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Abstract

The aim of this work is to present a nonstandard linear finite element method for a planar elasticity problem.
The error for the solution computed with this method is estimated with respgtt toH *-norm and second-order
convergence is shown. 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.

1. Introduction

In most physical applications quantities are governed by systems of partial differential equations, not
just by one equation. For instance, the deformations and stresses of elastic and inelastic bodies subject t
load, studied in solid mechanics, are governed by systems of partial differential equations.

For the computation of a numerical approximation of the solution of a system of partial differential
equations, finite element methods and finite difference methods are the numerical methods usually used
In this paper we study a new linear finite element method for a planar elasticity problem which was, for
the scalar case, presented by one of the authors in [7]. This method enables us to compute the numeric:
approximation to the displacement with an improved accuracy when compared with standard linear finite
element methods described in the literature as for instance in [1,3,12]. This new method has two main
features: on the one hand, it is based on a family of triangulations of the domain which does not need
to be guasi-uniform and regular, and on the other hand, the finite element solution computed presents
second order convergence with respecitox H'-norm. This last property of the linear finite element

method implies that the gradient of each component of the displacement is superconvergent.

About two decades ago, Zlamal [23] has already found superconvergence of the gradient for certain
quadrature finite element solutions on nearly rectangular grids. Furthermore, Brandts [2] has found
superconvergence of the gradient but there the grids were assumed regular and quasi-uniform.

Noting that the nonstandard finite element method studied in this work is equivalent to a carefully
defined finite difference method, we conclude that this last method is supraconvergent. Supraconvergen
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finite difference schemes have been largely studied in the literature and without being exhaustive we
mention [4,6-11,13,15,16,22].

The paper is organized as follows. In Section 2 we present the problem that we intend to solve. The
nonstandard linear finite element method is described in Section 3. In Section 4 we present a finite
difference method equivalent to the linear finite element method described in Section 3. The study of the
H' x H-norm of the error is considered in Section 5. An example illustrating the performance of the
method is considered in Section 6.

2. Theboundary value problem

We begin with some notation. Let= (v, vp) be a function of two variables. We define @iy and
gradv) by

81)1 81)1

. avl 81)2 ox 9y
div(v) = i + 5, gradv) = 3852 593)2
dx  dy

Let A = [a;;];, j=1,2 be a matrix witha;;, i, j =1, 2, functions of two variables. By di4) we denote
the following function:

8011 8012
div(ay=| Jx Oy (1)
21 az?2
oax 0y
and we consider in the space of real two-by-two matrices the following inner product:
2
A:B= Zaijbija (2)
i,j=1

whereA = [a;;], B = [b;;]. By tr(A) we denote the trace of the matrix
Let us define now the boundary value problem that we consider in this work2 ByR? we denote
an union of rectangles and B2 we represent its boundary. We consider an isotropic material in the
configuration spac& and a body forcef. By the static theory of linear elasticity, the displacemerg
the solution of the following system of partial differential equations

—div(c(w)) = f ing, 3)
with the displacement boundary condition
u=g 0nais2. 4)

In (3), o (1) denotes the stress tensor defined by
o (u) =2ue(u) + rtr(e(u)) I,
wherel; is the identity two-by-two matrix, and
e(u) = 1(gradu) + gradu)’).
By u, A we represent the Lamé constants.
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We define in what follows a variational problem for the pure displacement problem (3) and (4). In
H = HY () x HY(£2) andL? = L2(£2) x L%(£2) we consider the inner products
(u, V)gxg = (U1, v1) g1y + (U2, V2) g1,
foru,ve H, and
(u, v) 2 = (U1, v1) 12(2) + (U2, V2) 2(02)
foru,ve L2
Leta(-,-) be the sesquilinear form

a(u,v) = /(ZMS(u) s e(v) + Adiv(u)div(v)) dx dy
2
for (u,v) € H x H. Consideringz(-, -) we introduce the variational problem:

