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Light clusters and pasta phases in warm and dense nuclear matter
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The pasta phases are calculated for warm stellar matter in a framework of relativistic mean-field models,
including the possibility of light cluster formation. Results from three different semiclassical approaches are
compared with a quantum statistical calculation. Light clusters are considered as point-like particles, and their
abundances are determined from the minimization of the free energy. The couplings of the light clusters to
mesons are determined from experimental chemical equilibrium constants and many-body quantum statistical
calculations. The effect of these light clusters on the chemical potentials is also discussed. It is shown that, by
including heavy clusters, light clusters are present up to larger nucleonic densities, although with smaller mass
fractions.
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I. INTRODUCTION

Currently, there is an increasing interest in the properties
of warm and dense matter in astrophysics and heavy ion
physics, i.e., nuclear or stellar matter at subsaturation densities
(baryon density nB � 0.15 fm−3) and moderate temperatures
(T � 20 MeV). Light clusters seem to have an important role
in the evolution of core-collapse supernovae [1], affecting
in a non-negligible way the average energy of the electron
antineutrinos. Also, in Refs. [2,3], it was shown that light
clusters may influence in a favorable or unfavorable way,
depending on the conditions, the shock revival in the post-
bounce phase of core-collapse supernovae.

The determination of light cluster abundances in warm and
dense nuclear matter has been investigated using different
approaches. Recently, the formation of light clusters in low-
density nuclear matter, produced by heavy ion collisions
(HIC), has been measured in the laboratory [4,5], allowing
the determination of quantities such as in-medium binding en-
ergies and chemical equilibrium constants. These and further
laboratory experiments give strong evidence that in-medium
corrections are relevant for light clusters in nuclear matter at
those densities and temperatures. To obtain the corresponding
nuclear equation of state (EOS), a correct description of
few-body correlations is essential.

The properties of warm dense matter are described by
EOSs. In particular, for given constraints, such as the tem-
perature, T , and the number of neutrons and protons (densities
nn, np, respectively), an ensemble in thermodynamic equi-
librium can be defined, characterized by a thermodynamic
potential, here the free energy. In stellar matter, allowing for
weak interaction processes, β equilibrium is established, and
only the baryon number (density nB = nn + np) can be chosen
freely. Other equations of state (thermodynamic, caloric,
chemical potential, etc.) are derived from the thermodynamic
potential in a consistent manner.

Microscopically, the EOS can be derived within many-
particle theory if the interaction is known. However, approxi-
mations have to be performed, and even the nucleon-nucleon

interaction is not fully known, in particular, in dense matter.
In the Brueckner approach, the nucleons in dense matter are
considered as quasiparticle states with momentum-dependent
energy shifts [6]. In an alternative and simpler approach, the
medium effects are introduced as semiempirical density func-
tionals. Well-known examples are the mean field approaches,
such as the Skyrme parametrization [7,8] or the relativistic
mean-field (RMF) models [8–11], which are fitted to reproduce
the properties near the saturation density; see [12] and [13] for
recent compilations of Skyrme interactions and RMF models,
respectively. An important result is that these mean-field
approaches predict a phase transition in nuclear matter for
sufficiently large proton fractions, Yp = np/nB . Taking the
Coulomb interaction into account, droplet formation (large
nuclei), pasta structures, etc., are obtained; see, for instance,
Ref. [14] and further references given there.

A drawback of a mean-field approach is that correlations
are not directly described, in particular, the formation of
bound states. Correlations become of importance at low
temperatures and low densities. In the nuclear statistical
equilibrium (NSE) model, bound states (nuclei) are considered
as new components in addition to neutrons and protons, and
reactions bring the distributions of the respective components
to thermodynamic equilibrium as described by a mass action
law. The picture of an ideal mixture of components, which
occasionally can react if they collide, becomes, however,
invalid for baryon densities of the order of 10−3 fm−3, or larger
when mean-field modifications and the Pauli blocking are
relevant. In particular, Pauli blocking suppresses the formation
of light clusters, and at the Mott density the clusters are
dissolved [15].

A quantum statistical (QS) approach can describe quantum
correlations in a systematic way. For instance, two-nucleon
correlations and the in-medium formation of deuteron and
scattering phase shifts are given in [16]. The α-like correlations
are of particular interest because of the relatively large binding
energy of the α particle. A quasiparticle concept can be worked
out to describe the light clusters (d ≡ 2H, t ≡ 3H, h ≡ 3He,
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α ≡ 4He) with binding energies which depend not only on the
center-of-mass momentum P relative to the medium, but also
on the parameters T ,nB,Yp characterizing the medium [17].

The light-nuclei quasiparticle approach has to take into
account also the contribution of the continuum to reproduce the
correct virial expansion for the thermodynamic quantities. An-
other problem exists when the spectral function, corresponding
to the respective few-nucleon correlation function, shows no
well developed peak structure so that the introduction of the
quasiparticle approach becomes no longer well defined. This
occurs, for instance, when the formation of larger clusters
becomes relevant, which leads to a background contribution
to the spectral function, but also at densities close to the
saturation density, where the few-nucleon correlations are
already implemented in the mean-field contributions. The Mott
effect reduces the contribution of light clusters so that a RMF
approach is more adequate. More serious is the inclusion of
larger clusters. Here, the QS description becomes too complex,
and the replacement by semiempirical approaches, such as the
Thomas-Fermi model, is necessary to get the correct physics.

It is one goal of the present work to discuss the combination
of light cluster approaches with pasta structure concepts.
Light clusters (few-nucleon correlations) dominate at low
densities and higher temperatures. In this density region of
the phase diagram, the light clusters determine the properties
of nuclear matter. However, the inclusion of larger clusters
using mean-field concepts is important if going to high
densities, and a combination of both approaches is of interest.
The combination of these light and heavy clusters has also
been recently discussed in Ref. [18], where the authors used
two different approaches: a generalized relativistic density
functional and a statistical model with an excluded-volume
mechanism, to compare the formation and dissolution of these
aggregates in neutron star matter. Thus, in this work, we focus
on two questions: Are the chemical equilibrium constants,
as derived from the abundances of light clusters, modified if
the formation of droplets and pasta-like structures is taken
into account? How are the chemical potentials, calculated
in a mean-field approach for stellar matter with account of
pasta-like structures, influenced if few-body correlations such
as formation of light clusters are considered?

To combine QS calculations with RMF concepts, in recent
works the light clusters are included in a generalized RMF
approach as additional degrees of freedom [11,14,19]. In
particular, the effects of including light clusters in nuclear
matter and the densities at which the transition between pasta
configurations and uniform matter occur are investigated in
[14]. As claimed there, more realistic parametrizations for the
couplings of the light clusters should be implemented. The
present work is aimed to contribute to this issue. For instance,
the results obtained at low temperatures (T = 5,10 MeV) and
low densities (nB ≈ 10−3 fm−3) will be discussed. The goal is
to find more precise data in this region.

The discussion about the necessity of including medium
effects in the EOS with the contribution of light clusters
emerged when the chemical equilibrium constants (EC) were
measured in heavy ion reactions [4]. Definitively, the nuclear
statistical equilibrium (NSE) neglecting all in-medium effects
was discarded. In addition to the QS approach to describe the

chemical constants, the semiempirical excluded volume con-
cept has been worked out further [20]. Satisfactory agreement
of excluded volume calculations with the QS method and the
experimental data was found. In the present work, the approach
which includes light clusters, as well as pasta phases, will be
applied to the measured data for the chemical constants.

This paper is organized as follows. In Sec. II, we present the
formalism for the calculation of matter including light clusters
and pasta phases within a RMF approach. In Sec. III, some
results are shown, and a comparison with experimental and
QS results is made. Finally, in Sec. IV, a few conclusions are
drawn.

