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Larger and more heterogeneous neutron star crusts: A result of strong magnetic fields
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We study the effect of strong magnetic fields, of the order of 1015–1017 G, on the extension of the crust
of magnetized neutron stars. The dynamical instability region of neutron-proton-electron (npe) matter at
subsaturation densities and the mode with the largest growth rate are determined within a relativistic mean-field
model. It is shown that the effect of a strong magnetic field on the instability region is very sensitive to the density
dependence of the symmetry energy, and that it is at the origin of an increase of the extension of the crust and of
the charge content of clusters.
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Soft-γ -ray repeaters and some anomalous x-ray pulsars are
strongly magnetized neutron stars known as magnetars [1–3].
These stars have strong surface magnetic fields of the order of
1014–1015 G [4], and slow rotation with a period of ∼1–12 s.
Recently, the time evolution of the magnetic field of isolated
x-ray pulsars has been studied by Pons et al. [5]. The authors
show that a fast decay of the magnetic field could explain the
nonobservation of stars with periods above 12 s. The decay of
the magnetic field was obtained by including a high electrical
resistivity in the inner crust, attributed to the possible existence
of an amorphous and heterogeneous layer at the bottom of the
inner crust. The lack of isolated x-ray pulsars with a period
higher than 12 s could, therefore, be a direct indication of the
existence of an amorphous inner crust, possibly in the form of
pasta phases [5].

At low nuclear matter densities, a competition between
the long-range Coulomb repulsion and short-range nuclear
attraction will lead to the formation of clusterized matter,
known as nuclear pasta [6], near the crust-core transition.
These geometrical configurations are observed not only in
nuclear matter, but also in a variety of amorphous solids,
crystals, and magnetic and biological materials [7]. One of
the main interests of the existence of these exotic structures
in the crust of neutron stars is the effect that they might have
on the neutrino transport and the subsequent cooling of the
neutron star [8].

Molecular dynamics simulations of the nuclear pasta have
shown that topological defects in the pasta could increase
electron scattering and reduce the electrical and the ther-
mal conductivities [9]. Electron conductivity in magnetized
neutron star matter was also studied in Ref. [10], and it was
shown that the electron transport is strongly anisotropic, due
to the presence of strong magnetic fields. The complexity
introduced by the magnetic field suggests that both suppression
and enhancement of the electron conduction in the presence
of the pasta phases are possible, and further calculations are
required.
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Stellar matter contains, besides neutrons and protons, also
electrons, which neutralize the proton charge. The transition
clusterized-homogeneous matter has been estimated by using
different methods. In particular, Ref. [11] shows that a
Thomas–Fermi (TF) description of the pasta phase predicts
the same crust-core transition density as a dynamical spinodal
calculation, which allows independent electron and proton
density fluctuations. The same conclusion was drawn in
Ref. [12], where it was shown that the dynamical spinodal
calculation gives a lower limit on the crust-core density, and
that the larger the isospin asymmetry, the closer this value is
to the TF result. For β-equilibrium matter, both results are
practically coincident.

The importance of the thermodynamical and dynamical
spinodals on the determination of the behavior of a system
that enters an instability region was also pointed out to be
connected with nuclear multifragmentation; in particular the
time evolution of a compound nucleus during a heavy-ion
collision. These instabilities are associated with the density
region where the curvature of the free energy is negative
[13,14].

Very strong magnetic fields will influence the proton charge
fluctuations and, correspondingly, the transport properties
[10]. This effect was not considered in the above studies. We
will study in the present Rapid Communication the effect of
a strong magnetic field on collective modes of stellar matter
and dynamical instabilities. This is the first time that such
a study is being considered, as far as we know. In a previous
work, some of us studied the effect of strong magnetic fields in
the nuclear-pasta phase by using relativistic mean field (RMF)
models within a TF calculation. However, only magnetic fields
above 1017G and large proton fractions were considered [15]
and the anomalous magnetic moments (AMM) of protons
and neutrons were neglected. Moreover, some results showed
abrupt behavior, which was not totally understood.