Findu € H such that 5)
u=g ona2 and a(u,v)=(f, v)Lz(Q), Yv e Hy,

whereHo = H(£2) x H($2).
It is known that ifw € H is such thatw|;o = g, and ifu* € Hg is solution of the variational problem
a(u*’v)=(f’ U)LZ(Q)_a(wav)’ VUEHO,

thenu = u* — w is solution of (5).
Attending to this that we consider in what follows homogeneous Dirichlet boundary conditions

(g =0).
The first Korn inequality enables us to conclude the ellipticity:6f, -) in Hy x Hg and so the next
result:

Theorem 1. If f € H~! then exists a unique € H satisfying(5).

3. Thefinite element method

In this section we define the discrete variational problem (9) which enables us to compute an
approximation to the solution of the variational problem (5) wgit& 0.

The finite element method that we consider is based on two specials triangulations which are induced
by a nonuniform rectangular grid

Ry =R1 x R, C R2,
whereh = (h )z andk = (k;)z are sequences of positive numbers,
R]_:{Xj eR: Xj+1=X; +hj, jeZ}

with xo € R given, andR; is defined analogously @®&; with the meshsize vectdrin place of.
Let 24, 32y andf2 5 be the intersection A with 2, 92 and (2, respectively, that is,

2y =2 NRy, 02y =02 NRy, Q=82 NRy.
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The grid$2 5 is assumed to satisfy the following condition with respect to the region
(Reg) Letd be any rectangléx;, x; 1) x (y¢, ye+1) formed by the gridR 5. Thend N 352 is empty.
The triangulations that we consider are related to the @rid which we callZ ;" and7,?. They are
obtained from the disjoint decomposition

@Dy @
Ry =RP URP,

where the sumg + ¢ of the indices of the pointéx;, y,) in ]R{g) and inRﬁ) is even or odd, respectively.
To simplify the following definition we introduc®'? = R';’. With each pointx;, y,) € Ry, we associate
the trlanglesA%, i =1,2,3, 4, that have a right angle &k;, y,) and two of the four closest neighbor
grid points of(x;, y,) as further vertices. We then define the triangulations

T = {A(l)l C 2, (xj,y) € RY, ie(1,23 4}, s=12 (6)

of 2 (Z denotes the interior of). Fig. 1 shows an example of one of these triangulations.
By Wy we denote the space of grid functions defined@p and byWH we represent the subspace

of Wy of grid functions vanishing on the boundary grid poiat3; . Let WH be the seWHx WH
Let 75 be any triangulation of2 such that the nodes dfy coincide with 2. By Pyvy we

denote(Pyvy 1, Pgvg o) Wherevy = (vy 1, vy 2) € l?VH and Py vy ; is the continuous piecewise linear
interpolation ofvy ; (i = 1, 2) with respect t@/y.

In what follows we define a discrete variational problem which enables us to compute the numerical
approximation to the solution of (5) with= 0. Letay (-, -) be the sesquilinear form defined by

1/ (D 2)
apg(wy,vy) = 5(ag (wy, vy) +aH (Wy, vy)) (7)
/ >~ NN N
AN //\ VAN /\\ /|
= ~
/\\ / \ /N //\
/ |7 AR \
\ // AN /1y AN N \\ /
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Fig. 1. TriangulationT,g”.
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for wy, vy €Wp x Wy, with @ (wy, vy), defined by

a,(;;)(wH, vy) = Z (Z/LS(P,(,X)wH) :s(P,(j)vH) —i—)»div(P,(j)wH)diV(P;f)vH)) dx dy, (8)
Ae’Tg)A
fors=1,2.

Then our discrete variational problem is:

Finduy € VOVH such that
)

ag(up,vp) = Ry f,ve)u, Yoy €Wy,

whereRy denotes the pointwise restriction operator.
In (9), (-, -)y represents the inner product

(Wy, vy)n = Z w;j (W,;jV1,ij + W2ijV2,)
(xi,yj)ERLH
with
hi+hiz1k; +kj
a)ij = .

