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Abstract

We give explicit inverses of tridiagonal 2-Toeplitz and 3-Toeplitz matrices which general-
ize some well-known results concerning the inverse of a tridiagonal Toeplitz matrix. © 2001
Elsevier Science Inc. All rights reserved.

AMS classification: 33C45; 42C05

Keywords: Invertibility of matrices;r-Toeplitz matrices; Orthogonal polynomials

1. Introduction

In recent years the invertibility of nonsingular tridiagonal or block tridiagonal
matrices has been quite investigated in different fields of applied linear algebra (for
historical notes see [8]). Several numerical methods, more or less efficient, have risen
in order to give expressions of the entries of the inverse of this kind of matrices.
Though, explicit inverses are known only in a few cases, in particular when the tri-
diagonal matrix is symmetric with constant diagonals and subject to some restric-
tions (cf. [3,8,10]). Furthermore, Lewis [5] gave a different way to compute other
explicit inverses of nonsymmetric tridiagonals matrices.

In [1], Gover defines a tridiagonal 2-Toeplitz matrix of ordern, as a matrixA =
(aij ), whereaij = 0 if |i − j | > 1 andaij = akl if (i, j) ≡ (k, l)mod 2, i.e.,
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A =




a1 b1
c1 a2 b2

c2 a1 b1
c1 a2 b2

c2 a1
...

...
.. .



n×n

. (1)

Similarly, a tridiagonal 3-Toeplitz matrix (n× n) is of the form

B =




a1 b1
c1 a2 b2

c2 a3 b3
c3 a1 b1

c1 a2 b2
c2 a3 b3

c3 a1
...

...
. . .



n×n

. (2)

Making use of the theory of orthogonal polynomials, we will give the explicit in-
verse of tridiagonal 2-Toeplitz and 3-Toeplitz matrices, based on recent results from
[1,6,7]. As a corollary, we will obtain the explicit inverse of a tridiagonal Toeplitz
matrix, i.e., a tridiagonal matrix with constant diagonals (not necessarily symmetric).
Different proofs of the results by Kamps [3,4] involving the sum of all the entries of
the inverse can be simplified.

Throughout this paper, it is assumed that all the matrices are invertible.

2. Inverse of a tridiagonal matrix

Let T be ann× n real nonsingular tridiagonal matrix

T =




a1 b1 0
c1 a2 b2

c2
...

...
.. .

. . . bn−1
0 cn−1 an



. (3)

DenoteT −1 = (αij ). In [5] Lewis proved the following result.

Lemma 2.1. Let T be the matrix(3) and assume thatb` /= 0 for ` = 1, . . . , n− 1.
Then

αji = γijαij when i < j,
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where

γij =
j−1∏
`=i

c`

b`
.

Of course this reduces toαij = αji , whenT is symmetric.
Using this lemma, one can prove that there exist two finite sequences{ui} and

{vi} (i = 1, . . . , n− 1) such that

T −1 =




u1v1 u1v2 u1v3 · · · u1vn
γ12u1v2 u2v2 u2v3 · · · u2vn
γ13u1v3 γ23u2v3 u3v3 · · · u3vn

...
...

...
. . .

...

γ1,nu1vn γ2,nu2vn γ3,nu3vn · · · unvn


 . (4)

Since{ui} and{vi} are only defined up to a multiplicative constant, we makeu1 = 1.
The following result shows how to compute{ui} and{vi}. The determination of these
sequences is very similar to the particular case studied in [8], where the reader may
check for details.

Lemma 2.2. (i) The{vi} (i = 1, . . . , n− 1) can be computed from

v1 = 1

d1
, vk = −bk−1

dk
vk−1, k = 2, . . . , n,

where

dn = an, di = ai − bici

di+1
, i = n− 1, . . . ,1.

(ii) The{ui} (i = 1, . . . , n− 1) can be computed from

un = 1

δnvn
, uk = −bk

δk
uk+1, k = n− 1, . . . ,1,

where

δ1 = a1, δi = ai − bi−1ci−1

δi−1
, i = 2, . . . , n− 1.