Here, we restrict ourselves to the longitudinal modes arising
from small oscillations around a stationary state in asymmetric
nuclear matter at subsaturation densities. This investigation
will be performed in the framework of a relativistic mean-
field hadronic model within the Vlasov formalism [16–18].
We study the effect of the magnetic field on the spinodal
section, the clusterized-homogeneous matter transition, and
the average size of clusters in the nonhomogeneous phase.
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Stellar matter is described within the nuclear relativistic
mean-field formalism under the effect of strong magnetic
fields [19,20], including the effect of the AMM. Nucleons
with mass M interact with and through an isoscalar-scalar
field φ with mass ms , an isoscalar-vector field V μ with
mass mv , and an isovector-vector field bμ with mass mρ .
Besides nucleons, electrons will also be included in the
Lagrangian density. Protons and electrons interact through the
electromagnetic field Aμ, which includes the static component
A

μ
stat = (0,0,Bx,0), so that B = B ẑ and ∇ · A = 0. The static

electromagnetic field is assumed to be externally generated,
and only frozen-field configurations are considered for this
component.

The Lagrangian density (taking c = � = 1) can be written
as L = ∑

i=p,n Li + Le + Lσ + Lω + Lρ + Lωρ + LA, with

Li = ψ̄i

[
γμiDμ − M∗ − 1

2
μNκiσμνF

μν

]
ψi,

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe, (1)

where iDμ = i∂μ − gvV
μ − gρ

2 τ · bμ − eAμ 1+τ3
2 , M∗ =

M − gsφ,e = √
4π/137 is the electromagnetic coupling con-

stant, and τ3 = ±1 is the isospin projection for protons and
neutrons, respectively. The nucleon AMM is introduced via
the coupling of the baryons to the electromagnetic field tensor
with σμν = i

2 [γμ,γν] and strength κi , with κn = −1.913 15 for
the neutron, and κp = 1.792 85 for the proton, and μN is the
nuclear magneton. As discussed in Ref. [21], the contribution
of the AMM of electrons is negligible and is not be considered.
For the nuclear matter parameters, we consider the NL3 [22]
and NL3ωρ [23] parametrizations, with the symmetry energy
slope L = 118 and 55 MeV, respectively. Besides fulfilling
several experimental constraints imposed in Ref. [24], NL3ωρ
satisfies within a 10% deviation the constraints imposed by
microscopic neutron matter calculations [25] and describes a
2M� star [26].

We determine the dynamical spinodal within the Vlasov
formalism discussed in Refs. [16,17]. We denote by
f (r,p,t) = diag(fp, fn, fe) the distribution function for npe
matter at position r, instant t and momentum p, and
by h = diag(hp,hn,he) the corresponding one-body Hamil-
tonian, where hi = [( p̄i

z)
2 + m̄2

i ]1/2 + V i
0, i = n,p,e, with

p̄i = p − V i , m̄p = (M∗2
p + 2νeB)1/2 − sμNκpB, m̄n =

[M∗2
n + ( p̄n

⊥)2]1/2 − sμNκnB, m̄e = (m∗2
e + 2νeB)1/2, Vn

μ =
gvVμ − gρ

2 bμ, Vp
μ = gvVμ + gρ

2 bμ + e Aμ, Ve
μ = −e Aμ, and

ν = n + 1
2 − sgn(q) s

2 = 0,1,2, . . . enumerates the Landau
levels of the fermions with electric charge q, the quantum
number s is +1 (−1) for spin parallel (antiparallel) to the
magnetic-field direction, taken in the z direction. We define
the vectors ( p, V , . . .) along directions parallel ( pz, V z, . . .)
and perpendicular ( p⊥, V ⊥, . . .) to the magnetic field. The
time evolution of the distribution function is described by the
Vlasov equation

∂fi

∂t
+ {fi,hi} = 0, i = p,n,e, (2)

where {,} denote the Poisson brackets. From the Euler–
Lagrange formalism we derive the equations describing the

time evolution of the fields φ, V μ,Aμ and the third component
of the ρ field b

μ
3 = (b0,b).

