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Effect of strong magnetic fields on the crust-core transition and inner crust of neutron stars
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The Vlasov equation is used to determine the dispersion relation for the eigenmodes of magnetized nuclear and
neutral stellar matter, taking into account the anomalous magnetic moment of nucleons. The formalism is applied
to the determination of the dynamical spinodal section, a quantity that gives a good estimation of the crust-core
transition in neutron stars. We study the effect of strong magnetic fields, of the order of 1015–1017 G, on the
extension of the crust of magnetized neutron stars. The dynamical instability region of neutron-proton-electron
(npe) matter at subsaturation densities is determined within a relativistic mean-field model. It is shown that a
strong magnetic field has a large effect on the instability region, defining the crust-core transition as a succession
of stable and unstable regions due to the opening of new Landau levels. The effect of the anomalous magnetic
moment is non-negligible for fields larger than 1015 G. The complexity of the crust at the transition to the core
and the increase of the crust thickness may have direct impact on the properties of neutrons stars related with the
crust.
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I. INTRODUCTION

Magnetars form a class of strongly magnetized neutron
stars that includes soft γ -ray repeaters and anomalous x-ray
pulsars [1–3]. These stars have strong surface magnetic fields
of the order of 1013–1015 G [4] and, if isolated, present
relatively large spin periods, of the order of 2–12 s. In fact,
until now, no isolated x-ray pulsar has been detected with
a spin period longer than 12 s. This feature has recently
been attributed in Ref. [5] to the fast decay of the magnetic
field, if the existence of a resistive amorphous layer at the
bottom of the inner crust is confirmed. It was discussed
in Ref. [5] that this amorphous matter, characterized by a
large impurity parameter, corresponds to the matter formed
by the pasta phases proposed in Ref. [6], which result from
the competition between the long-range Coulomb repulsion
and short-range nuclear attraction. The inner crust pasta
phases have been calculated within different formalisms,
including the compressible liquid drop model [6], classical and
quantum molecular dynamics models [7], the Thomas–Fermi
approximation within relativistic nuclear models [8–10],
and Hartree–Fock calculations with both nonrelativistic and
relativistic models [11–13]; see Ref. [14] for a review of
more recent works, including calculations of interest for core-
collapse supernova. A recent investigation of the conductivity
properties of the pasta phases has shown that topological
defects affect the electrical conductivity of the system, origi-
nating a larger impurity parameter [15]. However, in Ref. [16],
the author has analyzed the electron transport properties in
nuclear pasta phases in the mantle of a magnetized neutron star
and obtained an enhancement of the electrical conductivity.
Nevertheless, it was stressed that further studies are necessary,
since the contribution of nonspherical pasta clusters introduce
uncertainties, and possible impurities and defects in nuclear
pasta should also be considered.

Nuclear matter at subsaturation densities is characterized
by a liquid-gas phase transition [17]. Moreover, since nuclear

matter is formed by two different types of particles, protons
and neutrons, mechanical and chemical instabilities may lead
both to the fragmentation of a nuclear system in heavy-ion
collisions and an isospin distillation effect [18,19]. The region
of instability in the isospin space characterized by the proton
and neutron densities is limited by the spinodal surface [20].
This surface is defined, from a thermodynamic perspective,
as the locus where the free-energy curvature goes to zero,
and, from a dynamical perspective, as the surface where the
eigenmodes of matter go to zero. Both surfaces coincide
if perturbations of infinity wavelength are considered in
the dynamical description. Spinodal decomposition has been
applied to study the fragmentation of finite nuclear systems
within a self-consistent quantum approach in Refs. [18,19],
and it was shown that the liquid-gas phase transition of
asymmetric systems would induce a fractional distillation of
the system.

Stellar matter in neutron stars is composed of protons,
neutrons, electrons, and possibly muons at subsaturation
densities. These components are in β equilibrium, and leptons
are necessary to neutralize matter. As referred to above, at
subsaturation density, stellar matter is essentially clusterized,
possibly forming pasta phases at the higher densities. The
crust-core phase transition may be determined from the pasta-
phase calculations, but it has also been shown that a very good
estimation is obtained from the thermodynamical spinodal of
proton-neutron matter, or even better, the dynamical spinodal
of proton-neutron-electron matter [10,21]. In fact, the same
crust-core transition density was obtained in Ref. [10] by
applying a Thomas–Fermi description of the pasta phase and
a dynamical spinodal calculation.

Understanding the properties of the crust of neutron stars
is essential because observations of neutron stars are directly
affected by them. In particular, an important quantity is the
fractional moment of inertia of the crust [22,23]. This quantity,
as suggested in Ref. [24], is crucial for the interpretation of the
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so-called glitches, sudden breaks in the regular rotation of the
star. Presently, it is still not clear whether the crust is enough to
describe the glitches correctly, or if the core also contributes,
since entrainment effects couple the superfluid neutrons to the
solid crust [25,26].