Notice that forcentro-symmetricmatrices, i.e.,aij = an+1−i,n+1−j , we have

vi = un+1−i .

The following proposition is known in the literature. We give a proof based on the
lecture of [8].

Theorem 2.1. Let T be then× n tridiagonal matrix defined in(3) and assume that
b` /= 0 for ` = 1, . . . , n− 1. Then
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(T −1)ij =



(−1)i+j bi · · · bj−1

dj+1 · · · dn
δi · · · δn if i 6 j,

(−1)i+j cj · · · ci−1
di+1 · · · dn
δj · · · δn if i > j

(with the convention that empty product equals1).

Proof. Let us assume thati 6 j . Then

(T −1)ij = uivj = (−1)n−i
bi · · · bn−1

δi · · · δnvn × (−1)j−1 b1 · · · bj−1

d1 · · · dj .

But

vn = (−1)n−1b1 · · · bn−1

d1 · · · dn .

Therefore

(T −1)ij =(−1)n−i bi · · · bn−1

δi · · · δn × (−1)n−1 d1 · · · dn
b1 · · · bn−1

× (−1)j−1b1 · · · bj−1

d1 · · · dj
=(−1)i+j bi · · · bj−1

dj+1 · · · dn
δi · · · δn . �

If we set

δi = θi

θi−1
, θ0 = 1, θ1 = a1, (5)

we get the recurrence relation

θi = aiθi−1 − bi−1ci−1θi−2;
and if we now put

di = φi

φi+1
, φn+1 = 1, φn = an, (6)

we get the recurrence relation

φi = aiφi+1 − biciφi+2.

As a consequence, we will achieve

(T −1)ij =


(−1)i+j bi · · · bj−1θi−1φj+1/θn if i 6 j,

(−1)i+j cj · · · ci−1θj−1φi+1/θn if i > j.

(7)

These are the general relations given by Usmani [9], which we will use throghout
this paper. Notice that

θn = δ1 · · · δn = detT .
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3. Chebyshev polynomials of the second kind

In the next it is useful to consider the set of polynomials{Un}n>0, such that each
Un is of degree exactlyn, satisfying the recurrence relation

Un+1(x) = 2xUn (x)− Un−1(x), n > 1

with initial conditions

U0 = 1 and U1 = 2x.

These polynomials are calledChebyshev polynomials of the second kindand they
have the form

Un(x) = sin(n+ 1)θ

sinθ
, where cosθ = x,

when|x| < 1. When|x| > 1, they have the form

Un(x) = sinh(n+ 1)θ

sinhθ
, where coshθ = x.

In particular

Un(±1) = (±1)n(n+ 1).

In any case, if|x| /= 1, then

Un(x) = rn+1+ − rn+1−
r+ − r−

,

where

r± = x ±
√
x2 − 1

are the two solutions of the quadratic equationr2 − 2xr + 1 = 0.
The following proposition is a slight extension of Lemma 2.5 of Meurant [8].

Lemma 3.1. Fix a positive integer numbern and leta andb be nonzero real num-
bers such thatUi(a/2b) /= 0 for all i = 1,2, . . . , n. Consider the recurrence relation

α1 = a, αi = a − b2

αi−1
, i = 2, . . . , n.

Under these conditions, if a = ±2b, then

αi = ±b(i + 1)

i
.

Otherwise

αi = b
ri+1+ − ri+1−
ri+ − ri−

,
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where

r± = a ± √
a2 − 4b2

2b

are the two solutions of the quadratic equationr2 − (a/b)r + 1 = 0.

