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Abstract

We give explicit inverses of tridiagonal 2-Toeplitz and 3-Toeplitz matrices which general-
ize some well-known results concerning the inverse of a tridiagonal Toeplitz matrix. © 2001
Elsevier Science Inc. All rights reserved.
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1. Introduction

In recent years the invertibility of nonsingular tridiagonal or block tridiagonal
matrices has been quite investigated in different fields of applied linear algebra (for
historical notes see [8]). Several numerical methods, more or less efficient, have risen
in order to give expressions of the entries of the inverse of this kind of matrices.
Though, explicit inverses are known only in a few cases, in particular when the tri-
diagonal matrix is symmetric with constant diagonals and subject to some restric-
tions (cf. [3,8,10]). Furthermore, Lewis [5] gave a different way to compute other
explicit inverses of nonsymmetric tridiagonals matrices.

In [1], Gover defines a tridiagonal 2-Toeplitz matrix of orders a matrixA =
(a;j), wherea;; = 0if |i — j| > 1anda;; = ay if (i, j) = (k,l)mod2, i.e.,
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ay b1
c1 a2 b2
c2 a1 b
A= c1 a2 by i (1)

c2 a1

nxn

Similarly, a tridiagonal 3-Toeplitz matrix:(x n) is of the form

air b
c1 az bz
c2 az b3
c3 a1 b1
B = c1 az bp . )
c2 a3z b3
3 ai

nxn

Making use of the theory of orthogonal polynomials, we will give the explicit in-
verse of tridiagonal 2-Toeplitz and 3-Toeplitz matrices, based on recent results from
[1,6,7]. As a corollary, we will obtain the explicit inverse of a tridiagonal Toeplitz
matrix, i.e., a tridiagonal matrix with constant diagonals (hot necessarily symmetric).
Different proofs of the results by Kamps [3,4] involving the sum of all the entries of
the inverse can be simplified.

Throughout this paper, it is assumed that all the matrices are invertible.

2. Inverse of a tridiagonal matrix

Let T be amn x n real nonsingular tridiagonal matrix

a1 b1 0
c1 a2 b2
T = c2 . . 3)
by
0 Cn—1 dn

Denote7 1 = («rjj). In [5] Lewis proved the following result.

Lemma 2.1. Let T be the matrix3) and assume that; + O0for¢=1,...,n — 1.
Then

oji = Vijlij wheni < J
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where

j—1
Ce
Vij = b
=i

Of course this reduces tg; = «;;, whenT is symmetric.
Using this lemma, one can prove that there exist two finite sequgngeand
{vi} (i =1,...,n—1) such that

ujvi ujv2 uivg cer ULV
y12u1v? uzv2 uav3 ce UV

71— | vizu1vs  y23u2v3 uzv3 ceeusv | (4)
Y1nU1lVn  YV2,U2Vy VY3 nU3Vy -+ UpUp

Since{u;} and{v; } are only defined up to a multiplicative constant, we make= 1.

The following result shows how to compyte } and{v;}. The determination of these
sequences is very similar to the particular case studied in [8], where the reader may
check for detalils.

Lemma2.2. (i) The{v;} i = 1,...,n — 1) can be computed from

1 br-1
= 7 i -1 k=25 s Ity
U1 d]_ Vk dk Vk—1 n
where
b. .
dy=an, di=ai—25 i—n—1,....1
dit1
(i) The{u;} i =1,...,n — 1) can be computed from
1 b
U, = , uk=——kuk+1, k=n-1,...,1,
8nvn 5k
where
b;_1ci—
81 = aq, 8,’:61,'—&, i=2,...,n—1.
di—1

Notice that forcentrosymmetrianatrices, i.e.q;; = ap41-in+1-j, We have
Vi = Up4+1—i-
The following proposition is known in the literature. We give a proof based on the
lecture of [8].