We study in the present work the effect of a strong
magnetic field on the crust-core transition, applying a dy-
namical spinodal formalism, which is shown to give a good
prediction of this transition for zero magnetic field. This will
be carried out by using the relativistic Vlasov formalism
applied to relativistic nuclear models [20,27,28] and based
on a field-theoretical formulation [29]. The normal modes of
stellar matter is calculated and special attention is given to
the unstable modes. We only consider longitudinal modes that
propagate in the direction of the magnetic field. The effect
of the magnetic field on the spinodal surface, the crust-core
transition of β-equilibrium matter, the size of the clusters in
the clusterized phase, and the fractional moment of inertia of
the crust are studied.

Previously, there have already been studies that analyze the
effect of the magnetic field on the thermodynamical spinodal
[30], and the pasta phases in the inner crust [31], however, both
studies have been performed for magnetic fields more intense
than those expected to exist in the crust of a magnetar. The
effect of the magnetic field on the outer crust was analyzed
in Ref. [32], within a Hartree–Fock–Bogoliubov calculation,
and it was shown that the Landau quantization of the electron
motion could affect the outer crust equation of state, giving
rise to more massive outer crusts than the expected in usual
neutron stars. Also, the neutron drip density and pressure are
affected by a strong magnetic field, showing typical quantum
oscillations, which shift the transition outer-inner crust to
larger or smaller densities [33], according to the field intensity.
The present work aims to study the effect of the magnetic
field on the crust-core transition and completes the one in
Ref. [34], where this study was first introduced. We present the
formalism that was not introduced in Ref. [34], and we discuss
the importance of including the anomalous magnetic field.
A relativistic mean-field (RMF) model, that satisfies several
accepted laboratory and astrophysical constraints [35,36], is
considered. This is important because, depending on the proton
fraction, which is determined by the density dependence of
the symmetry energy, the magnetic field will have a weaker
or stronger effect. We also choose realistic proton fractions in
the range of densities of interest. The paper is organized as
follows: in Sec. II, the formalism is introduced, in Sec. III, the
results of the calculations are presented and discussed, and,
finally, in the last section, the main conclusions are drawn.

II. FORMALISM

In this work, we describe stellar matter within the nuclear
RMF formalism under the effect of strong magnetic fields
[30,37]. We also analyze the effect of the anomalous magnetic
moment (AMM) in the calculation of the dynamical spinodals.
In Sec. II A, the Lagrangian density of the RMF model is
presented and in Sec. II B, the Vlasov formalism is discussed
in detail.

A. Relativistic mean-field model under strong magnetic fields

We consider a system of nucleons with mass mb that interact
with and through meson fields. This system is neutralized by
electrons because we also want to describe stellar matter. The
charged particles, protons and electrons, interact through the
static electromagnetic field Aμ, Aμ = (0,0,Bx,0), so that B =
B ẑ and ∇ · A = 0. We consider that the electromagnetic field
is externally generated, which means that only frozen-field
configurations are considered in the calculations.

The Lagrangian density of our system, with c = h̄ = 1,
reads

L =
∑
i=p,n

Li + Le + LA + Lσ + Lω + Lρ + Lωρ, (1)

where Li is the nucleon Lagrangian density, given by

Li = ψ̄i

[
γμiDμ − M∗ − 1

2μNκbσμνF
μν

]
ψi, (2)

with

M∗ = mb − gsφ, (3)

iDμ = i∂μ − gvV
μ − gρ

2
τ · bμ − eAμ 1 + τ3

2
, (4)

and the electron Lagrangian density Le together with the
electromagnetic term LA are given by

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe, (5)

LA = − 1
4FμνF

μν. (6)

The electromagnetic coupling constant is given by e =√
4π/137, and τ3 = ±1 is the isospin projection for protons

(+1) and neutrons (−1). The nucleon AMM are introduced via
the coupling of the baryons to the electromagnetic field tensor,
Fμν = ∂μAν − ∂νAμ, with σμν = i

2 [γμ,γν], and strength κb,
with κn = −1.913 15 for the neutron, and κp = 1.792 85 for
the proton. μN is the nuclear magneton. The contribution of
the anomalous magnetic moment of the electrons is negligible
[38], hence it will not be considered.

We consider three meson fields, where the isoscalar part
is associated with the scalar sigma (σ ) field φ with mass ms ,
and the vector omega (ω) field V μ with mass mv , whereas the
isospin dependence comes from the isovector-vector rho (ρ)
field bi

μ (where μ stands for the four-dimensional spacetime
indices and i is the three-dimensional isospin direction index)
with mass mρ . The associated Lagrangians are

Lσ = 1
2

(
∂μφ∂μφ − m2

s φ
2 − 1

3κφ3 − 1
12λφ4

)
,

Lω = − 1
4�μν�

μν + 1
2m2

vVμV μ, (7)

Lρ = − 1
4 Bμν · Bμν + 1

2m2
ρbμ · bμ,

where �μν = ∂μVν − ∂νVμ, and Bμν = ∂μbν − ∂νbμ −
gρ(bμ × bν).