II. THE FORMALISM

In this section, we summarize the formalism that is used
in this work. In particular, we review the RMF Lagrangian
density, we discuss the way the cluster-meson couplings are
fixed, and we present the density functional approach that has
been applied to describe the pasta phases.

A. Lagrangian

We describe matter at subsaturation densities formed by
protons, neutrons and light clusters within a relativistic
mean-field formalism [11]. These particles interact through
an isoscalar-scalar field φ with mass ms , an isoscalar-vector
field V μ with mass mv , and an isovector-vector field bμ with
mass mρ . The light clusters included in the calculation are the
bosonic α particles and deuterons d, and the fermionic particles
tritons 3H, represented by t , and helions 3He, represented by
h. A system of electrons with mass me is also considered to
make matter neutral. The Lagrangian density of the system
reads

L =
∑

j=n,p,t,h

Lj + Lα + Ld + Lσ + Lω + Lρ

+Lωρ + Le + LA. (1)

where the term Lj is given by

Lj = ψ̄j

[
γμiD

μ
j − M∗

j

]
ψj , (2)

and the α particles and the deuterons are described as in [11],
with Lα and Ld given, respectively, by

Lα = 1
2

(
iDμ

α φα

)∗
(iDμαφα) − 1

2φ∗
αM∗

α
2
φα (3)

and

Ld = 1
4

(
iD

μ
d φν

d − iDν
dφ

μ
d

)∗
(iDdμφdν − iDdνφdμ)

− 1
2φ

μ∗
d M∗

d
2
φdμ, (4)

with

iD
μ
j = i∂μ − gvjV

μ − gρj t · bμ − qeiA
μ, (5)

j = n,p,t,h,α,d, where t stands for the isospin operator, M∗
i

is the effective mass, gvi and gρi are the particle i-meson
couplings, and qei is the electric charge of particle i. They are
defined in the next section.
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The meson and photon contributions in Eq. (1) are given by

Lσ = 1
2

(
∂μφ∂μφ − m2

s φ
2 − 1

3κφ3 − 1
12λφ4

)
, (6)

Lω = 1
2

(− 1
2�μν�

μν + m2
vVμV μ + 1

12ξg4
v(VμV μ)2), (7)

Lρ = 1
2

(− 1
2 Bμν · Bμν + m2

ρbμ · bμ
)
, (8)

Lωρ = �vg
2
vg

2
ρVμV μbμ · bμ, (9)

LA = − 1
4FμνF

μν, (10)

where �μν = ∂μVν −∂νVμ, Bμν = ∂μbν −∂νbμ−gρ(bμ×bν),
and Fμν = ∂μAν −∂νAμ.

Electrons will be included in stellar matter, with the electron
Lagrangian density given by

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe. (11)

The parameters κ , λ, and ξ are self-interacting couplings
and the ω-ρ coupling �v is included to soften the density
dependence of the symmetry energy above saturation density.
In the present study, we always consider the FSU model [10].
Values for the parameters κ , λ, and ξ , and also for the coupling
constants and the masses of the mesonic components, are given
in Refs. [10,19]. The contribution of the hadronic components
are discussed in the following section.

B. Medium modified masses of the hadronic components

The treatment of warm and dense nuclear matter, including
light cluster and pasta phases, demands the appropriate treat-
ment of nucleons in a dense medium. Different approaches are
possible, and have been extensively investigated for the single
nucleon (n,p) contribution. Within a QS approach, a spectral
function can be deduced. Then, the quasiparticle concept
may be introduced, where the energies of the nucleons are
shifted because of medium effects. Note, however, that heavy
clusters have never been included in this approach, and will
not be considered in the present study. Results of microscopic
calculations, such as Dirac—Brueckner—Hartree—Fock cal-
culations, can be represented by RMF models, which contain
parameters adapted to known data, e.g. the properties of nuclei
and nuclear matter near the saturation density.

For the single nucleon contribution, within the RMF
approach, we have the density-dependent effective mass

M∗
j = M∗ = M − gsφ, j = n,p. (12)

We consider the same mass for protons and neutrons in
the spirit of the RMF model proposed by Walecka [8].
We do not expect that for the present calculation at finite
temperature and large proton fractions this approximation has
a noticeable effect. However, for subsaturation cold stellar
matter in β equilibrium, finite effects may be expected and
the experimental masses should be adopted, which may be
done in a straightforward manner. Together with (5), the
quasiparticle shift of the nucleons is described within the
RMF approach. From a more general point of view, the RMF
approach used to describe warm and dense matter can be seen

as an effective field theory built in the framework of a density
functional theory, where the many-body effects are included
in the parameters of the model.

The inclusion of correlations, in particular the formation
of light clusters, is a delicate problem in the RMF approach.
The calculation of the few-body spectral function from which
in-medium correlations, in particular bound state formation,
are derived, is subject of a QS approach. In full analogy to
the concept of single-nucleon quasiparticles, bound states,
which appear as poles of the few-body spectral functions,
can be considered as quasiparticles, with medium-modified
energies.

Within the QS approach, this medium modification of
the binding energy of nuclei has two reasons. First, the
self-energy shift of the constituting nucleons gives a shift
of the quasiparticle energy of clusters which is treated in
the same manner as the quasiparticle shift of single-nucleon
quasiparticles. Second, the Pauli blocking due to the surround-
ing medium produces a shift of the binding energy which, in
contrast to the single-nucleon quasiparticle shift, is strongly
dependent on temperature and center-of-mass momentum of
the bound state. The strong decrease of the binding energy
of nuclei, because of Pauli blocking, leads to the dissolution
of light clusters already at low nucleon densities. However,
the disappearance of bound states with increasing density is
not an abrupt change of the properties because the bound
states with large center-of-mass momentum can survive up to
higher densities, so that the correlations representative for light
clusters are present also at higher densities and only smoothly
disappear.

Similar to the single-nucleon quasiparticles {n,p}, the light-
cluster quasiparticles {d,t,h,α} are considered as additional
degrees of freedom in the Lagrangian (1). The coupling of
clusters to the meson fields should reproduce the shift of
the corresponding quasiparticle energies. We have in the low-
density limit, where Pauli blocking effects can be neglected,

M∗
i = M0i − gsiφ, (13)

M0i = AiM − B0i , i = d,t,h,α, (14)

where B0i are the binding energies of the particles in the vac-
uum, B0d = 2.224 MeV, B0t = 8.482 MeV, B0h = 7.718 MeV,
and B0α = 28.296 MeV. For the average vacuum nucleon
mass, we take the value M = 939 MeV.

To include the Pauli blocking shift [11,21], dependent on
the center-of-mass momentum, temperature and density, we
improve previous approaches [14,19]. As in the case of the
nucleons {n,p}, where the coupling constants are fitted to
describe known properties of nuclei and nuclear matter, we
need experimental data or first-principles theoretical calcu-
lations to determine the cluster-meson coupling parameters.
Results for the properties of nuclear matter at low densities
are still missing. A benchmark is obtained from the virial
expansions [16,22], and an interesting result—that gives some
information about the medium modifications of light clusters
at low densities—are the chemical equilibrium constants (EC)
which have been calculated in [4].

