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Crust-core transition of a neutron star: Effects of the symmetry energy and temperature
under strong magnetic fields
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We study the simultaneous effects of the symmetry energy and temperature on the crust-core transition of a
magnetar. The dynamical and the thermodynamical spinodals are used to calculate the transition region within a
relativistic mean-field approach for the equation of state. Quantizing magnetic fields with intensities in the range
of 2 × 1015 < B < 5 × 1016 G are considered. Under these strong magnetic fields, the crust extension is very
sensitive to the density dependence of the symmetry energy, and the properties that depend on the crust thickness
could set a constraint on the equation of state. It is shown that the effect on the extension of the crust-core
transition is washed out for temperatures above 109 K. However, for temperatures below that value, a noticeable
effect exists that grows as the temperature decreases and which should be taken into account when the evolution
of magnetars is studied.
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Introduction. Magnetars are isolated neutron stars identified
as x-ray pulsating sources and soft γ -ray repeaters with very
strong surface magnetic fields, B = 1014–1015 G, and long
spin periods (P = 1–12 s). Presently, almost 30 magnetars
have been identified, see [1,2].

The long term evolution of magnetars has been carried
out in Ref. [3]. The authors found that for high values of
a temperature independent impurity parameter considered in
the upper layers of the inner crust, where according to [4] pasta
phases could occur, an enhanced dissipation of the magnetic
field is maintained, causing a fast spin down rate of the star.
This could be the reason for the nondetection of isolated
neutron stars with periods above 12 s. How properties of the
pasta phase affect electrical and thermal conductivities is still
not clear [5,6].

The crust equation of state (EoS) and its extension, together
with the crust-core transition region seem also to play a
central role in the evolution of the magnetar magnetic field,
in the determination of its configuration [7,8], and in the
description of the observed quasiperiodic oscillations (QPO)
of soft γ -ray repeaters [9]. Also other crust properties, such
as the neutron-drip transition that characterizes the outer-inner
crust transition, or the outer-crust structure and composition
are affected by strong magnetic fields [10,11].

In [12,13], the effect of strong magnetic fields on the
inner crust of neutron stars was discussed within a relativistic
mean-field (RMF) model, and several interesting results were
obtained. It was found that the inner crust is more complex in
the presence of strong magnetic fields, and alternating regions
of clusterized and nonclusterized matter appear above the
B = 0 crust-core transition density. Contrary to the B = 0
case, the crust-core transition is defined by a region with a
nonzero density width for magnetic fields above ∼1015 G.
It was also shown that the width of the transition region is
sensitive to the model. This transition region could support the
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possible existence of highly resistive matter at the upper layers
of the inner crust that enhances the decay of the magnetic field.

Neutron star glitches is another phenomenon explained by
the crust properties [14]. The crust fractional momentum of
inertia is a crucial quantity to interpret glitches. However,
recent works have pointed out that due to entrainment effects,
that couple the superfluid neutrons to the solid crust, the
crust would not be enough to describe glitches [15,16]. The
increase of the inner crust due to magnetic field effects found
in Refs. [12,13] could validate the crustal contribution to the
description of the glitch mechanism.

The cooling of the inner crust of a neutron star occurs more
slowly than the core, where a direct Urca process may originate
a very fast cooling. During the first years of the star, the cooling
of the outer crust, inner crust and core occur independently.
It is only when the star is ∼50 yr old that its total relaxation
has occurred [17]. The temperature of the crust depends on
the star mass and on the EoS, but a newly born star, less
than one year old, will have a temperature above 109 K. At
the star’s total relaxation, the temperature has dropped well
below ∼109 K. Moreover, the magnetic field and temperature
evolutions are strongly coupled in a neutron star which require
coupled magneto-thermal evolution to properly study the star
cooling [18–20]. It is, therefore, of interest to study how
sensitive is the increase of the crust-core transition region to
temperature.

In the present study, we will use RMF models [21], which
are phenomenological models constrained by different types
of observables, in particular, experimental measurements, the-
oretical ab initio calculations and observations in astronomy,
see [22] for a review. Taking a set of models that have the
same isoscalar properties at saturation, and only differ on the
isovector properties, will allow to investigate how the effect
of the magnetic field on the stellar matter depends on the
properties of the EoS, in particular, on the density dependence
of the symmetry energy.