2 2

In what follows we rewriteafg})(-, -) in an equivalent form. In order to do that we consider the
sesquilinear forms

afc‘;)(wH, UH) = Z /(PIEIS)U)H)X( IEIS)UH)X d)C dy, (10)
AGTF(,”A
al)(wy, vy) = > (Pg)wH)y(Pg)vH)ydxdy (12)
AT A
and
al)wr,vm) =Y [ (PFwn),(PFvy), dxdy (12)
Ae’Tg)A

for wy, vy € Wy We definea{})(-,-) asal})(-, ) changing the position of the variablesandy.

Using the sesquilinear formgs) (-, ), al)(-, ), al) (-, ) anda{)(-, ), is easy to show that

a (wy, vg) = u+21) (a®(wy 1, v1) + a;i,)(wH,Z, VH2))
+ p(al) (wh 2, vu2) + a;ﬁ?(wﬂ,l, vH.1))
+ 1 (al) (wh 2, vi1) +al) (Wa 1, va,2))

+ )»(a;i)(wH,z, V1) + afj,?(wH,l, VH2))

o
for wy, vy € Wy
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The following stability result is consequence of the definitiom gf- , ).

Theorem 2. Exists a positive constaiit such that
|Pyogli<C sup Lt ml (13)

o Pyw
Oy |Prwplly

o
forall vy e Wy.

The proof of this theorem follows the steps of the proof of Theorem 2 of [7].

4. An equivalent finite difference method

In this section we define a finite difference method “equivalent” to the discrete variational problem (9)
that is useful to implement the described finite element method.
For each grid pointx;, y,) € Ry we define the central finite difference quotients

Wit1/2,6 — Wj-1/2¢ Wit1,e — Wiy
5§l/2)wj,e _ Yty Ji=1 i 5,51/2)wj+1/2,e =S
Xjt1/2 —Xj-1/2 Xj+1 — Xj
Wiyl,e — Wj-1¢
(wa]',[ = s e s

Xj+1—Xj-1
wherex; 1 =x;+h;/2,xj_12=x; —h;_1/2. Correspondingly, the central finite difference quotients
with respect to the variable are defined.
We introduce now the following finite difference problem:
Finduy € 13)VH suchthat Aguy =f inQ2y, (14)
with

Qu+ 18Py 1 4 188 up 2+ A8y Sxttp 2+ M5§1/2)5§1/2)MH,1 (15)

AHMH = .
Cu + )»)5§,l/2)5;1/2)MH,2 + A8 8 up 1+ uddyup 1+ ,Mfsfcl/z)fs)((l/z)uﬂ,z

Attending to the definitions aig (-, -) and Ay is easy to show the next result:

Proposition 1. Let the sesquilinear formy (-, -) be defined by7). With Ay defined by(15), the equality
ap(vy, wy) = (Agvy, Wy)H
holds forwy, vy € l?VH.
Paying attention to the last proposition and to the stability inequality (13) we concludd thatas

inverse and is stable in the following sense: exists a positive conStamependent off such that

A )
\Pavili<C  sup LAnvmwmnl (16)

o | Prwgll1
OséwHEWH

o
for vg eWgy.
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5. Boundingtheerror

We consider in what follows a sequence of gritlg defined using a sequeneeof H = (k, k) such
that the maximal mesh-sizé . tends to zero. BY.||,....a We represent the standard normii->°(£2)
if the underlying region is the triangla.

The truncation error for the finite difference operatdy is on nonuniform grids pointwise of
order one. Nevertheless, in what follows, we show that (14) is second order convergent, that is,
| Py Ryu — Pyuy|y = O(H2,) Whereuy andu are respectively the finite difference solution (also
finite element solution) and the solution of the elasticity problem.