In the present approach, we are going to model medium
effects with an appropriate choice of the cluster-meson
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couplings, where the binding energy of the cluster in the
medium is defined by

Bi = AiM
∗ − M∗

i . (15)

The couplings are written as gsj = xsjgs , gvj = xvjgv , and
gρj = |Zj − Nj |gρ , where Aj is the mass number, Zj the
proton number, and Nj the neutron number. The parameters
xij are fixed in the following way: (a) xsj = xvj = 1 for
j = p,n and (b) xsi = 3

4Ai for i = d,t,h,α as proposed in
Ref. [19], because these parameters reproduce quite well the
binding energy given in Ref. [11] for T = 5 MeV and the
experimental predictions of the Mott densities at T = 5 MeV
given in Ref. [5]. (c) The parameters xvi are fixed as in [19],
so that the dissolution density at T = 0 of each type of cluster,
defined as the density at which the free energy of clusterized
matter equals the free energy of nucleonic matter, is the one
obtained in [11], where a statistical approach was used. For
the FSU [10] EoS, these xvi ratios are given by (see [19])

⎛
⎜⎝

xvd

xvt

xvh

xvα

⎞
⎟⎠ =

⎛
⎜⎝

3.516
4.382
4.624
5.675

⎞
⎟⎠η (16)

with η = 1. In the present work, we will allow η to vary, in
order to be able to reproduce the experimental EC. We point
out that, in principle, we should consider different values of η
for the different clusters, but we have avoided this approach
to keep the parameter space restricted. We postpone an overall
optimization of all the parameters for a future work. (d) For
the coupling to the ρ meson we consider the simplest approach
and take the coupling proportional to the isospin projection of
the light cluster. A more realistic choice could be done once
the couplings to the σ and ω mesons are more constrained.

Note that the coupling constant, gv , describes the repulsive
interaction because of Pauli blocking. This is the case for the
nucleon-nucleon interaction, where the Pauli blocking acts on
the quark substructure of nucleons; it is only weakly dependent
on T . For the medium shift of the binding energy of light nu-
clei, also the Pauli blocking is responsible, but, because of the
different energy scale of the binding energies, the dependence
on T is strong. An effective field theory that takes into account
this temperature-dependent Pauli blocking effect will require
temperature-dependent parameters as implemented in [11],
and leads to more complex thermodynamics. In the present
study, we have kept to constant couplings, and, therefore, the
fit we are performing (e.g., η = 0.7) is valid for the temperature
region under consideration (5–10 MeV) but cannot be taken
from T = 0 MeV (where η = 1).

C. Density functional approach

The calculation of the warm pasta phase, including light
clusters, i.e., {n,p,d,t,h,α,e} matter, is performed using the
numerical prescription given in [23]. In this approach,
the fields are assumed to vary slowly so that the nucleons and
the clusters can be treated as moving in locally constant fields at
each point. The finite temperature semiclassical Thomas Fermi
(TF) approximation is obtained within a density functional

formalism. We start from the grand canonical potential density:

ω = ω({fi+},{fi−},{Fj },{∇Fj })
= Et − T St −

∑
i=p,n,e,d,t,h,α

μiρi, (17)

where {fi+}, {fi−}, i = p,n,e,d,t,h,α stand for the proton,
neutron, electron, light clusters, and respective antiparticle
distribution functions, defined in Eq. (26), and {Fj }, {∇Fj }
represent the fields φ0, V0, b0, A0 and respective gradients. The
quantities Et = E + Ee and St = S + Se are the total energy
and entropy densities, respectively. The total energy density is
a functional of the density, and was defined in [23] for T = 0.
For finite temperatures, we have a similar expression:

Et =
∑

i=p,n,e,d,t,h,α

Ei(r) + gvV0(r)ρv(r) + gρb0(r)ρ3(r)

+ 1

2

[
(∇φ0(r))2 + m2

s φ
2
0(r)

] + κ

3!
φ3

0(r) + λ

4!
φ4

0(r)

− 1

2

[
(∇V0(r))2 + m2

vV
2

0 (r) + ξg4
v

12
V 4

0 (r)

]

− 1

2

[
(∇b0(r))2 + m2

ρb
2
0(r)

] − �v g2
v V 2

0 (r) g2
ρ b2

0(r)

(18)

− 1

2
[∇A0(r)]2 + eρq(r)A0(r), (19)

where

Ei = γi

2π2

∫
dp p2

√
p2 + M∗

i (r)2[fi+(r,p) + fi−(r,p)],

i = p,n,d,h,t,α, (20)

with γi = 2si + 1, the spin degeneracy of particle i, and

Ee = 1

π2

∫
dp p2

√
p2 + m2

e[fe+(r,p) + fe−(r,p)]. (21)

In the above expressions,

ρv(r) =
∑

i=p,n,d,t,h,α

xviρi(r), (22)

ρ3(r) =
∑

i=p,n,t,h

t3iρi(r), (23)

and

ρq(r) =
∑

i=p,d,t,h,α,e

qei

e
ρi(r), (24)

with

ρi(r) = γi

2π2

∫
dp p2[fi+(r,p) − fi−(r,p)], (25)
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where the ground-state (equilibrium) distribution functions are
defined as

fi±(r,p) = 1

1 + exp (ε∗
i (r,p) ∓ νi)/T ]

, i = p,n,t,h,

fi±(r,p) = 1

−1 + exp[(ε∗
i (r,p) ∓ νi)/T ]

, i = d,α, (26)

fe±(r,p) = 1

1 + exp[(εe ∓ μe)/T ]
,

with ε∗
i (r,p) = √

p2 + M∗
i (r)2, M∗

i (r) = M − gsiφ0(r), and
εe = √

p2 + m2
e . μe is the electron chemical potential, and the

nucleons’ and clusters’ effective chemical potentials νi, i =
p,n,d,t,h,α, are given by

νi = μi − gviV0(r) − gρi t3ib0(r) − qeiA0(r), (27)

where μi and qei are, respectively, the chemical potential and
electric charge of particle i, and t3i is the third component of
the isospin operator.

For the entropy, we take the one-body entropy density:

St = −
∑

i=n,p,t,h

∫
d3p

4π3
{fi+(r,p) ln fi+(r,p)

+ [1 − fi+(r,p)] ln [1 − fi+(r,p)] + (fi+ ↔ fi−)}.

−
∑
i=d,α

∫
γi

d3p

(2π )3
{fi+(r,p) ln fi+(r,p)

− [1 + fi+(r,p)] ln [1 + fi+(r,p)] + (fi+ ↔ fi−)}.
(28)

The equations of motion for the meson fields (see [23])
follow from the variational conditions:

δ

δφ0(r)
� = δ

δV0(r)
� = δ

δb0(r)
� = δ

δA0(r)
� = 0, (29)

with

� =
∫

VWS cell

d3r ω({fi+},{fi−},{Fj },{∇Fj }), (30)

where the space integral is over the volume of the Wigner Seitz
cell, defined as VWS cell = Ai/ρ, and we are using the same
notation as in Eq. (17). For the temperatures considered in the
present work, the bosonic particles, d and α, do not condense,
so we have only considered the thermal contributions and did
not include the condensate terms in the above expressions.

The numerical algorithm for the description of the neutral
{n,p,d,t,h,α,e} matter at finite temperature is a generalization
of the formalism presented in [24]. The Poisson equation
is always solved by using the appropriate Green’s function
according to the spatial dimension of interest, and the
Klein-Gordon equations are solved by expanding the meson
fields in a harmonic oscillator basis with one, two, or three
dimensions, based on the method proposed in [25]. The
differential equations are solved using Neumann boundary
conditions, and, when necessary, an auxiliary virtual source
profile outside the cell, to help convergence. One important
source of numerical problems are the Fermi integrals, hence,

 5
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FIG. 1. The range of temperatures and densities of the HIC
experiment of Qin et al. [4].

we have used the accurate and fast algorithm given in Ref. [26]
for their calculations.

III. RESULTS

In the present section, we discuss how the couplings of the
light clusters to the vector meson ω define the behavior of the
equilibrium constant Kc, and the distribution of the cluster
fractions. Considering the measured equilibrium constants
(EC) [4] as a condition for the EOS in the low-density region,
an optimum value for the parameter η is found. We will next
calculate the pasta phase, including light clusters, using the
same parametrizations discussed for homogeneous matter. The
effect of including the pasta phase on the EC and the proton
and neutron chemical potential is also discussed.

