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Hyperons in the nuclear pasta phase
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We have investigated under which conditions hyperons (particularly �s and �−s) can be found in the nuclear
pasta phase. As the density and temperature are larger and the electron fraction is smaller, the probability is
greater that these particles appear, but always in very small amounts. � hyperons only occur in gas and in smaller
amounts than would occur if matter were homogeneous, never with abundancies above 10−5. The amount of �−

in the gas is at least two orders of magnitude smaller and can be disregarded in practical calculations.
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I. INTRODUCTION

Not long ago, two massive stars were confirmed [1,2],
giving rise to the hyperon puzzle: While nuclear physics
favors soft equations of state (EOS) at low densities, massive
stars can only be described by stiff EOS at high densities.
Meanwhile, some constraints were imposed on neutron stars’
radii and it is now believed that the radii of canonical 1.4 solar
mass (M�) pulsars are lower than what most of the models
foresee [3].

On the other hand, the observation of supernova explo-
sions is not trivial, a fact that contributed to the increasing
importance of simulations of core-collapse supernova and
its remnants. An appropriate EOS for these simulations
would range from very low to high densities and from zero
temperature to temperatures higher than 100 MeV, not a very
easy task to accomplish. Hence, there is a very small number
of these EOS on the market, most of them publicly available
in the CompOSE (CompStar Online Supernovae Equations of
State) database [4].

Many attempts have been made to circumvent these two
problems and next we only mention some of the examples of
the propositions found in the literature. These problems can be
tackled by choosing appropriate meson-hyperon couplings [5]
and introducing strange mesons as mediators of the baryons
in relativistic models [6–9] in already existing models or by
using combinations of different parts of models available in
the literature [10]. In all cases, the existence of a degree of
freedom that carries strangeness is important; see Ref. [11] for
a recent review.

In this context, the low-density part of the EOS plays a role
that cannot be disregarded. The nuclear pasta phase results
from the competition between the strong and the Coulomb
interactions at densities compatible with the ones in the inner
crust of neutron stars. Such competition generates a frustrated
system [12,13] and the name pasta refers to specific shapes
acquired by matter, namely, droplets, bubbles, rods, tubes, and
slabs. The inclusion of the pasta phase in the EOS practically

*cp@fis.uc.pt

does not influence the stellar maximum masses but certainly
affects the radii [14,15]. So far, the pasta phase has only been
treated with nucleonic degrees of freedom.

From the considerations made above, it is obvious that
the constituents present in the equations of state (EOS) that
describe neutron stars and supernova cores are the essential
ingredients in the determination of thermodynamic quantities
and macroscopic properties. Hence, the existence of the
strangeness degree of freedom in the nuclear pasta phase has to
be investigated and this is the aim of the present work. At zero
temperature, hyperons do not occur at densities below two
times the saturation density. However, at finite temperature,
the appearance of hyperons is mainly governed by their mass
and as the temperature increases, so does the probability that
they will appear at smaller densities. We restrict our work to
finite-temperature systems when the hyperons may occur at
densities typical of nonhomogeneous matter. We first consider
the possibility that � particles are present in the nuclear
pasta phase, check the conditions for their existence, and later
discuss situations that could give rise to the onset of �− as well.
These are the strangeness-carrying baryons that usually appear
first in stellar matter due to the values of their masses. Typical
density values of the hyperon onset in the homogeneous
phase are given in the next section. The values encountered
are used to justify the presence of hyperons in the pasta
phase.

We next show only the most important formulas for the
understanding of our calculations and then display the results
alongside some comments and conclusions.

II. FORMALISM

We have chosen to describe hadronic matter within the
framework of the relativistic non-linear Walecka model
(NLWM) [16] with nonlinear terms [17]. In this model, the
nucleons are coupled to the scalar σ , isoscalar-vector ωμ, and
isovector-vector �ρμ meson fields. We include a ω-ρ meson
coupling term as in Refs. [14,18–21] because this term was
shown to control the symmetry energy and its slope, resulting
in equations of state that can satisfy most of the nuclear
matter saturation properties and observational constraints. The
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Lagrangian density reads
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where m∗
j = mj − gσj σ is the baryon effective mass, �μν =

∂μων − ∂νωμ, �Rμν = ∂μ �ρν − ∂ν �ρμ − gρ( �ρμ × �ρν), gij are the
coupling constants of mesons i = σ,ω,ρ with baryon j , and
mi is the mass of meson i. The couplings k (k = 2 MN g3

