic degrees
of freedom for all the chosen RMF models. Except for DDHδ
and TM1, all the other hyperonic EOS could still describe
a 2M� star when obtained using SU(6) symmetry to fix the
vector meson coupling, experimental results to fix the scalar
meson couplings, and, considering the mesons with hidden
strangeness, including the φ meson and excluding the σ ∗
meson.

The unified EOS were built using different approaches
for the RMF and Skyrme models. For the RMF EOS we
take the same outer crust EOS [24] for all the models, the
inner crust is obtained within a Thomas Fermi calculation
performed allowing for nonspherical clusters according to
[38,55], and the core is described by the homogeneous matter
EOS. The EOS are not completely unified due to the outer

crust EOS, since this EOS is mainly fixed by experimental
measurements; the effect of this approximation is however
very small. Considering the nonrelativistic unified EOS: at
low density the nucleus A and Z numbers, as well as the
volume VWS of the Wigner-Seitz cell and the density of the free
neutron component after drip, are variationally determined.
The free neutrons are described with the same functional used
for the calculation of the core EOS. Concerning the nucleus,
it is modeled with a compressible liquid-drop model with
parameters fitted from Hartree-Fock calculations employing
the same Skyrme functional. Modifications of cluster energy
functionals due to in-medium surface corrections, disregarded
by the present modeling, will be addressed within the extended
Thomas-Fermi approximation in a forthcoming paper. With
the same occasion the correlations between the crust-core
transition density, crust thickness, and the properties of
uniform nuclear matter will be also discussed.

It was shown that for the non-unified EOS the crust-core
matching may quite strongly affect the radius and crust thick-
ness of the less massive stars. For our examples, depending
on the matching procedure the difference in the radius and
in crust thickness for a 1.0M� star can be as large as ∼1 and
∼0.5 km, respectively. This corresponds to relative differences
as large as ∼4% for the radius and 30% for the crust thickness.
The largest uncertainties occur when the density dependence
of the symmetry energy is not the same in the crust and the
core (i.e., different slopes L characterize the two EOS). This
uncertainty may be minimized if EOS for the crust and the
core with similar saturation properties are considered, when a
unified EOS is not available.

Taking the initial set of EOS we have shown that the spanned
range of radii is ∼3 and ∼4 km wide for 1.0M� and 2.0M�
respectively. Imposing further constraints from experiment
and theoretical calculations of neutron matter, these intervals
for radii are reduced respectively, to ∼1 and 2 km. Although
smaller, this uncertainty is still large and reflects mostly our
ignorance on the high density EOS, or equivalently on the
higher order terms of the density expansion of the energy
functional. Additional uncertainties arise when the hyperon
degrees of freedom are available. If hyperons are considered
it is still possible to get 2M� stars, meaning that they cannot
be simply neglected. Stars with a mass �1.5M� typically
contain hyperons in their core, and their presence is felt for the
larger masses giving rise to a reduction of the star radius, and
increasing uncertainties due to the largely unknown hyperon
couplings.

Taking the whole set of models discussed in Sec. IV, we
have confirmed the existence of a linear correlation between
the symmetry energy slope and the radius. This correlation is
stronger for the less massive stars when the central densities
of the stars are below 2.5n0, a conclusion first drawn in
[89]. When larger masses are considered the spread of data
increases, reflecting the lack of constraint to be imposed on the
high density segment of the EOS. Considering the correlation
between the incompressibility and the radius, the spread of
data is independent of the mass of the star and prevents from
extracting a clear correlation. These results imply that further
tighter constraints on L and K are not expected to improve the
radius uncertainty in an important way.
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A very promising avenue is given by the potential constraint
imposed by the necessity of DUrca processes to operate in NS
in order to explain the observations of thermal states of some
of them as shown in [21]. Indeed, the restricted L interval
compatible with present terrestrial constraints is close to the
threshold for DUrca process in nucleonic stars. This means
that only a limited number of functionals can at the same
time fulfill the L constraint and allow DUrca processes in NS.
However, it was also shown that if hyperons are included, the
nucleonic DUrca process is shifted to lower densities, possibly
allowing us to reconcile an efficient DUrca process and an L
restricted to the interval allowed by terrestrial experiments.
This effect could be an indication of the presence of hyperons
in the interior of a neutron star. A further constraint might
be obtained if the mass of a NS with a low luminosity is
measured.

Having shown the importance of using a unified EOS, all
the studied EOS are accessible in the Supplemental Material
and via the CompOSE database [20].
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APPENDIX: LINEAR MATCHING

Let us assume that we want to perform the matching
between an EOS for the core and one for the crust in the
region defined by P1,ρ1,μ1 = (P1 + ρ1)/n1 (highest pressure
in the crust) and P2,ρ2,μ2 = (P2 + ρ2)/n2 (lowest pressure in
the core). For a linear matching of the form P = a(ρ − ρ̃) the
dependence P (μ) reads

P = P1 + 
P
μb − (μ1)b

(μ2)b − (μ1)b
, b = 1 + a

a
, (A1)

where 
P = P2 − P1. Equation (A1) does not guarantee that
the function P (ρ) is continuous at P = P1 and P = P2. In
general one has density jumps at these points corresponding
to first-order phase transitions (see Fig. 4):

P = P1 : n1 → n′
1, ρ1 → ρ ′

1, (A2)

P = P2 : n′
2 → n2, ρ ′

2 → ρ2, (A3)

P1 < P < P2, ρ ′
1 < ρ < ρ ′

2, P = a(ρ − ρ̃). (A4)

TABLE VI. Numerical values for the matching presented in Fig. 4.

μ2/μ1 b1 b2 a1 a2 
P/
ρ

1.0476 11.953 13.0004 0.0913 0.0833 0.088

From the continuity of μ at P1 and P2 we get

bP2 + ρ̃

bP1 + ρ̃
= q, q ≡

(
μ2

μ1

)b

. (A5)

Finally ρ̃ is given by

ρ̃ = b
P2 − qP1

q − 1
. (A6)

The densities ρ ′
1, ρ ′

2 for a linear matching at P1 and P2 are
given by the equations

ρ ′
1 = ρ̃ + P1/a = b

q − 1

P − P1, (A7)

ρ ′
2 = ρ̃ + P2/a = ρ ′

1 + 
P/a = bq

q − 1

P − P2. (A8)

The necessary conditions for the Rayleigh-Taylor stability in
a star with a phase transition are ρ ′

1 � ρ1 and ρ ′
2 � ρ2, i.e.,

b

q − 1

P � P1 + ρ1 = n1μ1,

b

q − 1
� n1μ1


P
, (A9)

bq

q − 1

P � P2 + ρ2 = n2μ2,

bq

q − 1
� n2μ2


P
. (A10)

Defining the function

f (x) = x

(μ2/μ1)x − 1
, (A11)

we get

f (b) � n1μ1


P
, f (−b) � n2μ2


P
. (A12)

The equalities in Eq. (A12) correspond to the disappearance of
the density jump at P1 and P2 respectively. The two solutions
(b1, b2) of the equations

f (b1) = n1μ1


P
, f (−b2) = n2μ2


P
(A13)

define the maximum value of b and the minimum of a =
1/(b − 1) for which a linear matching is possible:

b < bmax ≡ min(b1,b2), a > amin ≡ max(a1,a2).

(A14)

Table VI gives numerical values for the example discussed
in the text and presented in Fig. 4 with 
ρ ≡ ρ2 − ρ1.
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