Proof. Let us assume thata /= ±2b (otherwise it is trivial) and setαi = βi/βi−1.
Then

βi − aβi−1 + b2βi−2 = 0, β0 = 1, β1 = a,

henceβi = biUi(a/2b) and the conclusion follows. �

4. Inverse of a tridiagonal 2-Toeplitz matrix

In this section we will determine the explicit inverse of a matrix of type (1). By
Theorem 2.1, this is equivalent to determineδi anddi, i.e., by (7) and transformations
(5) and (6),θi andφi . So, to evaluateθi , we have

θ0 = 1, θ1 = a1,

θ2i = a2θ2i−1 − b1c1θ2i−2,

θ2i+1 = a1θ2i − b2c2θ2i−1.

Making the change

zi = (−1)iθi,

we get the relations

z0 = 1, z1 = −a1,

z2i = −a2z2i−1 − b1c1z2i−2,

z2i+1 = −a1z2i − b2c2z2i−1.

According to the results in [6],

zi = Qi(0),

whereQi is a polynomial of degree exactlyi, defined by the recurrence relation

Qi+1(x) = (x − β̃i)Qi(x)− γ̃iQi−1(x), (8)

where{
β̃2j = a1,

β̃2j+1 = a2,
and

{
γ̃2j = b2c2,

γ̃2j+1 = b1c1,
(9)

and initial conditionsQ0(x) = 1 andQ1(x) = x − β̃0.
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The solution of the recurrence relation (8) with coefficients (9) is

Q2i (x) = Pi [π2(x)] , Q2i+1(x) = (x − a1)P
∗
i [π2(x)] , (10)

where

π2(x) = (x − a1)(x − a2), (11)

P ∗
i (x) =

(√
b1b2c1c2

)i
Ui

(
x − b1c1 − b2c2

2
√
b1b2c1c2

)
, (12)

and

Pi(x)=
(√
b1b2c1c2

)i [
Ui

(
x − b1c1 − b2c2

2
√
b1b2c1c2

)

+ βUi−1

(
x − b1c1 − b2c2

2
√
b1b2c1c2

)]
, (13)

with β2 = b2c2/b1c1.We may conclude that

θi = (−1)iQi(0).

Now, to evaluateφi we put

ψi = φn+1−i ,
for i = 1, . . . , n, and we have to distinguish the cases when the ordern of the matrix
(1) is odd and when it is even.

First let us suppose thatn is odd. Then we have

ψ0 = 1, ψ1 = a1,

ψ2i = a2ψ2i−1 − b2c2ψ2i−2,

ψ2i+1 = a1ψ2i − b1c1ψ2i−1.

Following the same steps as in the previous case, we obtain

ψi = (−1)iQi(0),

i.e.,

φi = (−1)iQn+1−i (0),
whereQi(x) is the same as (10) but withβ2 = b1c1/b2c2 in (13). Notice that if
b1c1 = b2c2, thenθi = φn+1−i .

If n is even, we get

ψ0 = 1, ψ1 = a2,

ψ2i = a1ψ2i−1 − b1c1ψ2i−2,

ψ2i+1 = a2ψ2i − b2c2ψ2i−1.

Therefore

ψi = (−1)iQi(0),
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i.e.,

φi = (−1)i+1Qn+1−i (0),

where

Q2i (x) = Pi [π2(x)] , Q2i+1(x) = (x − a2)P
∗
i [π2(x)] ,

with π2(x),Pi(x) andP ∗
i (x) the same as in (11), (13) and (12), respectively. Observe

that if a1 = a2, thenθi = φn+1−i .
We have determined completely theθi ’s andφi ’s of (7 ) – thus the inverse of the

matrix – in the case of a tridiagonal 2-Toeplitz matrix (1).