Theorem 2.1. Let T be the: x n tridiagonal matrix defined ir{3) and assume that
by #+0fore=1,...,n— 1. Then
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djs1--dy

if i<},
8-+ 8y s

(=D b -bj g
(T =
di+l e dn
8j - 8n

(with the convention that empty product equBls

(—1)i+jCj S Cio1 if i>j

Proof. Let us assume that< j. Then

B obiby1 . b1---bjg
T — v = (=" 2 n -t i
( )ij = UiV (=1 58,0, x (=1) dl"'dj
But
_qb1---bya
= (-t
Un =D di---d,
Therefore
B bi--by1 di---dy,
7Y, (i ol B I e B L = ==
( )ij=(=1) 8-+ 8y x (=1 by---bp_1 di---d;
o dig1---d,
—(—1)itip . p, LT
( ) i ji—1 8["‘5n
If we set
0;
8 = , 6Go=161=a, %)
0i-1

we get the recurrence relation

0i = ai0i—1 — bi—1¢i-10;2;
and if we now put

dl = ¢l k) ¢n+l = 15 ¢}’l = ana (6)
biv1

we get the recurrence relation

éi = aigi+1 — bicigiyo.
As a consequence, we will achieve

. (=) b bj_16i_1¢41/6, if i < J,
(T = . _ )
(=D)'ejecim10j_1¢i11/6, if i > j.
These are the general relations given by Usmani [9], which we will use throghout
this paper. Notice that

Op =81---8, = detT.
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3. Chebyshev polynomials of the second kind
In the next it is useful to consider the set of polynomidls},~o, such that each
U, is of degree exactly, satisfying the recurrence relation
Un+1(x) = 2xUp (x) = Up-1(x), n=>1
with initial conditions
Up=1 and Ui = 2x.

These polynomials are calleghebyshev polynomials of the second kamdl they
have the form

sin 1o
U,(x) = ﬁ where co® = x,
siné
when|x| < 1. When|x| > 1, they have the form
sin 1o
U,(x) = M where cosld = x.
sinho
In particular

Up(£1) = (D" (n + 1).

In any case, ifx| # 1, then

n+l rnJrl

Up(x) = —n——,
r4 —r—

where
re =x+tvx2-1

are the two solutions of the quadratic equatién- 2xr + 1 = 0.
The following proposition is a slight extension of Lemma 2.5 of Meurant [8].

Lemma 3.1. Fix a positive integer number and leta andb be nonzero real num-
bers such that/; (a/2b) + Oforalli = 1, 2, ..., n. Consider the recurrence relation

b2
o1’
Under these conditionsf « = +2b, then

ol=a, o =a— i=2,...,n.

_Ebi+ 1)
r l .
Otherwise
i+l i+l
o = err r
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where
a %+ a? — 4b?
=T 2

are the two solutions of the quadratic equatien— (a/b)r + 1 = 0.
Proof. Let us assume that #+ +2b (otherwise it is trivial) and set; = 8;/8i-1.
Then
Bi —api-1+b*Bi2=0, Po=1 pr=a,
hences; = b'U; (a/2b) and the conclusion follows. O]

4. Inverse of a tridiagonal 2-Toeplitz matrix

In this section we will determine the explicit inverse of a matrix of type (1). By
Theorem 2.1, this is equivalent to determépandd;, i.e., by (7) and transformations
(5) and (6)#; and¢;. So, to evaluaté;, we have

Oo=1 61=a,

02i = a202i—1 — bic162i—2,

02i+1 = a162i — bac202;i—1.
Making the change

zi = (=16,

we get the relations

0 = 11 71 = —dax,
29i = —azzzi—1 — bicizoi—2,
22i+1 = —ai1zz; — bocozoi—1.