First we analyze the effect of the density dependence of the
symmetry energy on the magnetar crust-core transition within
the dynamical spinodal formalism at zero temperature. Next,
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the effect of temperature is studied. This will be done using
the finite temperature thermodynamical spinodal [23,24],
and temperatures between 1 and 1000 keV (107–1010 K).
Although the crust-core transition density is ∼10% larger in
the thermodynamical spinodal approach, as compared to the
dynamical one, see [25,26], we believe it will allow us to
perform a realistic discussion. The same approach was used
at zero temperature to study the liquid-gas phase transition of
magnetized nuclear matter in [27,28].

Formalism. Stellar matter is described within the nuclear
RMF formalism under the effect of strong magnetic fields
[28,29]. The anomalous magnetic moment (AMM) is included
in part of the calculations. The nuclear interaction is described
through the inclusion of mesonic fields: an isoscalar-scalar
field φ with mass ms , an isoscalar-vector field V μ with
mass mv , and an isovector-vector field bμ with mass mρ .
Besides nucleons with mass m, electrons with mass me are
also included in the Lagrangian density. Protons and electrons
interact through the electromagnetic field Aμ, which includes
a static component assumed to be externally generated, Aμ =
(0,0,Bx,0), so that B = B ẑ and ∇ · A = 0. We take the usual
RMF Lagrangian density L = ∑

i=p,n Li + Le + Lσ + Lω +
Lρ + Lωρ + LA, where Li is the nucleon Lagrangian density,
given by

Li = ψ̄i

[
γμiDμ − M∗

i − 1
2μNκbσμνF

μν
]
ψi

with iDμ = i∂μ − gvV
μ − gρ

2 τ · bμ − eAμ 1+τ3
2 ,M∗

p =
M∗

n = M∗ = m − gsφ, and the mesonic and photonic terms
defined as in [13]. The term Lωρ = �vg

2
vg

2
ρVμV μbμ · bμ

couples the ρ to the ω meson and allows the softening
of the density dependence of the symmetry energy above
saturation density [30,31]. We consider the NL3 [32] and
NL3ωρ [30,31] parametrizations, which describe two solar
mass stars [33]. The last ones are obtained from the NL3
model by including the ωρ term. All models have the
same isoscalar properties at saturation, in particular, the
binding energy Eb = −16.2 MeV, the saturation density
ρ0 = 0.148 fm−3, and the incompressibility K = 272 MeV.
The isovector properties, such as the symmetry energy and
its slope L at saturation, vary from model to model, and have
been fixed such that, at ρ = 0.1 fm−3, all models have the
same symmetry energy, εsym(0.1) = 25.7 MeV. Besides NL3
with L = 118 MeV, we also take NL3ωρ with L = 88, 68,
and 55 MeV. The model with L = 55 MeV satisfies the
constraints imposed by microscopic calculations of neutron
matter [34]. The nucleon AMM is introduced via the coupling
of the baryons to the electromagnetic field tensor with
σμν = i

2 [γμ,γν], and strength κb with κn = −1.91315 for the
neutron, and κp = 1.79285 for the proton. μN is the nuclear
magneton. We will not consider the AMM of the electrons
because its contribution is negligible for the magnetic field
intensities we consider in the present work [35].

The state which minimizes the energy of asymmetric
npe matter is characterized by the distribution functions
f0i± = [1 + e(ε0i∓νi )/T ]−1 with νi = μi − gvV0 − gρ

2 τib0 for
i = p,n, and νe = μe for the electrons, and by the constant
mesonic fields which obey the mesonic equations [13]. For

T = 0 MeV, the distribution functions f0i± become f0i+ =
θ (P 2

Fi − p2), f0i− = 0 [36].
Nuclear matter at subsaturation densities has a liquid-gas

phase transition. Homogeneous matter is unstable if the free
energy curvature is negative. The stability conditions for
asymmetric nuclear matter are obtained from the free energy
density, by imposing that the function is convex on the densities
ρp and ρn, keeping the volume and temperature constant [23].
The thermodynamical spinodal is the surface in the (ρn, ρp, T )
space where the determinant of the free energy curvature
matrix is zero. Inside this surface, nuclear matter is unstable.