Theorem 4.1. Let A be the tridiagonal matrix(1),with a1a2 /= 0 andb1b2c1c2 > 0.
Put

π2(x) :=(x − a1)(x − a2), β :=√b2c2/b1c1

and let{Qi(·; α, γ )} be the sequence of polynomials defined by

Q2i (x; α, γ )=
(√
b1b2c1c2

)i [
Ui

(
π2(x)− b1c1 − b2c2

2
√
b1b2c1c2

)

+γUi−1

(
π2(x)− b1c1 − b2c2

2
√
b1b2c1c2

)]

Q2i+1(x; α, γ ) = (x − α)
(√
b1b2c1c2

)i
Ui

(
π2(x)− b1c1 − b2c2

2
√
b1b2c1c2

)
,

whereα andγ are some parameters. Under these conditions,

(A−1)ij =



(−1)i+j bb(j−i)/2c

pi b
b(j−i+1)/2c
qi θi−1φj+1/θn if i 6 j,

(−1)i+j cb(j−i)/2c
pj c

b(j−i+1)/2c
qj θj−1 φi+1/θn if i > j,

(14)

wherep` = (3 − (−1)`)/2, q` = (3 + (−1)`)/2, bzc denotes the greater integer
less or equal to the real numberz,

θi = (−1)iQi (0; a1, β) , (15)

and

φi =


(−1)iQn+1−i (0; a1,1/β) if n is odd,

(−1)i+1Qn+1−i (0; a2, β) if n is even.

Remark. As we already noticed, under the conditions of Theorem 4.1, ifn is odd
andb1c1 = b2c2, thenθi = φn+1−i ; and if n is even anda1 = a2, then alsoθi =
φn+1−i .
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As a first application, let us consider a classical problem on the inverse of a tridi-
agonal Toeplitz matrix. Suppose thata1 = a2 = a, b1 = b2 = b andc1 = c2 = c in
(1), witha /= 0 andbc > 0. Therefore, we have then× n tridiagonal Toeplitz matrix

T =




a b 0
c a b

c a
. . .

. . .
. . . b

0 c a



. (16)

According to (14),

(T −1)ij =


(−1)i+j bj−i θi−1 φj+1/θn if i 6 j,

(−1)i+j ci−j θj−1φi+1/θn if i > j.

It is well-known and we can easily check using elementary trigonometry that

U2i+1(x) = 2xUi
(
2x2 − 1

)
.

Sinceβ = 1 and

Ui

(
a2 − 2bc

2bc

)
= Ui

(
2

(
a

2
√
bc

)2

− 1

)
=

√
bc

a
U2i+1

(
a

2
√
bc

)
,

from (15) we get

θi =
(√
bc
)i
Ui

(
a

2
√
bc

)
,

and taking into account the above remark theφi ’s can be computed using theθi ’s,
giving

φi = θn+1−i =
(√
bc
)n+1−i

Un+1−i
(

a

2
√
bc

)
.

Therefore, the next result comes immediately.

Corollary 4.1. Let T be the matrix in(16) and defined :=a/2√
bc. The inverse is

given by

(T −1)ij =




(−1)i+j bj−i(√
bc
)j−i+1

Ui−1(d)Un−j (d)
Un(d)

if i 6 j,

(−1)i+j ci−j(√
bc
)i−j+1

Uj−1(d)Un−i (d)
Un(d)

if i > j.
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This result is well-known. It can be deduced, e.g., using results in the book of
Heinig and Rost [2, p. 28]. The next corollary is Theorem 3.1 of Kamps [3].

Corollary 4.2. LetR be then-square matrix

R =




a b 0
b a b

b a
. . .

. . .
. . . b

0 b a



. (17)

The inverse is given by

(R−1)ij =



(−1)i+j 1

b

Ui−1(a/2b)Un−j (a/2b)
Un(a/2b)

if i 6 j,

(−1)i+j 1

b

Uj−1(a/2b)Un−i (a/2b)
Un(a/2b)

if i > j.

We consider now a second application. In [3,4], the matrices of type (17), with
a > 0, b /= 0 anda > 2|b|, arose as the covariance matrix of one-dependent ran-
dom variablesY1, . . . , Yn, with same expectation. Let us consider the least squares
estimator

µ̂opt = 1tR−1Y

1tR−11
,

where1 = (1, . . . ,1) andY = (Y1, . . . , Yn)
t, which estimates the parameterµ equal

to the common expectation of theYi ’s, with variance

V
(
µ̂opt

) = 1

1tR−11
.