σ b)
and λ (λ = 6 g4

σ c) are the weights of the nonlinear scalar
terms and �τ is the isospin operator. The sum over j extends
over the lightest four baryons (n,p,�,�−). In the present
work, we have opted to use the NL3ωρ parametrization [18],
which is an extension of the NL3 parametrization [22] with the
inclusion of the ω-ρ interaction. For the hyperon-ω interaction,
we take SU(6) symmetry, and for the hyperon-σ interaction we
consider that the �, �, and � potentials in symmetric nuclear
matter at saturation are, respectively, −28, +30, and −18 MeV.
The parameters are mσ = 508.194 MeV, mω = 782.501 MeV,
mρ = 763 MeV, gσn = 10.217 (n stands for protons and
neutrons), gσ� = 6.323, gσ� = 4.708, gωn = 12.868, gω� =
gω� = 8.578, gρj = 11.276, k/M = 2 × 10.431, and λ =
−6 × 28.885, and the corresponding saturation properties
are density at 0.148 fm−3, binding energy of −16.2 MeV,
compressibility equal to 271.6 MeV, symmetry energy of
31.7 MeV, and slope equal to 55.5 MeV. From the results
in Ref. [23], one can see that this model predicts stellar
masses above 2M� and satisfies several presently accepted
experimental and theoretical constraints.

The nuclear pasta phase is obtained for charge-neutral
matter and leptons are usually incorporated because their
presence is expected both in the interior of neutron stars and in
the core-colapse supernova. The leptonic Lagrangian density
is simply

L = ψ̄l(iγμ∂μ − ml)ψl, (2)

where l represents only the e− in the present work, whose mass
is 0.511 MeV. The leptons enter the calculations only via the
weak interaction.

The construction of the nuclear pasta phase obeys the
well-known Gibbs conditions for phase coexistence and in the
present work we opt for the coexistence phase (CP) method
extensively discussed in previous works [12,14,24–26], which
we do not repeat here. The particle chemical potentials are
defined in terms of a baryon chemical potential (μB) and
a charge chemical potential (μQ), which are the quantities
enforced as identical in both phases, such as

μj = μB + qjμQ, (3)

TABLE I. Hyperon onset densities obtained at zero temperature.
Empty entries correpond to hyperon onsets above 1 fm−3.

Ye ρ� ρ�+ ρ�0 ρ�−

(MeV) (fm−3) (fm−3) (fm−3) (fm−3)

β-eq 0.31 0.64 0.35
0.1 0.30 0.61 0.34
0.30 0.33 0.77 0.60
0.50 0.36 0.60 0.57

where qj is the electric charge of each particle. The electron
fraction is fixed by the imposition of charge neutrality:

Ye = ρe

ρ
= YQ = ρQ

ρ
, ρQ = ρp − ρ�. (4)

We also define the fraction of � and �− particles as

Y�1 = ρ�1

ρ
, Y�2 = ρ�2

ρ
, (5)

Y�1 = ρ�1

ρ
, Y�2 = ρ�2

ρ
, (6)

where the subscripts 1 and 2 refer to the dense phase and
gas phase, respectively, and ρ = ρp + ρn + ρ� + ρ� . In most
cases studied in this work, the �− particles are not present. In
this case, the density is given only by ρ = ρp + ρn + ρ� and
ρQ = ρp.

An important aspect generally discussed is the surface
tension coefficient (σ ). We use the σ parametrization given
in Ref. [26].

Before we discuss the presence of hyperons in the nuclear
pasta phase, it is important to investigate their onset in
homogeneous matter. We start by analyzing the two usually
considered scenarios at zero temperature. The first one refers
to stellar matter, where the equation of state is obtained with
the assumption of charge neutrality and β equilibrium and
the fraction of leptons includes electrons and muons, varies
with density, and is an output of the calculation. In the second
scenario, we have considered the electron fraction as a fixed
quantity that enters as an input, as in the finite-temperature
case examined throughout this work. In this case, no muons
are incorporated in our calculations. As seen in Table I, no
hyperons appear at subsaturation density at T = 0, as already
expected. It is interesting to notice the competition between the
contribution from the ρ meson that in asymmetric matter favors
the hyperons with the smallest charges, and the σ meson that
favors the hyperons with an attractive potential in symmetric
nuclear matter at saturation. In symmetric matter, the ρ-meson
contribution is zero, and the hyperons of each isospin multiplet
with smaller mass are favored.