The NL3ωρ model [39], which we consider throughout the
calculations, has an additional nonlinear term Lωρ that mixes
the ω and ρ mesons, softening the density dependence of the
symmetry energy above the saturation density. This term is
given by

Lωρ = �vg
2
vg

2
ρVμV μbμ · bμ. (8)
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Some of the saturation properties of NL3ωρ are the bind-
ing energy Eb = −16.2 MeV, the saturation density ρ0 =
0.148 fm−3, the incompressibility K = 272 MeV, the sym-
metry energy J = 31.7 MeV, and its slope L = 55.5 MeV.
The model satisfies the constraints imposed by microscopic
calculations of neutron matter [40], and it predicts stars with
masses above 2M�, even when hyperonic degrees of freedom
are considered [35].

B. Dynamical spinodal under strong magnetic fields

In this section, we show in detail the formalism already
introduced in Ref. [34], where the dynamical spinodals
are calculated within the Vlasov formalism, as previously
discussed in Refs. [20,27,41].

The distribution function for npe matter at position r,
instant t , and momentum p is given by

f (r,p,t) = diag(fp, fn, fe), (9)

and h = diag(hp,hn,he) is the corresponding one-body Hamil-
tonian, where

hi = εi + V i
0, εi =

√(
p̄i

z

)2 + m̄2
i , i = p,e, (10)

hn = εn + Vn
0 , εn =

√(
p̄n

z

)2 + (εn
⊥ − sμNκnB)2, (11)

with p̄i = p − V i , and

m̄p =
√

M∗2 + 2νeB − sμNκpB,

m̄e =
√

m∗2
e + 2νeB,

εn
⊥ =

√
M∗2 + ( p̄n

⊥)2,

Vn
μ = gvVμ − gρ

2
bμ,

Vp
μ = gvVμ + gρ

2
bμ + eAμ,

Ve
μ = −eAμ.

ν = n + 1
2 − sgn(q) s

2 = 0,1,2, . . . enumerates the Landau
levels of the fermions with electric charge q, and s is the
quantum number spin, with +1 for spin up, and −1 for
spin down. The vectors ( p, V , . . .) are defined along parallel
( pz, V z, . . .) and perpendicular ( p⊥, V ⊥, . . .) directions, since
the magnetic field is taken in the z direction.

The Vlasov equation is given by

∂fi

∂t
+ {fi,hi} = 0, i = p, n, e (12)

and describes the time evolution of the distribution function.
{,} denotes the Poisson brackets.

The equations, describing the time evolution of the fields
φ, V μ,Aμ, and the third component of the ρ field b3μ =
(b0,b), are derived from the Euler–Lagrange formalism:

∂2φ

∂t2
− ∇2φ + m2

sφ + κ

2
φ2 + λ

6
φ3

= gs

[
ρp

s + ρn
s

]
, (13)

∂2Vμ

∂t2
− ∇2Vμ + m2

vVμ + 2�vg
2
vg

2
ρb3μ · b3μVμ

= gv

[
jp
μ + jn

μ

]
, (14)

∂2b3μ

∂t2
− ∇2b3μ + m2

ρb3μ + 2�vg
2
vg

2
ρVμV μb3μ

= gρ

2

[
jp
μ − jn

μ

]
, (15)

∂2Aμ

∂t2
− ∇2Aμ = e

[
jp
μ − je

μ

]
, (16)

where the scalar densities are given by

ρp
s (r,t) = eB

(2π )2

∑
ν,s

∫
dpzfp

m̄pM∗

(m̄p + sμNκpB)εp

,

ρn
s (r,t) = 1

(2π )3

∑
s

∫
d3pfn

⎛
⎝1 − sμNκnB√

M∗2 + p2
⊥

⎞
⎠M∗

εn

,

and the components of the four-current density are

j i
0(r,t) = ρi = eB

(2π )2

∑
ν,s

∫
fi(r,p,t)dpz, i = p,e,

jn
0 (r,t) = ρn = 1

(2π )3

∑
s

∫
fn(r,p,t)d3p,

ji(r,t) = eB

(2π )2

∑
ν,s

∫
fi(r,p,t)

p̄i
z

εi

dpz, i = p,e,

jn(r,t) = 1

(2π )3

∑
s

∫
fn(r,p,t)d3p

×
[

p̄n
z

εn

+ p̄n
⊥

εn

(
1 − sμNκnB√

M∗2 + ( p̄n
⊥)2

)]
. (17)

As explained in Ref. [34], the summation in ν in the
above expressions terminates at νi

max(i = p,e), which is the
largest value of ν for which the square of the Fermi momenta
of the particle is still positive and which corresponds to
the closest integer from below, which is defined by the
ratio

νp
max =

(
ε

p
F + sμNκpB

)2 − M∗2

2eB
,

νe
max = εe

F
2 − m2

e

2eB
,

where ε
p
F and εe

F are the Fermi energies of protons and
electrons, respectively.