Symmetry energy effect. We first discuss the effect of the
symmetry energy on the crust-core transition. The density and
the proton fraction of the crust-core transition in a neutron
star are functions of the density dependence of the symmetry
energy. In particular, they are correlated with the slope L of
the symmetry energy at saturation [25,26,37–39]. We may,
therefore, expect that the effect of a strong magnetic field on the
transition will also depend on the symmetry energy, since the
magnetic field is sensitive to the amount of protons: the smaller
the proton density, the stronger are the effects. In previous
studies [12,13], this aspect has already been identified.

Within the dynamical spinodal formalism presented in [13],
we determine the maximum growth rates � as a function of the
density, using the B = 0 proton fraction (y0

p) below the crust
core transition and, above it, the β-equilibrium proton fraction.
Thomas-Fermi (TF) calculations of the inner crust indicate that
from ρ ∼ 0.01 fm−3 up to the crust-core transition density,
which at B = 0 we designate by ρ0

t , the proton fraction does
not change much [40]. Unlike the case for B = 0, there is
no well defined transition density for a strong magnetic field,
but a sequence of unstable and stable regions ranging from
ρ1—defined, as in [13], as the first time the growth rate falls
to zero, which is smaller than but close to ρ0

t —up to ρ2—the
onset of the homogenous matter, taking the proton fraction
of β-equilibrium matter. Both densities coincide with ρ0

t at
B = 0.

The four models introduced above have the same isoscalar
properties, but a different density dependence of the symmetry
energy. In Fig. 1, we show, as a function of the slope L:
a) the densities that define the beginning and the end of the
transition region, ρ1 and ρ2 (a); b) the thickness of the crust
calculated with ρ2, �R = R(0) − R(ρ2), and with ρ1, �R∗ =
R(0) − R(ρ1) (b); and c) the crust fractional moment of inertia,
�Icr/I , using the approximate expression [41]

�Icr

I
� 28πPtR

3

3M

(1 − 1.67β − 0.6β2)

β

×
[

1 + 2Pt (1 + 5β − 14β2)

ρtmβ2

]−1

, (1)

and taking for the transition density ρt and pressure Pt the
limiting densities of the transition density, (ρ2, P2) and (ρ1, P1)
(c). In this expression, �Icr is the crust moment of inertia,
I is the total moment of inertia of the star, M and R are
the gravitational mass and radius of the star, β = GM/R is
the compactness parameter, and m is the nucleon mass. The
quantities in Fig. 1 are calculated at T = 0 for B∗ = 103 and
L = 55 from the dynamical spinodal formalism with AMM.
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FIG. 1. Transition densities, ρ1 and ρ2 (a) the crust thickness,
�R and �R∗ = R(tot) − R(ρ1) (b) the crust fractional momentum
of inertia, calculated with (ρ1,P1) and with (ρ2,P2) (c) versus the
symmetry energy slope L, obtained at T = 0 with B∗ = 103 (red)
and B = 0 (black solid), within the dynamical spinodal formalism
including the AMM. For L = 55 MeV also B∗ = 102 is shown (blue
stars). B = 0 results from the thermodynamical spinodal calculation
are also included (black dashed).

The blue stars are for B∗ = 102. For B = 0, we include the
results from a dynamical and a thermodynamical spinodal
calculation, respectively, with and without AMM.

The effect of B and L on the thickness of the crust is
summarized in the following: a) the larger the L, the larger the
effect of B, mainly due to the proton fraction associated with
each model, since a larger L is associated with a smaller proton
fraction; b) compared to B = 0, the effect can be as large as
a 100% for L = 118 MeV. However, experimental constraints
[42] and microscopic neutron matter calculations [34] indicate
that the models with L = 30–80 MeV are more realistic. For
L = 55 MeV, the effect corresponds to an increase of ∼20%; c)
the lower limit of the crust-core transition defined by ρ1 is just
slightly smaller than the B = 0 crust-core transition ρ0

t . The
magnetic field essentially creates a complex transition region
above this density; d) taking L = 55 MeV and decreasing the
magnetic field by an order of magnitude from B∗ = 103 to
B∗ = 102, quantities such as the transition density, the crust
thickness and the crust fraction of moment of inertia, defined
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FIG. 2. The transition densities, ρ1 (empty) and ρ2 (full) obtained
with the L = 55 MeV model, at T = 0, for several values of B∗,
and using the thermodynamical spinodal formalism with (squares)
and without AMM (circles), and the dynamical spinodal with AMM
(triangles).

with the density ρ2, suffer a reduction of ∼3–5 %, but are still
larger than the corresponding quantities at B = 0. We conclude
by stressing that properties of magnetized neutron stars that
directly depend on the thickness of the crust may set stringent
constraints on the symmetry energy slope L.