According to Kamps, the estimatorµ̂opt is the best unbiased estimator based onY .
So, the sum of all the entries of the inverse ofR, 1tR−11, has an important role in the
determination of this estimator and therefore in the computation of the varianceV

(µ̂opt). Kamps used in [3] some sum and product formulas involving different kinds
of Chebyshev polynomials. We will prove the same results in a more concise way.

Corollary 4.3. The sumsi of the ith row (or column) of R−1, for i = 1, . . . , n is
given by

si = 1 + b(σ1i + σ1,n−i+1)

a + 2b
,

whereσij = (R−1)ij , wheni 6 j .

Proof. By Corollary 4.2, fori 6 j ,
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σij = (−1)i+j 1

b

(
ri+ − ri−

) (
r
n−j+1
+ − r

n−j+1
−

)
(r+ − r−)

(
rn+1+ − rn+1−

) ,

where

r± = a ± √
a2 − 4b2

2b
.

Thus

si =
i−1∑
j=1

σji +
n∑
j=i

σij .

By the sum of a geometric progression and the fact that

r+r− = 1,

we have

i−1∑
j=1

σji = b (σ1i + σii )

a + 2b
+ 1

a + 2b

(
ri+1+ − ri+1−

) (
rn−i+1+ − rn−i+1−

)
(r+ − r−)

(
rn+1+ − rn+1−

)
and

n∑
j=i

σij = b
(
σ1,n−i+1 − σii

)
a + 2b

− 1

a + 2b

(
ri+ − ri−

) (
rn−i+ − rn−i−

)
(r+ − r−)

(
rn+1+ − rn+1−

) .
Finally(

ri+1+ − ri+1−
) (
rn−i+1+ − rn−i+1−

)
−
(
ri+ − ri−

) (
rn−i+ − rn−i−

)
= (r+ − r−)

(
rn+1+ − rn+1−

)
. �

The previous theorem says thatsi depends only on the first row ofR−1. In fact
(as the following result says) the sum of all entries ofR−1 depends only onσ11 and
σ1n.

Corollary 4.4.

1tR−11 = n+ 2bs1
a + 2b

.

5. Inverse of a tridiagonal 3-Toeplitz matrix

In an analogous way of the 2-Toeplitz matrices, we may ask about the inverse of a
tridiagonal 3-Toeplitz matrix. To solve this case, we have to computeθi andφi in (7).
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For θi , we have

θ0 = 1, θ1 = a1,

θ3i = a3θ3i−1 − b2c2θ3i−2,

θ3i+1 = a1θ3i − b3c3θ3i−1,

θ3i+2 = a2θ3i+1 − b1c1θ3i .

Making the change

zi = (−1)iθi,

we get the relations

z0 = 1, z1 = −a1,

z3i = −a3z3i−1 − b2c2z3i−2,

z3i+1 = −a1z3i − b3c3z3i−1,

z3i+2 = −a2z3i+1 − b1c1z3i .

According to the results in [7],

zi = Qi(0),

whereQi is a polynomial of degree exactlyi, defined according to

Qi+1(x) = (x − β̃i)Qi(x)− γ̃iQi−1(x),

where

β̃3j = a1,

β̃3j+1 = a2,

β̃3j+2 = a3,

and



γ̃3j = b3c3,

γ̃3j+1 = b1c1,

γ̃3j+2 = b2c2.

(18)

The solution of the recurrence relation (8) with coefficients (18) is

Q3i (x) = Pi [π3 (x)] + b3c3 (x − a2) Pi−1 [π3 (x)] ,

Q3i+1(x) = (x − a1)Pi [π3 (x)] + b1c1b3c3Pi−1 [π3 (x)] ,

Q3i+2(x) = [(x − a1)(x − a2)− b1c1] Pi [π3 (x)] ,

where

π3(x) =
∣∣∣∣∣∣
x − a1 1 1
b1c1 x − a2 1
b3c3 b2c2 x − a3

∣∣∣∣∣∣
and

Pi(x) =
(
2
√
b1b2b3c1c2c3

)i [
Ui

(
x − b1c1 − b2c2 − b3c3

2
√
b1b2b3c1c2c3

)]
.
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We may conclude that

θi = (−1)iQi(0).