At zero temperature, the ground state of the system is
characterized by the Fermi momenta P i

F (i = p,n,e) and is
described by the equilibrium distribution function

f0(r,p) = diag
[
�

(
P

p2
F − p2

)
,�

(
P n2

F − p2
)
,�

(
P e2

F − p2
)]

,
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where

P
p
F =

√
ε

p
F − m̄2

p,

P n
F =

√
γ −

√
γ 2 − β,

P e
F =

√
εe
F − m̄2

e

are the Fermi momenta of protons, neutrons and electrons, with

γ = α + 2(sμNκnB)2(1 − x2),

α = εn2
F − M∗2 − (sμNκnB)2,

β = α2 − 4(sμNκnB)2M∗2,

and x = cos θ ′, with θ ′ being the polar angle. The equilibrium
state is also defined by the constant mesonic fields, which are
given by the following equations:

m2
s φ0 + κ

2
φ2

0 + λ

6
φ3

0 = gsρ
(0)
s , (18)

m2
vV

(0)
0 + 2�vg

2
vg

2
ρV

(0)
0 b

(0)2
0 = gvj

(0)
0 , (19)

m2
ρb

(0)
0 + 2�vg

2
vg

2
ρV

(0)2
0 b

(0)
0 = gρ

2
j

(0)
3,0, (20)

V
(0)
i = b

(0)
i = A

(0)
0 = A

(0)
i = 0, (21)

where ρ(0)
s , j

(0)
0 , j

(0)
3,0 are the equilibrium scalar density, the

nuclear density, and the isospin density, respectively. The
spatial components of V μ, bμ, and Aμ are zero because there
are no currents in the system.

The collective modes, which are obtained considering small
oscillations around the equilibrium state, are given by the
solutions of the linearized equations of motion. The deviations
from equilibrium are described by

fi = f0i + δfi,

φ = φ0 + δφ,

V0 = V
(0)

0 + δV0, Vi = δVi,

b0 = b
(0)
0 + δb0, bi = δbi,

A0 = δA0, Ai = δAi.

The fluctuations δfi are written as

δfi = {Si,f0i} = −{Si,p
2}δ(P i2

F − p2
)
, (22)

where Si are the components of a generating function defined
in npe space, S(r,p) = diag(Sp,Sn,Se).

The linearized Vlasov equations for δfi ,

dδfi

dt
+ {δfi,h0i} + {f0i ,δhi} = 0,

are equivalent to the following time evolution equations [27]:

∂Si

∂t
+ {Si,h0i} = δhi, i = p, n, e, (23)

where

δhp = −pz · δVp
z

ε
p
static

− gsM
∗m̄p

ε
p
static(m̄p + sμNκpB)

δφ + δV0p,

δhn = −pzδVn
z

εn
static

− gsM
∗

εn
static

⎛
⎝1 − sμNκnB√

M∗2 + p2
⊥

⎞
⎠δφ + δV0n,

δhe = e

[
pzδAz

εe
static

− δA0

]
, (24)

with

ε
p
static =

√
p2

z + m̄2
p,

εe
static =

√
p2

z + m̄2
e,

εn
static =

√
p2

z + (
√

M∗2 + p2
⊥ − sμNκnB)2.

In the present work, only the longitudinal modes are consid-
ered, with momentum k in the direction of the magnetic field,
and a frequency ω. They are described by the following ansatz:⎛

⎜⎝
Sj (r,p,t)

δφ
δζ0

δζi

⎞
⎟⎠ =

⎛
⎜⎜⎝
Sj

ω(p,cosθ )
δφω

δζ 0
ω

δζ i
ω

⎞
⎟⎟⎠ei(ωt−kz·r), (25)

where j = p, n, e, ζ = V, b,A represent the vector fields,
and θ is the angle between p and kz.

For these modes, we get δV x
ω = δV

y
ω = 0, δbx

ω = δb
y
ω =

0, and δAx
ω = δA

y
ω = 0. Calling δV z

ω = δVω, δbz
ω = δbω,

and δAz
ω = δAω, we have δVi,z = δV i

ωei(ωt−kz·r), δV0i =
δV0i

ω ei(ωt−kz·r). Replacing the ansatz (25) in Eqs. (23), we get

i(ω − ω0pξ )Sp
ω (ξ ) = −gs

M∗

ε
p
F

(
m̄p

m̄p + sμNκpB

)
δφω − V

p
F ξδVp

ω + δV0p
ω , (26)

i(ω − ω0nx)Sn
ω(x) = −gs

M∗

εn
F

⎛
⎝1 − sμNκnB√

M∗2 + P n2
F (1 − x2)

⎞
⎠δφω − V n

F xδVn
ω + δV0n

ω , (27)

i(ω − ω0eξ )Se
ω(ξ ) = e

(
V e

F ξδAω − δA0
ω

)
, (28)

(
ω2 − k2 − m2

s,eff

)
δφω = − igsM

∗

(2π )2

⎡
⎣∑

ν,s,ξ

eBkz

ε
p
F

m̄pξSp
ω (ξ )

(m̄p + sμNκpB)
+ P n

F ω0n

∑
s

∫ 1

−1
xSn

ω(x)

⎛
⎝1 − sμNκnB√

M∗2 + P n2
F (1 − x2)

⎞
⎠dx

⎤
⎦,

(29)
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(
ω2 − k2 − m2

v,eff

)
δV 0

ω = χδb0
ω − igv

(2π )2

⎛
⎝∑

ν,s,ξ

eBkzξSp
ω (ξ ) + P n

F εn
F ωon

∫ 1

−1
xSn

ω(x)dx

⎞
⎠, (30)