At zero temperature, the state which minimizes the energy
of asymmetric nuclear matter is characterized by the Fermi mo-
menta P i

F , i = p,n,e and is described by the distribution func-
tion f0(r,p) = diag[�(P p2

F − p2), �(P n2
F − p2), �(P e2

F −
p2)], where P

p
F , P n

F , P e
F , are the Fermi momenta of protons,

neutrons, and electrons, and by the constant mesonic field
equations.

Collective modes correspond to small oscillations around
the equilibrium state. These small deviations are described by
the linearized equations of motion and the collective modes
are the solutions of those equations. Let the deviations from
equilibrium be described by f = f0 + δf , φ = φ0 + δφ, V0 =
V

(0)
0 + δV0, Vi = δVi , b0 = b

(0)
0 + δb0, bi = δbi , A0 = δA0,

Ai = Ai,stat + δAi. The linearized Vlasov equations for δfi

are equivalent to the following equations [16]:

∂Si

∂t
+ {Si,h0i} = δhi, i = p,n,e, (3)

where Si are the components of a generating function S(r,p) =
diag(Sp,Sn,Se), such that δfi = {Si,f0i}.

In the present work, we consider the longitudinal modes,
with momentum k in the direction of the magnetic field and
frequency ω, described by the ansatz⎛

⎜⎝
Sj (r,p,t)

δφ

δBμ

⎞
⎟⎠ =

⎛
⎜⎝
Sj

ω(p,cosθ )

δφω

δBμ
ω

⎞
⎟⎠ei(ωt−kz·r), (4)

where j = p, n, e, B = V, b,A represents the vector fields,
and θ is the angle between p and kz. For these modes,
we have δV z

ω = δVω, δbz
ω = δbω, and δAz

ω = δAω. A set of
five independent equations of motion are obtained, in terms
of the amplitudes Ai

ω,j for the proton and neutron scalar
density fluctuations, and the proton, neutron and electron
vector density fluctuations. The eigenmodes ω of the system
are the solutions of the dispersion relation obtained, equating
to zero the determinant of the matrix of the coefficients of the
five equations of motion.

The region in (ρp,ρn) space for a given wave vector k,
satisfying ω = 0, defines the dynamical spinodal surface. At
low densities, the system presents unstable modes, character-
ized by an imaginary frequency. Inside the unstable region, the
mode with the largest growth rate �, such that ω = i�, is the
one that drives the system to the formation of instabilities. Its
half wavelength gives a good estimate of the most probable size
of the clusters (liquid) formed in the mixed (liquid-gas) phase
[18]. In the following, possible effects of strong magnetic fields
on the structure of the inner crust of magnetars are discussed
from the analysis of the dynamical spinodal surface and the
unstable modes with the largest growth rate. This approach
takes into account finite-size effects, such as the surface tension
and Coulomb effects.

The most intense fields detected on the surface of a
magnetar are not larger than 2 × 1015 G, the smallest field
we consider. We may, however, expect stronger fields in the
interior. In particular, toroidal fields more intense than 1017 G
have been obtained in stable configurations [27,28].
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FIG. 1. Dynamical spinodals for the NL3 parametrization, for different magnetic-field intensities and momentum transfer k = 50 MeV.

In Fig. 1, we show the spinodal sections in the (ρp,ρn) space
obtained with the NL3 parametrization for the magnetic fields
1.1 × 1016 G, 8.8 × 1016 G, and 4.4 × 1017 G, calculated for
a wave number k = 50 MeV, which gives a spinodal section
close to the envelope of all spinodal sections. The calculations
were carried out including AMM, except for the largest field,
for which we also show the no AMM spinodal. Due to a
numerical limitation, the spinodal sections are made of points,
which, however, define close regions. Each point is a solution
of dispersion relation obtained for a fixed proton fraction which
varies between 0 and 1. The thick black line represents the
spinodal section for a zero magnetic field. The dashed line is
the EoS of β-equilibrium matter and allows the identification
of the crust-core transition.