A. Light clusters

In Ref. [4], experimentally derived EC for several light
clusters (d,t,h,α) were reported. The range of densities and
temperatures of that experiment is shown in Fig. 1. In the
following, we will consider these experimental observables
to constrain the cluster coupling to the vector meson ω. The
chemical EC defined in [4] are

Kc[i] = ρi

ρ
Ni
n ρ

Zi
p

, (31)

where ρi is the number density of cluster i with neutron number
Ni and proton number Zi , and ρp, ρn are, respectively, the
number densities of free protons and neutrons. The global
proton fraction, Yp = ∑

i Ziρi/ρ, with ρ = ∑
i Aiρi , was

determined in these experiments as Yp = 0.41.
We first consider the EOS for homogeneous matter with

light clusters in chemical equilibrium, such that the chemical
potential of each cluster is given by

μi = Niμn + Ziμp.

In our calculation, a gas of protons, neutrons, and light clusters
is considered in thermodynamical equilibrium. Taking the
cluster-meson parametrization proposed in the previous sec-
tion with the cluster-vector meson couplings defined in (16),
we consider η a free parameter that will fix the cluster-vector
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FIG. 2. The chemical equilibrium constant Kc for the α particle
for different values of η.

meson coupling. We calculate the α-equilibrium constant,
Kc[α], for different values of η and plot them in Fig. 2,
together with the experimental results of [4]. The calculation
was performed for Yp = 0.41. Taking η = 1, the α-equilibrium
constant is too small, indicating that the parametrization is
too repulsive, already for the lowest densities considered. The
experimental results seem to indicate that η ∼ 0.65–0.7. In
the following, we will consider these two values of η, and we
will discuss the cluster fraction also when heavy clusters are
included. In accordance with other models that include the
interaction between nucleons and nuclei in the low density
region discussed in Refs. [4,20], we can reproduce the data
obtained from the laboratory test of the EOS. The deviations
to the EOS at very low densities, reported also by the other ap-
proaches, are possibly caused by the experimental difficulties
of producing a state in thermodynamical equilibrium at such
densities.

In the following, we perform our calculations by fixing the
proton fraction to Yp = 0.41, which corresponds to the value
extracted from the experiment in Ref. [4]. However, as seen in
Fig. 3, the effect of the total proton fraction on the equilibrium
constant of the α particles is very small. It was shown in
[20] that for a noninteracting Maxwell-Boltzmann gas of
protons, neutrons, and clusters in equilibrium, the chemical
EC do not depend on the proton fraction. They have, however,
obtained a dependence on the proton fraction when describing
matter within the excluded volume HS EOS of Hempel and
Schaffner-Bielich [27], as a chemical mixture of nuclei and
nucleons in nuclear statistical equilibrium, having the density
dependent model DD2 [11], as the underlying RMF model,
and accounting for the Pauli blocking between nucleons and
nuclei in a simple approximation by using the excluded volume
concept. This difference was attributed to the fact that in their
calculation a gas of interacting particles was considered. The
observed relative effect in our calculation, although very small,
is, however, the same: the smaller the proton fraction, the
smaller the EC. The small dependence on Yp, close to the
ideal gas result, may be explained by the fact that the density
distributions depend only on the effective chemical potential,
νi , and the effective masses, which have only the contribution
from the coupling to the isoscalar meson field σ . In the present
calculation, we consider a gas of interacting particles, as
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FIG. 3. The chemical equilibrium constant Kc for the α particle
(top), tritium (middle), and helion (bottom) for different global proton
fractions values Yp , using η = 0.65.

in Ref. [20], but in that work the approach describing the
equilibrium, a nuclear statistical equilibrium formalism, is
completely different, and this is probably the reason for the
different behavior. In contrast to the α clusters, the helium
and tritium have a nonzero isospin and, therefore, are more
sensitive to the global proton fraction of matter, as seen in Fig. 3
in the middle and bottom panels, although the effect of the
proton fraction is still quite small. The EC changes in opposite
directions since a medium with a smaller proton fraction favors
the formation of tritium and disfavors the formation of helium,
and so the smaller the YP , the larger the tritium EC and the
smaller the helium EC.

The fractions of the different light clusters present in
homogeneous matter with Yp = 0.41 are plotted in Fig. 4, for
T = 5 and 10 MeV, with η = 0.65 (top panel) and η = 0.70
(bottom panel). Some conclusions are in order: the deuterons
are the most abundant clusters at the lowest densities due
to their smaller mass. In fact, the relative abundance of the
light clusters at the lowest densities is mainly driven by the
fugacities zi = exp[(μi − mi)/T ] ≈ zNi

n zZi
p , and, therefore,

the lightest cluster is the most abundant at low densities.
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FIG. 4. The i-cluster particle fraction Yi with (a) η = 0.65 and
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However, for T = 5 MeV, the α particles become more
abundant, already below ρ = 10−3 fm−3, due to their large
binding energy, and in the range ρ = 0.01–0.1 fm−3 they are
the most abundant. The fraction of tritium is always larger than
the fraction of helion because matter with Yp = 0.41 is neutron
rich. A larger η reduces the fraction of particles and moves the

dissolution density to smaller densities as expected, because
a larger η gives rise to a stronger repulsion, induced by the
vector meson. For the largest temperature, and η = 0.65, it is
clearly seen that after a strong reduction of the cluster fraction
at ρ < 0.1 fm−3 there is a new increase of the light cluster
fractions, showing that the parametrization of the couplings is
not repulsive enough to dissolve the clusters at these densities.
This is also seen for the α clusters at T = 5 MeV. This
problem can be fixed by including a mechanism that describes
excluded-volume effects (see [28]) or by introducing terms
beyond a linear dependence on the density in the mass shifts
[11]. In the present calculation, light clusters are considered
pointlike, and it is the ω meson that describes the short distance
repulsion between clusters, which, however, seems not to be
sufficient for these densities. As already mentioned above, the
quasiparticle picture becomes questionable near the saturation
density, and part of the correlations are already included in
the mean-field approach. However, at densities of this order,
other effects, such as the formation of heavy clusters, should
be considered. This will be done in the next subsection.

B. Pasta phase with light clusters

As seen in Fig. 4, and considering η = 0.7, all the
clusters dissolve in the range ρ = 0.02–0.1 fm−3, for the two
temperatures considered, T = 5 and 10 MeV. In the present
subsection, we choose this value of η, and we study how the
appearance of heavy clusters is affected by the light clusters.
These investigations are of relevance to determine the structure
of the inner crust of neutron stars, or the evolution of a
core-collapse supernova matter.

We perform a Thomas-Fermi calculation, including light
clusters as degrees of freedom, as described in the previous
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FIG. 5. Density profiles for η = 0.7, Yp = 0.41, with (a) and (c) T = 5 MeV, (b) and (d) T = 10 MeV, ρ = 0.02 fm−3 (top panels) and
ρ = 0.03 fm−3 (bottom panels), obtained with the FSU parametrization.
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section. We consider the temperatures 5 and 10 MeV, a fixed
proton fraction Yp = 0.41, and the cluster-meson couplings are
chosen according to Eq. (16), with η = 0.7. The calculation
is performed with the FSU [10] model and all geometrical
configurations are considered in the calculation with T = 5
MeV. For T = 10 MeV, we only consider droplets because
according to reference [29] thermal fluctuations will induce
displacements of the rodlike and slablike clusters which can
melt the lattice structure for temperatures T � 7 MeV.