Temperature effect. We estimate the effect of temperature
on the crust transition by calculating the thermodynamical
spinodal of strongly magnetized nuclear matter. In Ref. [24],
it has been shown that due to the large incompressibility of
the electron gas, most models that describe npe matter do not
present thermodynamical instabilities, or present only a very
reduced region of instabilities. Thermodynamical stability
does not necessary mean that the npe system is stable to
small density fluctuations, as shown in [36,43,44]. Calculating
the dynamical spinodal determines precisely the instability
region taking into account the independent fluctuations of the
neutron, proton, and electron densities. However, according
to [26,45], the np matter thermodynamical spinodal gives
a good prediction of the crust-core transition density, just
slightly above the prediction from a TF calculation or a
dynamical spinodal for npe matter. This behavior is confirmed
in Fig. 1 where the B = 0 quantities determined from the
dynamical and the thermodynamical spinodals have been
plotted. The values predicted from the thermodynamical
spinodal are always ∼15% larger than the ones from the
dynamical spinodal. For a strong magnetic field with an
intensity of the order we have considered in this work, the
effect is similar. In Fig. 2, we plot the crust-core transition
densities, ρ1 and ρ2, obtained at T = 0 with the L = 55 MeV
model from the npe dynamical spinodal with AMM, and
from the np thermodynamical spinodals with and without
AMM, to estimate the limitations of our predictions. The lower
(upper) density ρ1 (ρ2) corresponds to the density where the
β-equilibrium EoS first (last) crosses the spinodal, see Fig. 3.

Comparing the results obtained from the dynamical and
thermodynamical spinodals we conclude the following: a)
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FIG. 3. Details of the crossing of the thermodynamical spinodal
with the EoS (black solid line) for NL3ωρ with B∗ = 103, considering
different temperatures, and taking AMM = 0.

the dynamical and thermodynamical spinodals predict the
same trends for the transition densities, though the dynamical
spinodal predicts smaller values of ρ1, in accordance with
results from [26,45]. However, for the upper limit of the
transition region, there is a dependence on B, and the
dynamical ρ2 is larger (smaller) than the thermodynamical
one for B∗ < 102 (B∗ > 102); b) AMM does not affect much
the results obtained with B∗ < 103. However, the AMM
reduces in a non-negligible way the instability region for
the larger fields, giving rise to smaller crust thicknesses and
momentum of inertia crustal fractions.

The temperature of the crust decreases as the star cools.
While a very young star, less than one year old, may have a
inner crust temperature above 109 K, it will drop below 109 K,
or even 108 K, depending on the EoS considered and the mass
of the star [17,46]. It is, therefore, reasonable to ask whether the
strong effect of the magnetic field on the crust-core transition
calculated at T = 0, with the appearance of a transition region
where stable and unstable regions alternate, still persists at
finite temperature. Moreover, the time evolution of both the
magnetic field and temperature inside the star are strongly
coupled, and, therefore, it is important to understand which is
the effect of the temperature on the transition region created
by a magnetic field.

We calculate the crust-core transition density/region for
temperatures in the range 1 keV < T < 1 MeV (107 � T �
1010 K) from the thermodynamical spinodal without AMM.
Above B∗ ∼ 103 (B ∼ 5 × 1016 G), the AMM has a non-
negligible effect and, therefore, we will essentially restrict
ourselves to values below that number. As discussed in [12,13],
the spinodal section shows a complex structure and bands
of instability with large isospin asymmetry appear associated
with the filling of the different Landau levels. As a result for
low temperatures, the β-equilibrium EoS crosses the spinodal
section several times, defining the region of instability referred
before, see Fig. 3. The transition region for T = 10 keV is
smaller than for T = 1 keV since the EoS is not crossing the
last band shown. The transition region decreases as T increases
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FIG. 4. The transition densities, ρ1 (empty) and ρ2 (full), (a), the
crust thickness (b), and the momentum of inertial crustal fraction (c)
for NL3ωρ, with L = 55 MeV, for several values of B∗ and T .

and, for large enough temperatures, the crossing occurs at a
well defined density, as for T � 100 keV in Fig. 3. The Landau
quantization will be completely washed out by temperatures of
the order of the energy separation between consecutive Landau
levels, i.e., T � eB/M∗ = m2

eB
∗/M∗. For B∗ = 1000 and

taking M∗ ∼ 700 MeV for ρ ∼ 0.09 fm−3, this corresponds
to T � 0.3 MeV. The effects become important already for
10% of this value in the regions of larger isospin asymmetry,
e.g., larger ρn.