According to the results in [6],

zi = Qi(0),
where; is a polynomial of degree exactlydefined by the recurrence relation
Qi41(x) = (x = B) Qi (x) = 74 Qi-1(x), (®)
where
Baj = ax, {772j = baca,
pé and {~ 9
{,BZJ-H = ap, V2j+1 = bici, ©)

and initial conditionsDo(x) = 1 andQ1(x) = x — Bo.
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The solution of the recurrence relation (8) with coefficients (9) is

02i(x) = Pi[m2(x)],  Q2i41(x) = (x — a1) P [m2(x)], (10)
where
m2(x) = (x — a1)(x — az), (11)
i x — bic1 — baco
P* = b1b U | —— ), 12
0= (Vi) un (U ) 12
and
i x — bic1 — baco
Pi(x)=(+/b1b U | ————=22
(0= (Vhabacico) [ ( 2 bihacics )
x —bicy — baco
U1 | —————— |, 13
AU < 2/bibacico )} 13)
with g2 = boco/b1c1. We may conclude that
0; = (—1)' Qi (0).
Now, to evaluatey; we put
Vi = Gnt1-i,
fori =1, ..., n, and we have to distinguish the cases when the ardéthe matrix

(1) is odd and when it is even.
First let us suppose thatis odd. Then we have
Yvo=1 vY1=a,
Voi = axyai—1 — bacoyai-2,
Voit1 = a1y2i — biciyai-1.
Following the same steps as in the previous case, we obtain
i = (=1 0:(0),
ie.,
¢i = (=1)' Qu11-:(0),
where Q; (x) is the same as (10) but with? = b1c1/bacz in (13). Notice that if
bic1 = bacz, thend; = dpi1-i.
If nis even, we get
Yvo=1 vy1=ao,
Voi = a1y2i—1 — biciyai-2,
Voit1 = a2y2i — bacoyai-1.
Therefore

vi = (=1 Q;(0),
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ie.,

¢ = (=11 Q,11-:(0),
where

02i(x) = Pi[m2(x)],  Q2i41(x) = (x — a2) P [m2(x)],

with 2(x), Pi (x) andP*(x) the same as in (11), (13) and (12), respectively. Observe
thatifa1 = ap, thend; = ¢, 11-;.

We have determined completely thés and¢;’s of (7 ) — thus the inverse of the
matrix — in the case of a tridiagonal 2-Toeplitz matrix (1).

Theorem 4.1. Let A be the tridiagonal matrigl), with ajaz # 0andbibacico > 0.
Put

m2(x):=(x —a1)(x —az), B:=+/bacz/bic1

and let{Q; (-; «, y)} be the sequence of polynomials defined by

i bier—b
02i(x; «, y):(\/%) [Ui (7‘[2()6) 101 262)

2+/b1bocic2
m2(x) — bic1 — bzcz)}
+yU;_
vei < 24/b1bacic

i ma(x) — bic1 — baco
Ooivi(x;a,y) = (x —a) (\/ b1b26162) U; < > Jiihacics ) ,

wherea andy are some parameters. Under these conditions

) (=L by A IR g 4000, i i<,
(A = (14)
(—1)iH] TR LTV g, g /6, i > ],

J

where p; = 3— (—=1)%/2, g0 = 3+ (=1 /2, |z] denotes the greater integer
less or equal to the real numbey

6 = (=1)'Q; (0; a1, B), (15)
and

(=1 Qnt1-i (0;a1,1/B) if nisodd
i =
(=1D)*1Q,41-i (0;az, B) if niseven

Remark. As we already noticed, under the conditions of Theorem 44 jsfodd
andbici1 = bacp, thend; = ¢, 11-;; and if n is even andi; = ap, then alsod; =
¢n+17i-
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As a first application, let us consider a classical problem on the inverse of a tridi-
agonal Toeplitz matrix. Suppose that=ap = a, b1 = b = b andcy = c2 = cin
(1), witha #+ 0 andbc > 0. Therefore, we have thex n tridiagonal Toeplitz matrix

a b 0
c a b
T = C a . (16)
Yy
0 c a

According to (14),
(=DM bIT 0 1 ¢jia/0, if P <,
(T = o
(=D " 01 ig1/6n i i > ]
It is well-known and we can easily check using elementary trigonometry that
Uzisa(x) = 2xU; (242~ 1).