In Fig. 5, the p, n, d, t , h, and α-particle profiles for
a spherical Wigner-Seitz (WS) cell at the densities ρ =
0.02 fm−3 (top panels) and ρ = 0.03 fm−3 (bottom panels) are
plotted. For T = 5 MeV, the light clusters present a maximum
close to the cluster surface, a result already obtained in [30].
Close to the surface, the largest abundances occur for the
α and tritium particles; however, at the WS cell border, the
deuteron is certainly more abundant than the tritium, and,
for ρ = 0.03 fm−3, it even overtakes the α-particle density.
For T = 10 MeV, the tritium is essentially the most abundant
cluster for all densities. The peaked distribution at the heavy
cluster surface, observed for T = 5 MeV, is practically washed
out for all light clusters, except for the α particles, for which
the temperature increases.

In order to study the effect of light clusters on the profiles
of the heavy cluster we show in Fig. 6 the p and n density
profiles obtained in a TF calculation with (green) and without
(red) light clusters. In the left panel, results at T = 5 MeV are
displayed, and in the right panel we take T = 10 MeV, as in the
previous figure. The baryonic density is set at 0.02 fm−3 and,
at this value the ground state heavy cluster configuration is the
droplet, which is the geometry considered in the calculations.
The light clusters have a noticeable effect on the heavy cluster,
more clearly seen at T = 10 MeV: including clusters makes
the central cluster proton and neutron densities slightly larger,
the background gas density of both nucleons lower, the surface
thickness of the heavy cluster smaller, and the WS cell radius
larger.

In Table I, we show the sequence of geometries obtained
in a TF calculation with and without light clusters, for a
temperature of 5 MeV and a fixed proton fraction of 0.41.
All five heavy cluster configurations, droplet, rod, slab, tube,

and bubble, are present in both calculations and the difference
between the transition densities is small, being slightly larger
when the light clusters are present, except for the tube-bubble
transition, where it happens at a smaller density when no
clusters are considered. The small effect of the light clusters
on the transitions is probably due to the fact that the largest
abundances of clusters occur for densities that favor the
spherical geometry, and is below Yi ∼ 0.005 for all the other
geometries which become stable at densities ρ > 0.023 fm−3.

In Fig. 7, the fractions of light clusters in homogeneous
matter, solid lines, and in the heavy-clusterized matter (pasta
phase), dashed lines, are shown. The T = 5 MeV calculation
takes into account the five clusters’ geometries while for
T = 10 MeV only spherical droplets were considered. Results
from a QS approach are also considered (dash-dotted lines),
and they will be discussed later. At low densities, the pasta
phase calculation converges to the calculation of homogeneous
matter with light clusters. This occurs below ρ = 0.001 fm−3

for T = 5 MeV, and below ρ = 0.01 fm−3 for the larger
temperature. The presence of the pasta clusters has two effects
on the light cluster abundances: on one hand, it reduces their
abundances for densities in the range ρ = 0.001–0.01 fm−3,
close to the light cluster distribution maximum in homoge-
neous matter; and, on the other hand, it extends their existence
to baryonic densities well above the dissolution density of

TABLE I. Transition densities between the heavy clusters within
a TF calculation with and without light clusters. The temperature is
fixed to T = 5 MeV and the proton fraction is set to 0.41. In the first
column, d, r, s, t, b, and HM stand for droplet, rod, slab, tube, bubble,
and homogeneous matter.

No clusters With clusters
ρ (fm−3) ρ (fm−3)

d-r 0.0230 0.0234
r-s 0.0392 0.0396
s-t 0.0680 0.0685
t-b 0.0806 0.0790
b-HM 0.101 0.101
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For T = 5 MeV, the TF calculation includes the five geometrical
configurations, droplet, rod, slab, tube and bubble, for the heavy
clusters.

light clusters in homogeneous matter. This behavior can be
attributed to the rather small density of the background gas of
nucleons in a sizable fraction of the WS cell, where clusters
can form abundantly.

The effect of the presence of light clusters on the proton and
neutron chemical potentials is seen in Fig. 8. The inclusion of
the pasta contribution mainly reduces, or totally removes, the
backbending that the proton and neutron chemical potentials
show for homogeneous matter with or without light clusters,
and that indicates the existence of a chemical instability. The
backbending is not totally washed out for the proton chemical
potential. However, since the calculation is done at fixed
proton fraction including electrons, the chemical potential
that determines a possible phase transition is not μp, but
μp + μe [31], and this increases continuously with density.
Similar results were observed in Ref. [14], where the same
FSU model was used, but a different proton fraction, Yp = 0.3,
and temperatures T = 4 and 8 MeV were considered. For
comparison, we add to Fig. 8 the results obtained within
the coexistence phases (CP) approach (see Ref. [14]) and
the compressible liquid drop model (CLD) with clusters (see
Ref. [32]), both calculations including light clusters. In the
CP approach, the surface and Coulomb field contributions
are added in a non- self-consistent calculation, and, therefore,
the results should be interpreted with caution. In particular,
the approach fails mainly close to the transition between
different phases. This drawback is overtaken with the CLD
model, and the transition from homogeneous matter with light

clusters to pasta phases with light clusters is continuous; see
the dash-dotted lines in Fig. 8, the pink for CLD, and the cyan
for CP models. It is interesting that for T = 5 MeV, CLD
results are very similar to QS results, while TF gives larger
chemical potentials. One of the causes of this difference is
the fact that in the TF calculation the electron distribution is
determined self-consistently, while for the CLD model it is
a priori taken to be constant.

We are also interested in investigating whether or not a
first-order phase transition is occurring in the system. For that
purpose, one should look at the pressure-chemical potential
graph. This is shown in Fig. 9, where we plot, for the
different RMF approaches, the pressure as a function of
the baryonic chemical potential, μB , which is defined as
μB = (1 − yp)μn + yp(μp + μe), because we are considering
a fixed proton fraction [31]. We include the mean-field pasta
calculations with light clusters (TF, dashed green; CLD,
dot-dashed pink; and CP, dot-dashed cyan) at T = 5 MeV. The
homogeneous matter results are given by a solid black line, and
by a red dashed line when including light clusters. We observe
that the CP shows a jump when the transition to homogeneous
matter occurs, which was already discussed in [14] and was
attributed to the simplified treatment of the surface energy.
The other calculations show a smooth transition. We conclude
that clusterized matter has a larger pressure at a given density,
and, therefore, is more stable than homogeneous matter, and
no first order phase transition is expected in these ranges of
densities.

In order to understand how the mean field approach
influences the light cluster fraction, we present in Fig. 10 a
comparison of the d, t , h, and α fractions, obtained within
the five approaches, three mean-field pasta calculation with
light clusters (TF, CLD, and CP) and two calculations without
the pasta structures, QS and mean-field, for T = 5 MeV. Just
comparing the mean-field approaches, we conclude the follow-
ing: TF predicts the largest amount of light clusters, although
for the deuteron the CLD model gives similar fractions; the
CP model predicts fractions that are 1–2 orders of magnitude
smaller; all pasta calculations predict the dissolution of light
clusters at larger densities than the calculation without pasta
structures; except for the α clusters, the QS calculations predict
the largest amounts of light clusters at densities close to
0.1 fm−3 and above, however this calculation does not consider
the possibility of heavy cluster formation. More details about
these results will be discussed in the next section. The CLD
approach presents some discontinuities that are connected with
the change of geometry of the heavy cluster, being a limitation
of considering only some geometries and of the single-nucleus
approximation. A smoother change would be obtained if,
e.g., a full distribution of heavy clusters was considered, and
intermediate geometries are taken into account.