Let us estimate noWPy Ryu — Pyuyll1. Looking back at (13) we have

R 9 - 9
| Py Rut — Py la < C sup 2Bt vu) = (. vl (17)

| Prvylla

UHEWH

and an estimate to the errpPy Ryu — Pyuy||1 is obtained estimating

ag(Ryu,vy) — (Ry f,ve)u (18)
for vy € VOVH.
We observe that from [7] we have
d%u;
al (Ryu;, vy ;) = — (RHa—xuz’ vH,i> + Ry, fori=12, (19)
H
2
Cl(x)(RHM' Vi) =— RHM vy.i + R, fori=1,2 (20)
yy s N 8y2 ’ sl " yyis &
and
() . 82ui
ayy (Rpui, vy, j) = — Rﬂm, Vg | + Ry, (21)
H

fori=1,j=2andi =2, j =1, where

814,'

3 2
ax3

1/2
) ||PHUH,i||1a (22)

IRyl <C( S Al

(s)
AeTy

1,00,A

where we have represented the area of the triargley |A|. The bound for remainder term,,; is
obtained by taking, andd/dy in place ofh , andd/dx respectively in (22), and

|Ryyil < C< > 1Al(h 4+ k) (‘

AGTF(IS)

2 2

831/!,'
9%ydx

331/!,'

1,00,A + H ayazx

12
)) | Pav . (23)

1,00,A

The bound for the remainder terRy,; is obtained by taking/dy in place ofd/dx in (23).
Altogether we have proved the following result:

Proposition 2. Letu be inC*(2) x C*(£2). Then

ap(Ryu,vy) = —(Ry [div(o )], ve) y + t(u, vy)
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with

172
cwon) <C( X Ial@ama) ula) I Paval
AeTy

where(C is independent of the triangulaticfy, and ofu.
Finally, combining the last proposition and inequality (17) we conclude the main result of this work:

Theorem 3. If the solution of3) and(4) is in C*(£2) x C*(2) with g = 0, then the variational problem
(9) and the finite difference proble(@4) have a unique solutiony in Wy satisfying the error estimate

12
| Py Rt — Prunls < C< T |A|<diamA>4||u||i,m,A> . (24)

AETH

6. Numerical example

In the following example we show the performance of the method defined by (9) or equivalently the
performance of the finite difference scheme (14).

Examplel. Letus consider the boundary value problem (3) defined on the rectengl€0, 1) x (0, 1),
with A =1, u = 0.5,
filx,y) = folx,y) = nz[—0.4 cogn(x +y)) +0.1coqm(x —y))]
andg = 0. This planar elasticity problem has the following solution:
ui(x,y) =us(x,y) =0.2sin(zx) sin(ry).
We define the grid2 5 ; takingxo = yo = 0 and

h;=0125 j=1,21314 h;=0.05 j=3,...,12
ke =0.125 (¢=1,213 14 k=005 ¢=3, ...,12

Introducing a new grid line between each grid linesaf; ; we obtain the grid2 ; 3. Following the last
procedure we define the grid3, ; for i =5, 7. Analogously we define the grid8 ; for i = 4,6, 8,
using the same procedure whe®g » is defined taking = yo = 0 and

h; =01, j=121516 h;=0.05 j=3,...,14
ke=01, ¢=1,21516 k,=0.005 ¢=3,...,14

In Table 1 we present the number of points in thendy directions which are denoted respectively by
N and M, the maximum step-siz&,.x and the normj| - ||, of the error. In Fig. 2 we plot the logarithm
of the H-norm of the error against the logarithm of the square of the maximum step-size that illustrates
the convergence result.

From the values presented in last table we easily conclude that the average convergence rate is 1.9
which confirm the second order of convergence of the method stated in Theorem 3.
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Table 1
Grid  Number of points  Hmax |PgRyu — Pyugl1
251 N=M=14 0125 00167266
u2 N=M=16 01 0.00886546
23 N=M=28 00625 000451434
Qpya N=M=32 005 00023329
Qs N=M =56 003125 000116346
Rue N=M=64 0025 000059468
2u7 N=M=11 0015625 0000293906
H.8 N=M=128 Q0125 0000149632
log (| |error|],)
-4
-5
-6
-7
" log( Hmax )
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