(
ω2 − k2 − m2

ρ,eff

)
δb0

ω = χδV 0
ω − igρ

2(2π )2

⎛
⎝∑

ν,s,ξ

eBkzξSp
ω (ξ ) − P n

F εn
F ωon

∫ 1

−1
xSn

ω(x)dx

⎞
⎠, (31)

(ω2 − k2)δA0
ω = − e2B

(2π )2 ikz

∑
ν,s,ξ

ξ
(Sp

ω (ξ ) − Se
ω(ξ )

)
, (32)

where

ω0i = kzV
i
F = kzP

i
F

/
εi
F , i = p,n,e,

m2
s,eff = m2

s + κφ0 + λ

2
φ2

0 + g2
s

dρs

dM∗ ,

m2
v,eff = m2

v + 2�vg
2
vg

2
ρb

(0)2
0 ,

m2
ρ,eff = m2

ρ + 2�vg
2
vg

2
ρV

(0)2
0 ,

with ξ = ±1, x = cosθ , and χ = 4�vg
2
vg

2
ρV

(0)
0 b

(0)
0 . From the

continuity equation for the density currents, we get for the
components of the vector fields

kzδVω = ωδV 0
ω − ω

ω2
v

χδb0
ω, (33)

kzδbω = ωδb0
ω − ω

ω2
ρ

χδV 0
ω , (34)

kzδAω = ωδA0
ω, (35)

with ω2
v = ω2 − k2 − m2

v,eff and ω2
ρ = ω2 − k2 − m2

ρ,eff.
Substituting the set of equations (29)–(32) into Eqs. (26)–

(28), we get a set of five independent equations of motion
in terms of the amplitudes of the proton and neutron scalar
density fluctuations, A

ps
ω,ν,s , Ans

ω,s , respectively, and in terms
of the amplitudes of the proton, neutron, and electron vector
density fluctuations, A

p
ω,ν,s , An

ω,s , Ae
ω,ν,s , respectively. These

equations are given by

⎛
⎜⎜⎜⎝

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 0
a41 a42 a43 a44 0
0 a52 0 0 a55

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

∑
ν,s A

ps
ω,ν,s∑

ν,s A
p
ω,ν,s∑

s Ans
ω,s∑

s An
ω,s∑

ν,s Ae
ω,ν,s

⎞
⎟⎟⎟⎟⎟⎠ = 0. (36)

The eigenmodes ω of the system correspond to the solutions
of the dispersion relation obtained by the equations written
above. The coefficients aij and the amplitudes are given in the
appendix. The density fluctuations can be written as

δρn/δρp = An
ω,s

eBA
p
ω,ν,s

, (37)

δρe/δρp = Ae
ω,ν,s

A
p
ω,ν,s

. (38)

At low densities, the system has unstable modes character-
ized by an imaginary frequency ω. The dynamical spinodal
surface in the (ρp, ρn) space, for a given wave vector k, is

obtained by imposing ω = 0. Inside this unstable region, we
also calculate the mode with the largest growth rate �, defined
as ω = i�. This mode is the one responsible for the formation
of instabilities. By taking its half wavelength, we can get a
good estimation of the size of the clusters (liquid) that appear
in the mixed (liquid-gas) phase, i.e., in the inner crust of the
stars [28].

III. NUMERICAL RESULTS AND DISCUSSIONS

In the present section, we discuss the effects of strong
magnetic fields on the structure of the inner crust of magnetars.
In particular, we analyze the dynamical spinodals for the
NL3ωρ model for three different values of the magnetic field:
B = 4.41 × 1015 G, B = 4.41 × 1016 G, and B = 4.41 ×
1017 G. These values correspond to B∗ = 102, B∗ = 103, and
B∗ = 104, where B = B∗Bce, with Bce = 4.41 × 1013 G being
the electron critical magnetic field. In fact, the most intense
fields detected on the surface of a magnetar are not larger than
2 × 1015 G, i.e., one or two orders of magnitude smaller than
the two more intense fields considered in this study. However,
in Refs. [42,43], the authors obtained toroidal fields more
intense than 1017 G in stable configurations, meaning that,
in the interior of the stars, stronger fields may be expected.

In Fig. 1, we show the dynamical spinodal sections in
the (ρp, ρn) space for the magnetic fields mentioned above,
with (top) and without (bottom panels) AMM. The black lines
represent the spinodal section when the magnetic field is zero.
The calculations were performed with k = 75 MeV, which is
a value of the transferred momentum that gives a spinodal
section very close to the envelope of the spinodal sections.
These sections have been obtained numerically by solving
the dispersion relation (36) for ω = 0. This was performed by
looking for the solutions at a fixed proton fraction and, for each
solution, a point was obtained. The solutions form a large con-
nected region for the lower proton and neutron densities, plus
extra disconnected domains that do not occur at B = 0. The
point-like appearance of the sections is a numerical limitation.
A higher resolution in (ρp, ρn) would complete the gaps.