In the right panel of Fig. 1, we can see that a magnetic
field equal to 4.4 × 1017 G is strong enough to create bands
of instability at densities above 0.05 fm−3, associated with
the filling of the different Landau levels. In Ref. [29], the
thermodynamical spinodal section, which corresponds to the
k = 0 limit of the dynamical spinodal, excluding electrons
and the Coulomb field, was studied for magnetic fields equal
or above 5 × 1018 G. Spinodal bands are also present, although
the stronger the field, the smaller the number of bands. The
appearance of bands was attributed to the behavior of the
proton chemical potential with density within each Landau
band: at the bottom of the band it has a very soft behavior;
however, at the top of the Landau level it hardens and a cusp
occurs when a new Landau level opens, followed by a softening
of the chemical potential. The proton and neutron AMM give
rise to extra bands.

There are mainly two contributions for the spinodal section:
(a) a closed region that contains the B = 0 spinodal and extra
regions that form spike-like structures, associated with the
filling of Landau levels, and (b) disconnected regions that
appear with the opening of new Landau levels at densities well
above the B = 0 crust-core transition density. The maximum
growth rates at constant proton fraction (see Fig. 2) allow
a more clear picture: there is a closed region that, although
with some fluctuations, follows the B = 0 curve, followed by
separate regions, whose density width decreases continuously
until homogeneous matter sets in. These disconnected regions
appear when a new Landau level starts being filled.

In Ref. [29], it was shown that the extension of the
thermodynamical spinodal for ρp = 0 was independent of B,
with the border to homogeneous matter at ρNL3

n = 0.213 fm−3

and ρ
NL3ωρ
n = 0.122 fm−3 for the models we consider in

the present study. These numbers set an upper limit of the
extension of the dynamical spinodal, which in fact is too
high, because matter in the stars has a finite proton fraction:
for NL3 (NL3ωρ) and the proton fraction at the crust-
core transition, yNL3

p = 0.02 (yNL3ωρ
p = 0.035), the dynamical

spinodal extension is reduced to ρ ∼ 0.16 (0.115) fm−3 for
B = 4.4 × 1016 G. Decreasing further the magnetic field to
2.2 × 1014 G, the extension of the spinodal decreases to
0.105 fm−3 for NL3, and 0.102 fm−3 for NL3ωρ, showing
a convergence to the B = 0 result, respectively 0.056 and
0.084 fm−3.

It was shown in Ref. [11] that the size of the clusters in
the inner crust of a neutron star, calculated within the TF
framework for RMF models, is well estimated by the half
wavelength associated with the most unstable mode, i.e., the
one that drives matter into a nonhomogeneous phase [30].
In the same work, it was also shown that for NL3 the average
proton fraction in the inner crust, for densities above 0.01 fm−3,
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FIG. 2. Largest growth rate � = |ω| (top panels), the corre-
sponding half-wavelength (middle panels), and the proton-neutron
density fluctuation ratio (bottom panels) versus density, for different
magnetic-field intensities and matter with yp = 0.02 for NL3 and
yp = 0.035 for NL3ωρ. The black curve corresponds to the B = 0
results.
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is yp ∼ 0.02, while for NL3ωρ is yp = 0.035. We have,
therefore, determined the most unstable modes for magnetized
matter for both parametrizations with the corresponding proton
fractions, in order to get an estimation of the size and change
of charge content of the clusters formed in the inner crust.