Since = 1 and

0 (52) =0 (e ai) 1) = e (37)

from (15) we get

- ()0 (35).

and taking into account the above remark #s can be computed using tligs,
giving

n+1—i a
i = Ont1-i = (V bC) Unt1-i (2— %> :
Therefore, the next result comes immediately.

Corollary 4.1. Let T be the matrix i16) and definel :=a/2+/bc. The inverse is
given by

L bi—i Ui—1(d)U,—i(d o .
o (i) @ i
c
(T = o
P =J U'—l(d)Un—i(d) e . .
[ — P / if i>j.
(\/E) J Un(d)
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This result is well-known. It can be deduced, e.g., using results in the book of
Heinig and Rost [2, p. 28]. The next corollary is Theorem 3.1 of Kamps [3].

Corollary 4.2. LetX be then-square matrix

a b 0
b a b

.. . b
0 b a

The inverse is given by
1Ui-1(a/2b) Un—;j (a/2b)

_q)itiZ it i<
D T Unas2n) i<,
b =
(_1)14,]} U],]_(Cl/Zb)Un,l (a/Zb) if P> ]
b Uy (a/2b)

We consider now a second application. In [3,4], the matrices of type (17), with
a > 0,b+ 0 anda > 2|b|, arose as the covariance matrix of one-dependent ran-

dom variables, ..., Y,, with same expectation. Let us consider the least squares
estimator

. 1ty

Hopt = H’
wherel = (1, ..., 1) andY = (Y1, ..., ¥,)!, which estimates the parameteequal
to the common expectation of thg's, with variance

. 1
V (fop) = 51

According to Kamps, the estimat@ippt is the best unbiased estimator basedron
So, the sum of all the entries of the inverseofi> 11, has an important role in the
determination of this estimator and therefore in the computation of the varlance
(flopy. Kamps used in [3] some sum and product formulas involving different kinds
of Chebyshev polynomials. We will prove the same results in a more concise way.

Corollary 4.3. The sums; of the th row (or column of =1, fori =1,...,nis
given by

_ 14+ b(o1 + o1,n-i+1)
- a+2b
whereo;; = (271);;, wheni < j.

Si

I

Proof. By Corollary 4.2, fori < j,
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L) ()
oij = (1) = .
b= (=t

where
_ax a? — 4b2?
r4+ = 2[7 .
Thus

i—-1 n
S = ZU./',' + ZO’U.
Jj=1 J=i

By the sum of a geometric progression and the fact that
ryr— =1,

we have
. i+1 i+l —itl —itl
i b (o1 + 0ii) n 1 (rf - )(rjlr R )
o =
~ ji a-+2b a+2b (ri—r_) (ri—i-l _ rﬁ+1>

and
ZH:GH — b (Ul,n7i+1 — G,',') B 1 (rf,_ — r’_) (ri*i _ rﬁ7i>
Jj=i L a—+ Zb a—+ Zb (V+ _ 7‘7) (r:l_+1 o rﬁ+1>
Finally

i+1 i+1 n—i+1 n—i+1 i i n—i n—i
(1= 0 ) (4 ) - )

=(ry—r) (r_’ffl — rTFl) .

The previous theorem says thatdepends only on the first row afL. In fact
(as the following result says) the sum of all entriesioft depends only om1 and

01y.

Corollary 4.4.
1ty-11 — n+ 2bs1
T a+2b

5. Inverse of a tridiagonal 3-Toeplitz matrix

In an analogous way of the 2-Toeplitz matrices, we may ask about the inverse of a
tridiagonal 3-Toeplitz matrix. To solve this case, we have to comfuaade; in (7).
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Foro;, we have
fo=1 01=ai,
03 = aztzi—1 — bac203i—2,

03i11 = ai163; — b3zl 1,
03i+2 = az03;+1 — bic103;.