We plot in Fig. 4 the transition densities, ρ1 and ρ2 (a), the
crust thickness, �R (b), and the momentum of inertia crustal
fraction (c) for B∗ � 103 and 10−1 � T � 103 keV. These
quantities together with the corresponding transition pressures
are given in the Supplemental Material [47]. The crust
thicknesses are estimated from the Tolmann-Oppenheimer-
Volkoff (TOV) equations [48] at B = 0. The densities ρ2 come
closer to the lower limit, ρ1, of the transition region as the
temperature increases, and for the magnetic field intensities
considered, all magnetic field effects have been washed out
at T = 100 keV, and the B = 0 transition density has been
recovered. For a stronger field, this is not anymore true, but
since for these stronger fields, several of the suppositions
considered in the present work break, such as the use of the
TOV equations or the exclusion of the AMM of the nucleons,
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we will not discuss so strong fields. Above T = 100 keV,
ρ1 and ρ2 coincide, but they take values below the T = 0
transition density: this is the reduction of the extension of the
spinodal section due to temperature effects. To summarize,
we may expect the appearance of a transition region with
nonzero thickness for crustal temperatures below 100 keV and
a magnetic field intensity at the crust-core transition below
B ∼ 5 × 1016 G.

Also, the crust momentum of inertia fraction is affected,
and is large enough to account for the Vela glitches, which,
and according to [16], would require a fractional crustal mo-
mentum of inertia of the order of ∼0.065–0.095, considering
that the effective neutron mass, including entrainment effects,
is 4–6 times larger than the neutron bare mass. However,
further studies should be undertaken because strong magnetic
fields as the ones considered in the present work will certainly
influence the neutron superfluid behavior and affect the neutron
entrainment to the lattice.

The main effect of having used the thermodynamical
spinodal instead of the dynamical one is that the predicted
crust-core transition density is ∼10% larger, the crust fraction
momentum of inertia ∼10–15 % larger, and the transition
region slightly smaller, but the overall conclusions remain
valid.

Conclusion. We have analyzed how the effects of a strong
magnetic field on the neutron star crust, previously studied
in [12,13], are affected by the density dependence of the
symmetry energy of the EoS, and by the temperature of
the crust, within a RMF description of npe and np matter.
At T = 0, the crust-core transition was obtained from the
dynamical spinodal with AMM, and at finite temperatures,
from the thermodynamical spinodal, excluding the AMM,
which is justified since only magnetic fields below 5 × 1016 G
are considered.

We have confirmed the results of Refs. [12,13]: due to
the sensitivity of the magnetic field to the proton density, the
extension of the crust-core transition region strongly depends
on the slope L of the symmetry energy. The larger the slope L,
the larger the transition region, because, below saturation den-
sity, models with a large L present smaller symmetry energies
and, therefore, accept smaller proton fractions. Experimental
and theoretical constraints seem to limit L below 80 MeV
(30 < L < 80 MeV) [42], resulting in a more moderate effect
of the magnetic field on the extension of the crust. Properties of
magnetized neutron stars that directly depend on the thickness
of the crust can set stringent constraints on the symmetry
energy slope L due to the great sensitivity of the crust size to
this property.

We have also studied the effect of temperature for magnetic
fields B � 5 × 1016 G. The magnetic field effects on the exten-
sion of the transition density are washed out for temperatures
above 109 K, but below these temperatures, even a field of
intensity 2 × 1015 G will have a finite effect on the crust
thickness. Microphysical parameters, such as transport coeffi-
cients, that enter in the magneto-thermal evolution equations
of a neutron star, are certainly affected by the existence of the
crust-core transition region that changes with cooling, and the
impact of this effect should be investigated. Recently, a one-
dimensional thermal-magneto-plastic model, that considered
transport coefficients sensitive to temperature, as well as the
coupling of the crustal motion to the magnetosphere, has
been implemented, and it has been shown that this coupling
induces an enrichment and acceleration of the magnetar
dynamics [49].
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