C. Comparison with other results

In this subsection, we continue to discuss the results of the
previous subsections with respect to the experimental data
of Ref. [4], and compare with the many-body theoretical
calculations of Ref. [17]. In particular, we are interested
in understanding the effect of including the pasta phase in
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also shown.

the calculation of the chemical EC and proton and neutron
chemical potentials. The experimental chemical EC from
[4] have, however, to be taken with caution due to the
uncertainties on the extraction of the density and temperature
from an expanding source, since the experimental analysis is
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FIG. 9. Pressure as a function of the baryonic chemical potential,
μB , at T = 5 MeV, for homogeneous nuclear matter (HM) (solid),
homogeneous nuclear matter with light clusters (red, dashed), and
mean-field pasta calculations with clusters [TF (green, dashed), CLD
(pink, dash-dotted), CP (cyan, dash-dotted)].

performed considering that thermal and chemical equilibrium
was attained at the freeze-out point.

1. Experimental equilibrium constants

Until now, we have focused on the chemical EC for the
α particles. Here we discuss also the other light elements
(d, t, h). In Figs. 11 and 12, the chemical EC as defined in
(31) calculated for homogeneous matter with light clusters (red
crosses) and pasta with light clusters (blue triangles) are plotted
together with the experimental results of [4] and the results
obtained within a many-body quantum statistical approach
[17]. It has been discussed in [20] that the comparison with
experimental data should be performed only considering light
clusters, with Z � 2, since these particles evaporate from a
relatively small source and very small quantities of 6Li and 7Li
are detected. We will consider both the calculation including
light clusters in a gas of a homogeneous distribution of protons
and neutrons, and in a pasta phase calculation. In this case,
the heavy clusters are represented by a single heavy cluster,
generally known as single nucleus approximation (SNA).

The curves obtained for the α-particle chemical EC for
homogeneous matter with light clusters are always below the
experimental data, within the uncertainty of the experimental
analysis for η = 0.65 or a bit below for η = 0.7, in accordance
with Fig. 2. The same trend is obtained for the other three light
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clusters, t , h, and d. The inclusion of the heavy clusters in the
calculation brings the chemical EC closer to the experimental
results. A similar effect was shown in [20] for the STOS EOS of
Shen, Toki, Oyamatsu, and Sumiyoshi [33] and the LS EOS of
Lattimer and Swesty [34]: the EC determined including heavy
clusters are larger. As in LS and differing from STOS, our
results with the heavy clusters agree with the experimental EC,
while the calculation obtained considering only light clusters
originates too small EC. We consider that this may be due
to the fact that the number of light clusters with respect to
the free nucleons for a given density is larger, the larger the
different number of cluster species being taken into account.
This behavior has been presented in [20], where, using the HS
EOS [27], the calculation of the EC was carried out considering
npα matter, as well as matter with A � 4, A � 10, and no
restriction on A. The larger the number of particles included,
the larger the EC obtained.

While the results for the α, t , and even the h particles
are consistent with the experimental results, the deuteron
EC are too low, and not even the inclusion of the heavy
clusters is enough to reproduce the experimental results. In
the present approach, the coupling of mesons to the light
clusters mimics the many-body effects that give rise to the
formation of clusters. In fact, as discussed in [17], medium
modifications due to self-energies and Pauli blocking effects
prevent the use of a simple picture that considers the chemical
equilibrium of free nuclei. The in-medium effects are included
in our mean-field description through an appropriate choice of
the coupling constants of the mesons to the light clusters. It is

expected that the heavier clusters may be reasonably described,
but the smaller the cluster, the more important the quantum
statistical effects are. Deuterons, being the lightest clusters
will, therefore, be more sensitive to the approach and, in order
to be realistically described, a more fundamental formalism is
required [11,17,21,35].

2. Quantum statistical results

In order to compare the predictions of our mean-field
approach with the more fundamental many-body quantum
statistical (QS) description [17], we have also included in
Figs. 7–13 the corresponding QS results. It should, however,
be stressed that contrary to the RMF approach just discussed,
the present QS results do not have the contribution of heavy
clusters. Starting with Figs. 11 and 12, we see that the experi-
mental EC data are well described by the QS calculations. Note
that small deviations from the results given in [20] are caused
by the use of the more recent expressions for the momentum
dependent shifts, given in [17]. A reasonable agreement with
the RMF model, including light cluster formation, is also
obtained for the parameter η = 0.7 and the account of pasta
formation. A comparison of the cluster fractions, calculated
from the different models in a wide density region, is shown in
Figs. 7 and 8, where we have plotted for η = 0.7 the particle
fractions at T = 5 and 10 MeV, with and without pasta clusters,
including also the corresponding results obtained within a QS
calculation.
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FIG. 13. Proton chemical potential, μp (circles), and neutron
chemical potential, μn (triangles), for Yp = 0.41 and the parameters
(a) η = 0.65, (b) η = 0.70 for homogeneous matter including light
clusters (red), pasta calculation (blue), and the QS approach (black).

At low densities, in Fig. 7 the particle fractions for the QS
and RMF results agree quite well, except for an overproduction
of deuterons in RMF with respect to QS. This difference
increases with temperature. The reason is clear: we have to take
into account also the continuum contribution [16,22] to obtain
the correct virial expansion. The contribution of continuum
correlations to the EOS [17] is increasing with increasing
temperature. An approach to combine both the virial expansion
and the RMF theory was given in [36].

The agreement of both calculations of cluster fractions
stops at the maximum of the particle distributions. At larger
densities, particle fractions are generally larger within the QS
description. In this QS calculation, a momentum-dependent
Pauli blocking was implemented and the larger the momentum
the weaker the Pauli blocking, originating larger mass fractions
of light clusters [17]. The relatively large contribution of
cluster fractions from the QS calculation, especially the
two-nucleon correlations (d) near the saturation density, is
also seen in Fig. 10.

At larger densities, heavy clusters will form and, in contrast
to the RMF calculation, these have not been considered in
the QS calculation. It is precisely at the densities where the
momentum dependence of QS Pauli blocking effect is more
strongly felt that the heavy clusters appear. The inclusion of the
pasta phases postpones the dissolution of light clusters to larger
densities but also reduces their relative mass fractions. The
RMF calculation includes the backreaction of the light clusters

on the mean-field, an effect that is not taken into account
in the QS calculation, which, therefore, predicts too strong
correlations at larger densities. Correlations, in particular two-
nucleon correlations, are present in nuclear matter also near
the saturation density, but are included in the effective mean
field which is fitted to the properties of dense nuclear matter.

In Fig. 8, we include the QS proton and neutron chemical
potentials together with the RMF ones. These quantities
indicate that the correlations included within each approach
are different and stronger in the QS calculation. At low
densities, both approaches agree reasonably well, in particular
for neutrons. The inclusion of the heavy clusters lowers
the chemical potential, becoming closer to the QS values.
The backbending effect on the neutron and proton chemical
potentials in homogeneous matter with no clusters is the
signature of an instability that originates a liquid-gas-like
phase transition. In the QS approach, this backbending is
reduced but not totally removed, and, therefore, the liquid-gas
instability is still present, indicating that heavier clusters must
be considered; see [37]. The RMF pasta phase calculation
removes the backbending of the neutron chemical potential
and reduces a lot the backbending effect of the proton chemical
potential. The remaining effect is removed by the electron
contribution that has also been included in the calculation to
neutralize matter.

In Fig. 13, we have plotted the proton and neutron chemical
potentials for the densities and temperatures at which the
EC are measured. We consider both the RMF results with
and without pasta for η = 0.65, η = 0.7 and the QS results.
The densities and temperatures tested correspond precisely to
the range of densities where the larger discrepancies between
the chemical potentials calculated within each framework
differ the most. The inclusion of the pasta lowers the chemical
potential, as shown before, but the chemical potential still
remains essentially 5 MeV larger than the QS results. In
contrast to the EC results where both approaches, the RMF
as well as the QS approach, reproduce reasonably well the
measured data, the results for the chemical potentials μn,μp

are quite different. The chemical potentials contain the single-
nucleon mean-field shifts which are depending on the RMF
parametrization, in our case the FSU model [10] for the pasta
calculation including light clusters and the DD2-RMF [11]
used in the QS calculations. Calculating the cluster fractions,
these mean-field shifts compensate nearly. Consequently, the
EC, see Figs. 11 and 12, show a good agreement between both
approaches.