In Table II we display the onset of hyperons at different
temperatures and electron fractions. We have considered the
three hyperons with a larger fraction at low densities and we
are interested in the occurrence of hyperons at densities below
0.1 fm−3. From the table, we see that this is only possible
for T > 5 MeV, taking as reference a hyperon fraction larger
than 10−12. While at very low T the sequence of hyperons
may be different, at higher T the sequence is generally �, �,
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TABLE II. Hyperon onset densities for hyperon fraction equal or
above 10−12. Only results for �, �− and �− are shown. For Ye = 0.5
the �0, �+ and �0 appear before, respectively, �− and �− but the
differences are small and the fractions are always very small.

T ρ� Y� ρ�− Y�− ρ�− Y�−

(MeV) (fm−3) (fm−3) (fm−3)

Ye = 0.1 � �− �−

0.001 0.31 10−12 <10−12 0.34 10−12

1 0.28 10−12 0.33 10−12 0.32 10−12

3 0.23 10−12 0.28 10−12 0.29 10−12

5 0.13 10−12 0.24 10−12 0.26 10−12

7 0 10−11 0.18 10−12 0.22 10−12

9 0 3. × 10−9 0 5. × 10−12 0.17 10−12

10 0 2. × 10−8 0 9. × 10−11 0.14 10−12

12 0 5. × 10−7 0 6. × 10−9 0.03 10−12

14 0 4. × 10−7 0 1. × 10−7 0 2. ×10−11

Ye = 0.3 � �− �−

0.001 0.33 10−12 <10−12 <10−12

1 0.31 10−12 <10−12 0.56 10−12

3 0.26 10−12 <10−12 0.40 10−12

5 0.24 10−12 0.34 10−12 0.33 10−12

7 0 10−11 0.29 10−12 0.29 10−12

9 0 3. × 10−9 0.21 10−12 0.26 10−12

10 0 2. × 10−8 0 2 × 10−11 0.23 10−12

12 0 4 × 10−7 0 10−9 0.16 10−12

14 0 3 × 10−6 0 3. × 10−8 0 4. ×10−12

Ye = 0.5 � �+ �0

.001 0.37 10−12 0.62 10−12 0.60 10−12

1 0.35 10−12 0.59 10−12 0.57 10−12

3 0.30 10−12 0.53 10−12 0.50 10−12

5 0.24 10−12 0.47 10−12 0.43 10−12

7 0 8. × 10−12 0.37 10−12 0.38 10−12

9 0 2. × 10−9 0.34 10−12 0.34 10−12

10 0 10−8 0.31 10−12 0.32 10−12

12 0 2. × 10−7 0 6. × 10−10 0.27 10−12

14 0 2. × 10−6 0 3. × 10−9 0 10−12

and �. For a large electron fraction, close to Ye = 0.5, the
hyperon of the � triplet or � doublet with the largest charge
is the first to appear due to the smaller mass and the small
contribution of the ρ meson. In fact, at Ye = 0.5 the members
of each isospin multiplet come very close together, being only
distinguished by the mass. A small value of Ye originates a
large contribution from the ρ meson, and the hyperon with the
most negative isospin projection is the favored one, i.e., �−
and �−. The differences among the hyperon optical potentials
taken at T = 0 are washed out as the temperature rises, and,
therefore, the � hyperon with a smaller mass than the �
hyperon ends up being favored. The � meson is always the
one with the largest abundance, and we next concentrate our
study in the occurrence of this hyperon. For reference, we also
show some results for � but from Table II we conclude that
when they occur at densities of the nuclear pasta phases they
are 2 to 3 orders of magnitude less abundant than the �s.
The �-hyperon fractions are negligible for the densities and
temperatures where nuclear pasta phases occur.
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FIG. 1. Free energy vs baryon density for homogeneous matter
(dotted line) and for the pasta phase (solid line) for T = 10 MeV and
Ye = 0.3.

III. RESULTS AND DISCUSSIONS

In the present section, we discuss under which conditions
the fraction of hyperons, in particular, of �s, is largest in
the range of densities where nuclear pasta phases occur. The
calculations are performed within the formalism presented
in the last section. Although in the CP approach to the
pasta phases, the surface energy and the Coulomb energy
are added after the minimization of the free energy, we
consider it is enough to get the correct idea of the amount
of hyperons that occur in the nonhomogeneous subsaturation
warm stellar matter. We perform the study within the NL3ωρ
parametrisation described in the last section.