In Fig. 2, the largest growth rates (top panels), the
corresponding half wavelength (middle panels) and the ratio
δρp/δρn between the proton and neutron density fluctuations
(bottom panels) are shown for fields between B = 2.2 × 1015

G and 8.8 × 1016 G for NL3 and NL3ωρ. In all figures, the
B = 0 results are represented by a black curve. First, we
consider the strongest field, represented by red dots in the right
panel of Fig. 2, obtained only for NL3. In this case, there are
several well-defined regions of clusterized matter separated
by regions of homogeneous matter. This is a consequence
of the bands of instability, due to the filling of the Landau
levels. Also, the size of the clusters is affected. In the first
region of instability, the size of the clusters oscillates around
the results for B = 0, and fast size changes occur in a very
small density interval. After the first instability region, several
others appear, although the larger the density, the smaller
the density width of each region. Considering weaker fields,
all these features are repeated with a denser appearance of
unstable regions but with smaller widths each. The transition
density to homogeneous matter is changing slowly with the
magnetic-field intensity, but considering sufficiently small
fields, the finite-B spinodal converges to the B = 0 one, as
discussed before. This convergence is reflected on the decrease
of the magnitude of the growth rate at a density 10% larger
than the B = 0 crust-core transition density with a decrease
of the magnetic field: for NL3 (NL3wr), it goes from 0.3855
(0.1481) MeV at 4.4 × 1016 G, to 0.0921 (0.0378) MeV for
8.8 × 1015 G and 0.0068 (0.0020) MeV for 4.4 × 1014 G.

The extension of the region with disconnected unstable
regions is strongly dependent on the density dependence
of the symmetry energy: for the NL3ωρ parametrization
with L = 55 MeV, the unstable region extends only until
ρ = 0.113 fm−3. This increases to ρ ∼ 0.12, 0.13, 0.16 fm−3,
respectively, for L = 68, 88, 118 MeV and stellar matter
conditions. Taking a larger proton fraction, yp = 0.1 which
may be more realistic at larger densities, there will still appear
unstable regions for ρ � 0.11 fm−3 for NL3ωρ with L =
55 MeV and ρ � 0.135 fm−3 for NL3, with L = 118 MeV.

The proton-neutron density fluctuation ratio was also calcu-
lated. Although yp = 0.02 corresponds to ρp/ρn = 1/49, the
fluctuations give rise to clusterized matter with a much larger

proton content: above the B = 0 crust-core transition density
the fluctuations δρp/δρn increase from ∼0.35 to more than the
double for NL3ωρ, and a factor of 5 for NL3, see both panels
of Fig. 2.

In conclusion, we have shown that Landau levels originate
a spinodal section with a structure of bands, with disconnected
regions for the larger densities. We expect that this irregular
border, including disconnected regions, will give rise to a more
heterogeneous and amorphous phase of matter than the one
already expected due to the formation of the pasta phases.
Studies of electron conduction in this matter are needed to
confirm whether it would reduce electron conductivity, and
thus originate a resistive layer within the crust of magnetized
neutron stars, as proposed in Ref. [5].

The study was complemented with the determination of
the largest growth rate inside the spinodal surface, which has
allowed us to estimate the size of the clusters formed, when
the system is driven into a nonhomogeneous phase. It was
shown that, close to the transition to homogeneous matter,
there is a heterogeneous region, alternating nonhomogeneous
and homogeneous matter, with proton-richer clusters. Inside
the spinodal section, the average size of the clusters and its
proton content vary in an oscillatory way, reinforcing the het-
erogeneity of the inner crust matter. All these effects are very
sensitive to the density dependence of the symmetry energy.

To conclude, we refer another pulsar property that could
be affected by an increase of the crust. Pulsar glitches are
attributed to the angular-momentum transfer between the crust
and the core [31], involving the vortex dynamics associated
with the neutron superfluid confined to the inner crust. How-
ever, the recent detection of an antiglitch [32], or the indication
that due to entrainment the inner crust angular moment is not
enough to explain the glitch mechanism [33], suggests that the
glitch theory has to be clarified. The effects of the magnetic
field on the inner crust, in particular, an increase of the crust,
the succession of clusterized and homogeneous layers, and a
nonmonotonic change of the neutron gas background density
will certainly affect the glitch mechanism and should be taken
into account in a glitch theory.
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