IV. CONCLUSIONS

In the present study, we have calculated the equation of
state at low density, including light clusters with A � 4 as
new degrees of freedom, besides protons and neutrons, within
three different RMF calculations: the Thomas-Fermi, the
coexistence phase, and the compressible liquid drop models.
Results from a quantum statistical calculation were also
discussed, for comparison. We have considered two different
scenarios: (a) the light clusters are in equilibrium with an
homogeneous distribution of protons and neutrons; (b) the
nucleons clusterize and the light clusters coexist with a heavy
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cluster and a proton-neutron background gas. It has been
shown that including heavy clusters shifts the light cluster
Mott densities to larger values, although reducing the mass
fraction of each type.

The RMF description of light clusters requires a reason-
able choice of the cluster-meson couplings. This has been
implemented considering both many-body quantum statistical
calculations and experimental results from HIC. Compared
with the results shown in Ref. [14], the introduction of
the parameter η, which parametrizes the interaction of the
meson fields with the light clusters, allows a reasonable
description of the measured EC data. With respect to the
chemical potentials, μn and μp, larger deviations are obtained
in comparison with QS calculations. These QS calculations
will be modified, taking the formation of pasta structures into
account.

Through the coupling of the light clusters to the mesons,
we expect to take into account the backreaction effect of the
clusters in the medium, together with an effective description
of the in-medium particle self-energies and Pauli blocking
effects. For densities below 0.1nsat, good agreement between
the different approaches is obtained for the cluster fractions.
However, further studies should be carried out to understand
how the many-body effects can be effectively taken into
account if the region of higher densities, near the saturation
density, is investigated. If attractive correlations are included

through too strong couplings, it may occur that light clusters
will not dissolve at large densities, and the appropriate treat-
ment of correlations, for instance within a density functional
formalism, has to be worked out.

The simultaneous treatment of light clusters and pasta
phases in warm and dense nuclear matter is of substantial
relevance for various applications in HIC and astrophysics.
As an example, we refer to the structure of neutron stars. The
clusterization of the background gas in the inner crust has
certainly important effects on the transport properties. The
fast decrease of the particle fractions just below 0.1 fm−3

coincides with the crust-core transition density. The presence
of light clusters will affect the neutrino reaction and diffusion
processes as well as transport properties, such as electrical
conductivity and specific heat. The present work contributes
to the investigation of the state of warm and dense matter
when, in addition to the formation of pasta phases, also light
clusters have to be taken into account, which require a quantum
statistical approach.

ACKNOWLEDGMENTS

This work is partly supported by FCT (Portugal) under
projects UID/FIS/04564/2016 and SFRH/BPD/95566/2013
(H.P.), by “NewCompStar,” COST Action MP1304, and by
CNPq.

[1] A. Arcones, G. Martínez-Pinedo, E. O’Connor, A. Schwenk,
H.-T. Janka, C. J. Horowitz, and K. Langanke, Phys. Rev. C 78,
015806 (2008).

[2] S. Furusawa, H. Nagakura, K. Sumiyoshi, and S. Yamada,
Astrophys. J. 774, 78 (2013).

[3] S. Furusawa, K. Sumiyoshi, S. Yamada, and H. Suzuki,
Nucl. Phys. A 957, 188 (2017).

[4] L. Qin, K. Hagel, R. Wada, J. B. Natowitz, S. Shlomo, A.
Bonasera, G. Röpke, S. Typel, Z. Chen, M. Huang et al.,
Phys. Rev. Lett. 108, 172701 (2012).

[5] K. Hagel et al., Phys. Rev. Lett. 108, 062702 (2012).
[6] E. N. E. van Dalen and H. Müther, Int. J. Mod. Phys. E 19,

2077 (2010); N. Van Giai, B. V. Carlson, Z. Ma, and H. Wolter,
J. Phys. G 37, 064043 (2010); S. Shen, J. Hu, H. Liang, J. Meng,
P. Ring, and S. Zhang, Chin. Phys. Lett. 33, 102103 (2016).

[7] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis,
Phys. Rep. 411, 325 (2005); L. G. Cao, U. Lombardo, C. W.
Shen, and N. V. Giai, Phys. Rev. C 73, 014313 (2006); S. Goriely,
N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503
(2009); Phys. Rev. C 82, 035804 (2010); J. M. Pearson, N.
Chamel, A. F. Fantina, and S. Goriely, Eur. Phys. J. A 50, 43
(2014).

[8] J. D. Walecka, Ann. Phys. (NY) 83, 491 (1974).
[9] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647

(2001); S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331
(1999); G. A. Lalazissis, T. Niksic, D. Vretenar, and P. Ring,
Phys. Rev. C 71, 024312 (2005); T. Gaitanos, M. Di Toro, S.
Typel et al., Nucl. Phys. A 732, 24 (2004); S. K. Dhiman, R.
Kumar, and B. K. Agrawal, Phys. Rev. C 76, 045801 (2007).

[10] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95, 122501
(2005).

[11] S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter,
Phys. Rev. C 81, 015803 (2010).

[12] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone,
and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).

[13] M. Dutra, O. Lourenço, S. S. Avancini, B. V. Carlson, A.
Delfino, D. P. Menezes, C. Providência, S. Typel, and J. R. Stone,
Phys. Rev. C 90, 055203 (2014).

[14] H. Pais, S. Chiacchiera, and C. Providência, Phys. Rev. C 91,
055801 (2015).

[15] G. Röpke, L. Münchow, and H. Schulz, Nucl. Phys. A 379, 536
(1982); Phys. Lett. B 110, 21 (1982).

[16] M. Schmidt et al., Ann. Phys. (NY) 202, 57 (1990).
[17] G. Röpke, Phys. Rev. C 92, 054001 (2015).
[18] H. Pais and S. Typel, arXiv:1612.07022.
[19] M. Ferreira and C. Providência, Phys. Rev. C 85, 055811 (2012).
[20] M. Hempel, K. Hagel, J. Natowitz, G. Röpke, and S. Typel,

Phys. Rev. C 91, 045805 (2015).
[21] G. Röpke, Nucl. Phys. A 867, 66 (2011).
[22] C. J. Horowitz and A. Schwenk, Nucl. Phys. A 776, 55 (2006).
[23] S. S. Avancini, D. P. Menezes, M. D. Alloy, J. R. Marinelli,

M. M. W. Moraes, and C. Providência, Phys. Rev. C 78, 015802
(2008).

[24] S. S. Avancini, S. C. Débora, P. Menezes, and C. Providência,
Phys. Rev. C 82, 055807 (2010).

[25] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin 1980).

[26] J. M. Aparicio, Astrophys. J. Suppl. Ser. 117, 627 (1998).
[27] M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837, 210

(2010).
[28] S. Typel, Eur. Phys. J. A 52, 16 (2016).
[29] C. J. Pethick and A. Y. Potekhin, Phys. Lett. B 427, 7 (1998).