First we compare the results obtained omitting the AMM
contribution (bottom panel). The structure of the spinodal
section obtained for the strongest field considered, B∗ = 104,
clearly shows the effect of the Landau quantization, as already
shown in Ref. [34]: there are instability regions that extend to
much larger densities than the B = 0 spinodal section, while
there are also stable regions that at B = 0 would be unstable.
This is due to the fact that the energy density becomes softer,
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FIG. 1. Dynamical spinodal for NL3ωρ, a momentum transfer of
k = 75 MeV, and B∗ = 104 (red), B∗ = 103 (blue), and B∗ = 102

(green) with AMM (top) and without AMM (bottom). A comparison
with the B = 0 (black lines) results is also made.

just after the opening of a new Landau level, and harder when
the Landau level is most filled. The spinodal section has a large
connected section at the lower densities and extra disconnected
regions. If smaller fields are considered, the structure found for
B∗ = 104 is still present, but at a much smaller scale due to the
increase of the number of Landau levels; see detail in the inset
of the middle panel of Fig. 2, for B∗ = 103. It is clear that the
spinodal section tends to the B = 0 one, as the magnetic-field
intensity is reduced.

In the top panel of Fig. 1, we show the same three spinodal
sections, but with the inclusion of the AMM for the protons
and neutrons. The overall conclusions taken for the spinodals
without the AMM are still valid, although the section acquires
more structure when the AMM is included since, for each
Landau level, the proton spin-up and spin-down levels have
different energies. This difference originates a doubling of the
bands, which are easily identified for B∗ = 104. Besides, these
bands are also affected by the neutron AMM. The spinodal
sections obtained with AMM are smaller, as seen from Fig. 2
where, for each field intensity, B∗ = 104 (top), 103 (middle),
and 102 (bottom), the spinodal section without (red) and with
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FIG. 2. Dynamical spinodal for NL3ωρ, a momentum transfer of
k = 75 MeV, with AMM (green) and without AMM (red), for B∗ =
104 (top), B∗ = 103 (middle), and B∗ = 102 (bottom). A comparison
with the B = 0 (black lines) results is also made. The EoS for β-
equilibrium matter is also shown.

(green) AMM are plotted. Although the inclusion of the AMM
does not have a very strong effect because the proton and
neutron anomalous magnetic moments are small, these effects
are not negligible and, in fact, they reduce the instability
sections. In the three panels of Fig. 2, we include an inset
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panel where we have zoomed in the spinodal with AMM in a
small range of densities to show that, although on a smaller
scale, the structure is similar to the one shown for B∗ = 104.

For neutron-rich matter, as occurs in neutron stars, the
instability regions extend to densities almost 40% larger than
the crust-core transition density for B = 0. The effect of the
magnetic field is larger precisely when the proton fraction
is smaller. We have included in the three panels of Fig. 2 a
curve that represents the densities (ρp, ρn) at β equilibrium,
including the contribution of the AMM. The curves cross
an alternation of stable and unstable regions, indicating the
existence of a complex crust-core transition; see the insets for
detail. The beginning of an homogeneous matter is shifted
to larger densities, 0.100 fm−3 for B∗ = 104, 0.103 fm−3

for B∗ = 103, and 0.105 fm−3 for B∗ = 102, corresponding
to the pressures 0.818 MeV/fm3, 0.833 MeV/fm3, and
0.863 MeV/fm3, respectively. This complex transition region
with a thickness of ∼0.02 fm−3, even for the weaker fields,
will have strong implications in the structure of the inner crust
of magnetars.

We discuss later in more detail the crust-core transition
region in the presence of magnetic fields.

The solution of the dispersion relation inside the spinodal
section gives pure imaginary frequencies, indicating that the
system is unstable to the propagation of a perturbation with
the corresponding wave number in the density range where
this occurs. The modulus of the frequency, designated as
growth rate, indicates how the system evolves into a two-phase
configuration. The evolution will be dictated by the largest
growth rate [19,20].

As an example, in Fig. 3, we show the growth rates |ω| as a
function of the transferred momentum k for fixed values of the
baryonic density: ρ = 0.04 fm3 (top), ρ = 0.08 fm3 (middle),
and ρ = 0.09 fm3 (bottom panels). We consider a fixed proton
fraction of 0.035, which is an average value found for NL3ωρ
within a Thomas–Fermi calculation of the inner crust [44],
and we choose the same values for the magnetic field as in
the previous figures. The growth rates with (solid) and without
(dashed) AMM are plotted together with the growth rate at
B = 0 (black line).

We first consider ρ = 0.04 fm−3, far from the transition
to homogeneous matter. The smaller the field, the smaller
the effect of the AMM and, for B∗ = 102, the two curves
superimpose and are almost coincident with the B = 0 result.
The effect of the AMM for the two larger fields is non-
negligible and may go in opposite direction because its
behavior is closely related with the filling of the Landau levels.
The instability does not exist for the two smaller fields at k
close to zero. This is the behavior discussed in Ref. [20] and is
directly related to the 1/k2 divergence of the Coulomb field.
However, for B∗ = 104, and since the electron and proton
densities are small, the attractive nuclear interaction is strong
enough to drag the electrons, keeping the instability until
k = 0. This is not anymore the case for the two larger densities
considered because, in these two cases, the nuclear interaction
is not able to compensate for the larger densities of charged
particles. The stronger nuclear attraction for B∗ = 104 is also
observed for the large values of k: the instability is still present
for k > 300 MeV, well above the maximum k attained for
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FIG. 3. Growth rates |ω| as a function of the momentum k for
NL3ωρ, a proton fraction of yp = 0.035, and B∗ = 102 (red), B∗ =
103 (black), and B∗ = 104 (blue) with AMM (solid) and without
AMM (dashed lines), for a fixed baryonic density of ρ = 0.04 fm−3

(top), ρ = 0.08 fm−3 (middle), and ρ = 0.09 fm−3 (bottom). The
growth rates for B∗ = 102 in the bottom panel are multiplied by a
factor of 10 and are obtained for ρ = 0.0903 fm−3.