Making the change
2= (=16,

we get the relations

20=1 z21=-a,

73 = —a3z3i-1 — bacazzi—2,
23i+1 = —a123 — bac3zzi-1,
23i+2 = —a2z3i+1 — bic1z3;.

According to the results in [7],
zi = Qi(0),
whereQ; is a polynomial of degree exactlydefined according to

Qi+1(x) = (x — B) Qi (x) — 71 Qi—1(x),

where
B3j = a1, v3j = bacs,
Baj+1=az, and {ysji1= bici, (18)
B3j+2 = as, V3j+2 = baca.

The solution of the recurrence relation (8) with coefficients (18) is
Q3i(x) = P; [r3 (x)] + b3z (x — az) Pi—1[m3 (x)],

03i+1(x) = (x — a1) P; [m3 (x)] + bic1bzc3P;—1[m3 (x)],
03i42(x) = [(x —ap)(x —az) — bic1] P; [73 (x)] .

where
X —ai 1 1
w3(x) =| b1c1  x—ap 1
bscs bycp  x —as
and

i x — b1c1 — boacy — bacs
P; = (2\/b1b2b U; .
i (%) ( v bi1b2 3010263) [ 1( 2 Jhibabacicas )}
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We may conclude that
6 = (=1 Qi (0).
In order to compute the;’s, we define
Vi = Qny1-i

for i =1,...,n. In this situation, we have to distinguish three cases: # 0
(mod 3), then

Yo=1 v1=as,

Y3 = a1z -1 — biciysi 2,
VY3i+1 = azysi — bacsysi-1,
Y342 = axysi+1 — bacoys;.

If n =1 (mod 3), then

Yvo=1 <v1=a,

Y3 = a2y¥r3i—1 — bacoyrsi 2,

Y3iy1 = a1z — bicivrsi—a,

Y3iyo = azyzit1 — bacayrsi,
and ifn = 2 (mod 3), then

Yo=1 v1=a>,

Y3 = azyzi—1 — bac3yrsi 2,

Y3iy1 = a2z — bacoyrsi—a,

Y3iyo = a1yzis1 — biciyrsi.

It is clear that these three recurrence relations can be solved by a similar process

as for the computation of thg’s (mutatis mutandis Following in this way, we can
state the next proposition.

Theorem 5.1. Let B be the tridiagonal matrix2), with ajasaz #+ 0andbibrbzcico

c3 > 0. Let
xX—a 1 1
a b ¢
n3<a 8 ,x): o x—>b 1],
Y B x—c
a b ¢
P; (a 8 ,x) =2/ afy
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a b ¢ a b ¢
QSi(a 8 J/;x>:=Pl~<w 8 7/;X)

b
+7/(x—b)Pi1<Z 8 ;;x)’

Q3i+1<z Z ;;X)I=(X—G)Pi<z

a
+ay Pi_1 (a

=T

a C

Q3i+2<a . JV;x):=[(x—a)(x—b)—oe]P,-(j{ . ;;x),

wherea, b, ¢, a, § andy are some parametersubject to the restriction8y > 0.
Under these conditions

. (=) BiBig1-Bjbi—1¢jr1/0x it i <,
(B )ij = o (19)
D" yiyjp1--viOi—1ip1/6n i i > ],

where
Bavcts+1="bs11, yarst1=cs41 (=012 £=0,1,2,...),

and thep;’s andg;’s are explicitly given by

(TN ai az a3 |

and

_1\n+1-i [ a3 az ay . _
(-1 Onti1-i (bZCZ bici  bacs O) if n=0, (mod3,

- _yn+1-i [ 91 as az : _
¢i =1 (=1 Ont1-i <b3C3 bocs  bicy O) if n=1, (mod3,

bic1  bzcz  boc

(=1t Qn+1i(“2 “ao as ;o) if n=2 (mod3.
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