045804-14

https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1103/PhysRevC.78.015806
https://doi.org/10.1088/0004-637X/774/1/78
https://doi.org/10.1088/0004-637X/774/1/78
https://doi.org/10.1088/0004-637X/774/1/78
https://doi.org/10.1088/0004-637X/774/1/78
https://doi.org/10.1016/j.nuclphysa.2016.09.002
https://doi.org/10.1016/j.nuclphysa.2016.09.002
https://doi.org/10.1016/j.nuclphysa.2016.09.002
https://doi.org/10.1016/j.nuclphysa.2016.09.002
https://doi.org/10.1103/PhysRevLett.108.172701
https://doi.org/10.1103/PhysRevLett.108.172701
https://doi.org/10.1103/PhysRevLett.108.172701
https://doi.org/10.1103/PhysRevLett.108.172701
https://doi.org/10.1103/PhysRevLett.108.062702
https://doi.org/10.1103/PhysRevLett.108.062702
https://doi.org/10.1103/PhysRevLett.108.062702
https://doi.org/10.1103/PhysRevLett.108.062702
https://doi.org/10.1142/S0218301310016533
https://doi.org/10.1142/S0218301310016533
https://doi.org/10.1142/S0218301310016533
https://doi.org/10.1142/S0218301310016533
https://doi.org/10.1088/0954-3899/37/6/064043
https://doi.org/10.1088/0954-3899/37/6/064043
https://doi.org/10.1088/0954-3899/37/6/064043
https://doi.org/10.1088/0954-3899/37/6/064043
https://doi.org/10.1088/0256-307X/33/10/102103
https://doi.org/10.1088/0256-307X/33/10/102103
https://doi.org/10.1088/0256-307X/33/10/102103
https://doi.org/10.1088/0256-307X/33/10/102103
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1016/j.physrep.2005.02.004
https://doi.org/10.1103/PhysRevC.73.014313
https://doi.org/10.1103/PhysRevC.73.014313
https://doi.org/10.1103/PhysRevC.73.014313
https://doi.org/10.1103/PhysRevC.73.014313
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1103/PhysRevC.82.035804
https://doi.org/10.1103/PhysRevC.82.035804
https://doi.org/10.1103/PhysRevC.82.035804
https://doi.org/10.1103/PhysRevC.82.035804
https://doi.org/10.1140/epja/i2014-14043-8
https://doi.org/10.1140/epja/i2014-14043-8
https://doi.org/10.1140/epja/i2014-14043-8
https://doi.org/10.1140/epja/i2014-14043-8
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1016/0003-4916(74)90208-5
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1103/PhysRevLett.86.5647
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1016/S0375-9474(99)00310-3
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1016/j.nuclphysa.2003.12.001
https://doi.org/10.1016/j.nuclphysa.2003.12.001
https://doi.org/10.1016/j.nuclphysa.2003.12.001
https://doi.org/10.1016/j.nuclphysa.2003.12.001
https://doi.org/10.1103/PhysRevC.76.045801
https://doi.org/10.1103/PhysRevC.76.045801
https://doi.org/10.1103/PhysRevC.76.045801
https://doi.org/10.1103/PhysRevC.76.045801
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevLett.95.122501
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1103/PhysRevC.85.035201
https://doi.org/10.1103/PhysRevC.85.035201
https://doi.org/10.1103/PhysRevC.85.035201
https://doi.org/10.1103/PhysRevC.85.035201
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.90.055203
https://doi.org/10.1103/PhysRevC.91.055801
https://doi.org/10.1103/PhysRevC.91.055801
https://doi.org/10.1103/PhysRevC.91.055801
https://doi.org/10.1103/PhysRevC.91.055801
https://doi.org/10.1016/0375-9474(82)90013-6
https://doi.org/10.1016/0375-9474(82)90013-6
https://doi.org/10.1016/0375-9474(82)90013-6
https://doi.org/10.1016/0375-9474(82)90013-6
https://doi.org/10.1016/0370-2693(82)90943-1
https://doi.org/10.1016/0370-2693(82)90943-1
https://doi.org/10.1016/0370-2693(82)90943-1
https://doi.org/10.1016/0370-2693(82)90943-1
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1016/0003-4916(90)90340-T
https://doi.org/10.1103/PhysRevC.92.054001
https://doi.org/10.1103/PhysRevC.92.054001
https://doi.org/10.1103/PhysRevC.92.054001
https://doi.org/10.1103/PhysRevC.92.054001
http://arxiv.org/abs/arXiv:1612.07022
https://doi.org/10.1103/PhysRevC.85.055811
https://doi.org/10.1103/PhysRevC.85.055811
https://doi.org/10.1103/PhysRevC.85.055811
https://doi.org/10.1103/PhysRevC.85.055811
https://doi.org/10.1103/PhysRevC.91.045805
https://doi.org/10.1103/PhysRevC.91.045805
https://doi.org/10.1103/PhysRevC.91.045805
https://doi.org/10.1103/PhysRevC.91.045805
https://doi.org/10.1016/j.nuclphysa.2011.07.010
https://doi.org/10.1016/j.nuclphysa.2011.07.010
https://doi.org/10.1016/j.nuclphysa.2011.07.010
https://doi.org/10.1016/j.nuclphysa.2011.07.010
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1016/j.nuclphysa.2006.05.009
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevC.82.055807
https://doi.org/10.1103/PhysRevC.82.055807
https://doi.org/10.1103/PhysRevC.82.055807
https://doi.org/10.1103/PhysRevC.82.055807
https://doi.org/10.1086/313121
https://doi.org/10.1086/313121
https://doi.org/10.1086/313121
https://doi.org/10.1086/313121
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1140/epja/i2016-16016-3
https://doi.org/10.1140/epja/i2016-16016-3
https://doi.org/10.1140/epja/i2016-16016-3
https://doi.org/10.1140/epja/i2016-16016-3
https://doi.org/10.1016/S0370-2693(98)00341-4
https://doi.org/10.1016/S0370-2693(98)00341-4
https://doi.org/10.1016/S0370-2693(98)00341-4
https://doi.org/10.1016/S0370-2693(98)00341-4


LIGHT CLUSTERS AND PASTA PHASES IN WARM AND . . . PHYSICAL REVIEW C 95, 045804 (2017)

[30] S. Typel, in XII Hadron Physics, 22–27 April 2012, Bento
Gonçalves, Rio Grande do Sul, Brazil, edited by V. P. Gonçalves,
M. L. L. da Silva, J. T. de Santana Amoral, and M. V. T.
Machado, AIP Conf. Proc. No. 1520 (AIP, New York, 2013),
p. 68.

[31] M. Hempel, G. Pagliara, and J. Schaffner-Bielich, Phys. Rev. D
80, 125014 (2009).

[32] H. Pais, F. Gulminelli, and C. Providência (unpublished).

[33] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Prog. Theor.
Phys. 100, 1013 (1998); Nucl. Phys. A 637, 435 (1998).

[34] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).
[35] G. Röpke, Phys. Rev. C 79, 014002 (2009).
[36] M. D. Voskresenskaya and S. Typel, Nucl. Phys. A 887, 42

(2012).
[37] Ad. R. Raduta and F. Gulminelli, Phys. Rev. C 82, 065801

(2010).

045804-15

https://doi.org/10.1103/PhysRevD.80.125014
https://doi.org/10.1103/PhysRevD.80.125014
https://doi.org/10.1103/PhysRevD.80.125014
https://doi.org/10.1103/PhysRevD.80.125014
https://doi.org/10.1143/PTP.100.1013
https://doi.org/10.1143/PTP.100.1013
https://doi.org/10.1143/PTP.100.1013
https://doi.org/10.1143/PTP.100.1013
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1103/PhysRevC.79.014002
https://doi.org/10.1103/PhysRevC.79.014002
https://doi.org/10.1103/PhysRevC.79.014002
https://doi.org/10.1103/PhysRevC.79.014002
https://doi.org/10.1016/j.nuclphysa.2012.05.006
https://doi.org/10.1016/j.nuclphysa.2012.05.006
https://doi.org/10.1016/j.nuclphysa.2012.05.006
https://doi.org/10.1016/j.nuclphysa.2012.05.006
https://doi.org/10.1103/PhysRevC.82.065801
https://doi.org/10.1103/PhysRevC.82.065801
https://doi.org/10.1103/PhysRevC.82.065801
https://doi.org/10.1103/PhysRevC.82.065801