B = 0, indicating that the attractiveness of the nuclear force is
stronger at short ranges.

The two larger densities have been chosen because they are
at the B = 0 crust-core transition or above, and this is the most
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equal to the one found in β-equilibrium matter, above ρt = 0.0843 fm−3, the B = 0 crust-core transition density. The gray points correspond
to a fixed proton fraction of 0.035 in the whole density range.

sensitive region to the presence of a strong magnetic field.
Due to the alternation between stable and unstable regions,
it is highly probable that, for one of the field intensities, no
instability is present for the particular density value considered.
This explains the nonappearance of the curve with AMM
for B∗ = 104 and ρ = 0.08 fm−3. It also explains why the
behavior with and without AMM are so different for B∗ = 103:
the value of the density considered picks up the instability
region more or less close to the limit of the instability region.
In this case, also the maximum growth rates occur for different
wave numbers. For B∗ = 102, the results with and without
AMM differ, and are no longer coincident with the B = 0
result, as seen for ρ = 0.04 fm−3. However, the maximum
growth rate occurs at similar wave numbers in the three cases.

Finally, we consider the larger density, ρ ∼ 0.09 fm−3,
approximately 10% above the crust-core transition density,
when no field is considered. For B = 0, this density belongs to
the core, and corresponds to homogeneous matter. However,
for the three intensities of the magnetic field we have been
considering, B∗ = 102, 103, 104, this is inside or close to
a region of instability. For B∗ = 102, we have taken ρ =
0.0903 fm−3 and multiplied the growth rate by a factor of
10 in the figure. We conclude that the growth rates decrease

with the magnetic field, showing a convergence for the B = 0
result when no instability exists.

In the following, we consider that the behavior of the
system is determined by the largest growth rate |ω|max; the
mode that drives the system into a separation of a high- and
a low-density phases. As in Ref. [20], we consider that the
half wavelength of the maximum growth rate mode is a good
estimate of the order of magnitude of the size of the clusters
formed, as shown in Ref. [10], where the size of the clusters
obtained within a Thomas–Fermi calculation are compared
with the half wavelength associated with the most unstable
mode. These quantities are plotted in Figs. 4 and 5.

In Fig. 4, the largest growth rates (top panels), the corre-
sponding half wavelength (middle panels), and the δρp/δρn

ratio are shown for B∗ = 103. The left panels show the
calculations performed without AMM, and the right panels
take the AMM into account. In all figures, the B = 0 results
are represented by a black curve, in gray we show the results
with a fixed proton fraction of 0.035, and in blue we take,
above the B = 0 crust-core transition density, the proton
fraction as that found in β-equilibrium matter. In Fig. 5, the
same quantities calculated with three different magnetic-field
intensities, B∗ = 102, 103, and 104, are compared. In this
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FIG. 5. Largest growth rate (top panels), the corresponding half wavelength (middle panels), and the proton-neutron density fluctuation
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results is also made.

figure, all results were obtained with a fixed proton fraction
yp = 0.035.

The effect that had already been identified with the spinodal
sections is clearly shown in theses figures: the unstable
regions occur well beyond the B = 0 crust-core transition at
0.0843 fm−3, and extend until ρt = 0.11 fm−3, 40% larger
than the B = 0 transition density. However, above 0.082 fm−3,
the unstable regions alternate with stable ones. This effect
was first discussed in Ref. [34]. The transition densities that
define the limits of the region of alternating stable and unstable
regions have been labeled ρ1 and ρ2 and are shown in Table I.
The transition density ρ1 defines the first time |ω| goes to
zero, and the density ρ2 defines the onset of the homogeneous
matter, meaning that we have a range of densities between
ρ1 and ρ2 where unstable and stable regions alternate. At
B = 0, both densities coincide, i.e., ρ1 = ρ2. The density ρ2 is
determined by taking the β-equilibrium matter proton fraction
above the B = 0 crust-core transition, and ρ1 is calculated
with the fixed yp = 0.035 proton fraction, obtained from the
B = 0 calculations of the pasta phases, since ρ1 is a density
that lies below the B = 0 crust-core transition. Taking the
β-equilibrium proton fraction, instead of the fixed 0.035, has a
non-negligible effect and, in fact, reduces the instability region
because the β-equilibrium condition predicts larger proton
fractions, and the larger the proton densities, the smaller the

effects due to the magnetic field. In particular, for B∗ = 104, ρ2

is ∼0.01 fm−3 smaller, taking y
β-eq
p instead of yp = 0.035. This

difference is ∼0.005 fm−3 for B∗ = 102, and ∼0.002 fm−3 for
B∗ = 103. The discrete feature of the Landau levels results in

TABLE I. Transition densities and pressures for the magnetic
fields considered in this study, together with the correspondent
fractional moment of inertia of the neutron star crust, for a star
of M = 1.4 M� and R = 13.734 km. Also shown are the crust
thicknesses �R, the thickness due to the inhomogeneous region
found when B 	= 0, �R′ = R(ρ1) − R(ρ2), and the difference with
the B = 0 result, �RB = �R − �R(B = 0). The results shown take
into account AMM. The transition densities are calculated when
|ω| = 0 (see top panels of Figs. 4 and 5 and the text for more details).
The values for ρ2 correspond to the calculations with a β-equilibrium
matter proton fraction.