We illustrate how the free energy per particle decreases
when nonhomogeneous matter is considered instead of ho-
mogeneous matter in Fig. 1, taking T = 10 MeV and Ye =
0.3. The range of densities where the nonhomogeneous
matter occurs varies with temperature and electron fraction.
In particular, it decreases as the temperature increases and
eventually disappears above a certain critical temperature,
which is around 14.45 MeV for this model [27]. Moreover, the
electron fraction has a strong effect in the extension of the pasta
phase: Since stellar matter is neutral, as the electron fraction
increases so do theproton fraction and the nonhomogeneous
matter extension.

In Fig. 2, the fraction of �s is plotted as a function of (a) the
electron fraction Ye for T = 10 MeV and (b) the temperature
for Ye = 0.3. The dotted lines represent the fraction of �s that
would occur in homogeneous matter. In Fig. 2(a), the thick
and the thin lines are the fractions of �s with respect to the
total density in the dense (cluster) and gas phases, as given
in Eq. (5). Since there is no distillation effect for strangeness
as there is for isospin [28], the larger (smaller) fraction in the
dense (gas) phases simply reflects the fact that as the density
gets larger, so does the probability that hyperons occur. Notice
that under the conditions for pasta to occur these fractions
are really very small. We may also conclude that the clusters
contain no hyperons since the fraction is so small that it is not
enough to predict a whole hyperon inside the clusters. This
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FIG. 2. � fractions obtained with with ρ = 0.05 fm−3 as function
of (a) the charge fraction at T = 10 MeV and (b) the temperature with
Ye = 0.3.

implies that in the nonhomogenous phase hyperons only occur
in the gas and in smaller amounts than would occur if matter
were homogeneous. This is illustrated in Fig. 3(a), where the
black marks refer to the gas phase and the red ones refer to the
dense phase.

Since the amount of strangeness seems to be so small, we
have determined which conditions most favor the appearance
of hyperons, taking the temperature between 4 and 14 MeV,
the electron fraction between 0.05 and 0.6, and subsaturation
densities; see Fig. 3. Hyperon fractions above 10−7 were
possible only for T > 10 MeV. At these temperatures, nuclear
pasta phases do not occur for too high or too low densities,
or for too small electron fractions. However, as the electron
fraction is smaller, the � fraction is larger at a given
temperature, which is distinguishable by a color index, since
these conditions favor the replacement of neutrons by �s and
decrease the free energy density.

There are, in fact, two competing factors related to the
electron fraction: While more hyperons are favored with a
smaller electron fraction to release the neutron pressure, the
pasta extension is smaller for a smaller value of Ye. As a result,

10-9

10-8

10-7

10-6

 10  11  12  13  14

Y Λ

T (MeV)

cluster
gas

10-7

10-6

 0.2  0.3  0.4  0.5

Y Λ

Ye

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

10-7

10-6

 0.02  0.03  0.04

Y Λ

ρ (fm-3)

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

(a)

(b)

(c)

FIG. 3. � fraction as a function of (a) temperature in the clustered
(red) and gas (black) phases; (b) electron fraction; (c) density under
the conditions that predict fractions above 10−7. In panel (a), to
improve the visibility, the temperature of the clusters was shifted
to the right by �T = 0.1 MeV. In panels (b) and (c), only the �

fractions in the clustered phase are shown, and temperature (in MeV)
is indicated by a color index.

it is not possible to attain large temperatures with a small value
of Ye, and this explains the decrease of the � fraction with a
decrease of Ye if Ye < 0.35, as seen in Fig. 3(b).
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FIG. 4. � fraction as a function of the number of nucleons in the
heavy clusters under the conditions that predict fractions above 10−7.
The temperature (in MeV) is indicated by a color index.

The internal structure of the nuclear pasta phase depends
on the density, temperature, and amount of charged particles,
and for Ys > 10−7 practically only droplets survive.

In the present calculation, only heavy clusters have been
taken into account. The size of the clusters that occur under the
conditions that favor hyperons can give important information.
In Fig. 4, we illustrate the number of nucleons in the clusters
for the � fractions above 10−7. The largest fractions occur
precisely for the smaller clusters. On the other hand, the present
approach is not good enough to describe the nonhomogeneous
matter at the boundary to the core and at the low density
where the light clusters are most probable. The figure indicates
that a study similar to the present one should be performed
considering explicitly light clusters. Under these conditions,
larger fractions of �s as obtained in Ref. [29] are expected.