In order to compute theφi ’s, we define

ψi = φn+1−i
for i = 1, . . . , n. In this situation, we have to distinguish three cases. Ifn ≡ 0
(mod 3), then

ψ0 = 1, ψ1 = a3,

ψ3i = a1ψ3i−1 − b1c1ψ3i−2,

ψ3i+1 = a3ψ3i − b3c3ψ3i−1,

ψ3i+2 = a2ψ3i+1 − b2c2ψ3i .

If n ≡ 1 (mod 3), then

ψ0 = 1, ψ1 = a1,

ψ3i = a2ψ3i−1 − b2c2ψ3i−2,

ψ3i+1 = a1ψ3i − b1c1ψ3i−1,

ψ3i+2 = a3ψ3i+1 − b3c3ψ3i ,

and ifn ≡ 2 (mod 3), then

ψ0 = 1, ψ1 = a2,

ψ3i = a3ψ3i−1 − b3c3ψ3i−2,

ψ3i+1 = a2ψ3i − b2c2ψ3i−1,

ψ3i+2 = a1ψ3i+1 − b1c1ψ3i .

It is clear that these three recurrence relations can be solved by a similar process
as for the computation of theθi ’s (mutatis mutandis). Following in this way, we can
state the next proposition.

Theorem 5.1. Let B be the tridiagonal matrix(2), with a1a2a3 /= 0 andb1b2b3c1c2
c3 > 0. Let

π3

(
a b c

α β γ
; x
)

:=
∣∣∣∣∣∣
x − a 1 1
α x − b 1
γ β x − c

∣∣∣∣∣∣ ,
Pi

(
a b c

α β γ
; x
)

:=2
√
αβγ

×Ui
(

1

2
√
αβγ

[
π3

(
a b c

α β γ
; x
)

− (a + b + c)

])
,



20 C.M. da Fonseca, J. Petronilho / Linear Algebra and its Applications 325 (2001) 7–21

Q3i

(
a b c

α β γ
; x
)

:= Pi

(
a b c

α β γ
; x
)

+γ (x − b) Pi−1

(
a b c

α β γ
; x
)
,

Q3i+1

(
a b c

α β γ
; x
)

:= (x − a) Pi

(
a b c

α β γ
; x
)

+αγ Pi−1

(
a b c

α β γ
; x
)
,

Q3i+2

(
a b c

α β γ
; x
)

:= [(x − a)(x − b)− α] Pi

(
a b c

α β γ
; x
)
,

wherea, b, c, α, β andγ are some parameters, subject to the restrictionαβγ > 0.
Under these conditions,

(B−1)ij =


(−1)i+j βiβi+1 · · ·βj θi−1 φj+1/θn if i 6 j,

(−1)i+j γjγj+1 · · · γi θj−1φi+1/θn if i > j,

(19)

where

β3`+s+1 = bs+1, γ3`+s+1 = cs+1 (s = 0,1,2; ` = 0,1,2, . . .),

and theθi ’s andφi ’s are explicitly given by

θi = (−1)iQi

(
a1 a2 a3
b1c1 b2c2 b3c3

; 0

)
(20)

and

φi =




(−1)n+1−i Qn+1−i
(
a3 a2 a1
b2c2 b1c1 b3c3

; 0

)
if n ≡ 0, (mod 3),

(−1)n+1−i Qn+1−i
(
a1 a3 a2
b3c3 b2c2 b1c1

; 0

)
if n ≡ 1, (mod 3),

(−1)n+1−i Qn+1−i
(
a2 a1 a3
b1c1 b3c3 b2c2

; 0

)
if n ≡ 2, (mod 3).
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