For the sake of completeness, we also allow for the presence
of �− particles, and their fraction is plotted in Fig. 5 as a
function of (a) the electron fraction for T = 10 MeV alongside
the fraction of �s, (b) the temperature for Ye = 0.3, and (c)
the temperature for a range of densities between 0.015 and
0.035 fm−3 and electron fraction Ye between 0.15 and 0.5.
In Figs. 5(a) and 5(c), the � fraction is also displayed, so
that the individual fraction of hyperons can be more easily
compared. As seen from this figure and expected from the
previous discussions, the amount of �−s is almost negligible
and can be disregarded in practical calculations. The �−
hyperons are the second to occur due to their charge and
mass. Even though the repulsive potential of �s in nuclear
matter disfavors their appearance at finite temperature, for the
small densities we consider the interaction plays a secondary
role. The different behavior of the fraction of �s and �−s in
nonhomogeneous and homogeneous matter can be attributed
to the different isospin characters of these hyperons: (i) The �s
are not sensitive to isospin and their abundance is determined
by the density, therefore a larger fraction is expected in denser
matter and (ii) �− has isospin projection −1 and is favored
in asymmetric nuclear matter as the one occurring in the
background gas of the nonhomogeneous matter. This explains

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6

0  0.1  0.2  0.3

(a)

(b)

(c)

 0.4  0.5  0.6

Y
Λ
,Y

Σ

Ye

Λ
Λ - cluster

Λ - gas
Σ−

Σ− - cluster
Σ− - gas

10-26

10-24

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

5 6 7 8 9  10  11  12  13

Y
Σ

T (MeV)

homogeneous
cluster

gas

10-12

10-11

10-10

10-9

10-8

10-7

10-6

 10  11  12  13  14

Y Λ
, Y

Σ−

T (MeV)

Λ
Σ−

FIG. 5. Hyperon fractions obtained with ρ = 0.05 fm−3 as
function of (a) the charge fraction at T = 10 MeV and (b) Y�

obtained as a function of the temperature with Ye = 0.3. In panel
(c) the fractions of �s and �−s are given as a function of temperature
for a range of densities between 0.015 and 0.035 fm−3 and electron
fraction Ye between 0.15 and 0.5. Blue lines refer to �s and red lines
to �s.

why the fraction of �−s is larger in the gas phase. In Fig. 5(c),
we compare the abundances of �s and �−s in the background
gas, in the conditions that most favor the appearance of these
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hyperons in the core-collapse supernova matter. It is seen
that the �−s fraction are essentially two orders of magnitude
smaller than the � ones.

IV. CONCLUSIONS

We report a study on the presence of hyperons in the
nonhomogeneous phase of core-collapse supernova matter.
This was performed within the framework of a relativistic
mean-field (RMF) EOS with properties compatible with the
ones presently accepted. The nonhomogeneous phase was
described within a coexisting phase approach which does not
take into account in a self-consistent way the finite-size effects.
However, the results obtained within this approach above
ρ ∼ 0.01 fm−3 give a prediction not far from a self-consistent
Thomas Fermi calculation [30], and it is within this range of
densities that the hyperons most contribute.

We have shown that the contribution of hyperons to the
nonhomogeneous matter is generally negligible: The fraction
of �s obtained in all ranges of temperatures, densities,
and electron fraction is always below 10−5. The largest
fractions occur for temperatures above 10 MeV, electron
fractions between 0.3 and 0.5, and densities between 0.025
and 0.035 fm−3. Other hyperons such as the �− occur with
two to six orders of magnitude smaller.

One interesting conclusion is that the heavy clusters carry
no hyperons and the fraction of �s in the gas phase is

smaller than the expected fraction in homogeneous matter at
the same density because these hyperons are not sensitive
to the isospin distillation effect. On the other hand, �−s are
sensitive to isospin but in the best conditions their abundance
is two to three orders of magnitude below the �s abundance.
This seems to indicate that the role of hyperons in matter
with heavy clusters is negligible and can be taken into
account by properly including hyperons in the background
gas. A different problem concerns the appearance of hyperons
together with light clusters which in the present study were not
included: It was shown that the largest amounts of hyperons
occur precisely with the smaller heavy clusters. Since our
approach fails in the region of light clusters, a calculation
taking these degrees of freedom into account should be
performed.
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