B∗ ρ1 ρ2 P1 P2 �R �R′ �RB
�Icr

I

(fm−3) (fm−3)
(

MeV
fm3

) (
MeV
fm3

)
(m) (m) (m)

0 0.0843 0.0843 0.5196 0.5196 1368 0 0 0.0676
102 0.0837 0.1044 0.5119 0.8541 1551 185 182 0.0968
103 0.0808 0.1096 0.4758 0.9743 1609 257 240 0.1056
104 0.0654 0.0998 0.3274 0.8095 1503 260 134 0.0922
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a nonmonotonic behavior of this quantity for the larger values
of B∗.

Besides ρ1 and ρ2, in Table I, we also give the pressure
at these two densities and the fractional moment of inertia of
the crust, a quantity that depends directly on the pressure and
density at the crust-core transition, and that has an important
impact in explaining pulsar glitches. The fractional moments
of inertia were calculated from the approximate expression
given in Refs. [22,23]:

�Icr

I

 28πPtR

3

3M

(1 − 1.67β ′ − 0.6β ′2)

β ′

×
[

1 + 2Pt (1 + 5β ′ − 14β ′2)

ρtmbβ ′2

]−1

. (39)

where �Icr is the crust moment of inertia, I is the total
star moment of inertia, Pt and ρt are the crust-core tran-
sition pressure and density, respectively, M and R are the
gravitational mass and radius of the star, β ′ = GM/R is the
compactness parameter, and mb is the nucleon mass. In Table I,
the crust thickness, �R = R(0) − R(ρ2), the thickness of the
region between ρ1 and ρ2, �R′ = R(ρ1) − R(ρ2), and the
difference between the crust thicknesses at B = 0 and B 	= 0,
�RB = �R − �R(B = 0), are also displayed. These results
take into account the AMM, and they have been calculated for
a star with M = 1.4 M�, and a radius of R = 13.734 km. For
the calculation of the fractional moment of inertia of the crust,
we took for Pt and ρt the values of P2 and ρ2, given in the Table
for each magnetic field. Our results for B = 0 agree with the
transition densities and pressures and the moment of inertia
of the crust obtained in Ref. [45]; see Tables I and IV. This is
expected since the same expression for the crustal moment of
inertia has been used as in Refs. [22,23].

The magnetic field gives rise to larger values of the crust-
core transition pressure and density, and these affect directly
�Icrust/I . These values are much higher than the prediction in
Refs. [24,26] for the Vela pulsar, 0.016, when no entrainment
effects are considered, and they would be high enough for
the crust to completely describe the glitch mechanism, even
taking into account the effect of entrainment [25,26]. In fact,
in this case the “effective” moment of inertia associated with
the fluid is lowered and the constraint inferred from glitches
requires that the crustal moment of inertia is 〈m∗

n〉/mn ∼ 4–6
larger [26], where m∗

n is the effective neutron mass including
entrainment, and mn the bare neutron mass. To explain the
Vela glitches, this constraint would be equivalent to requiring
a fractional crustal moment of inertia ∼0.064–0.096.

The calculation including the AMM of protons and neutrons
presents twice as much unstable regions due to the separation
of each proton Landau level in two, with a different spin
polarization. The resulting regions are narrower and have
smaller growth rates. More information on the properties of
this range of densities is obtained from the middle and bottom
panels of both figures. In the middle panel, the half wavelength
of the perturbation is plotted, and it gives an estimation of the
size of the cluster that will be formed. Within each of these
independent unstable regions, the cluster size changes from
about 9 fm to about 4 fm in a very narrow density range.
Finally, the bottom panel gives some information on the proton
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FIG. 6. Width of the instability peaks, �ρ (top panel), the
thickness of the instability regions, �l (middle panel), and the
distance between the instabilities, �L (bottom panel), as a function
of the baryonic density, for NL3ωρ, a proton fraction of yp = 0.035,
B∗ = 102 (red), and B∗ = 103 (blue), with AMM. In the bottom
panel, �L obtained with B∗ = 103 is multiplied by a factor of 0.1.

content of the dense phase: the clusters will be quite proton
rich with a proton-neutron density fluctuation ratio well above
the 0.04 ratio of the homogeneous matter.

For B∗ = 102 and 103, we have made an analysis of the
dependence on the density of the width and separation of
the instability peaks above the transition density, ρt (B = 0).
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In the top panel of Fig. 6, the width of these peaks, �ρ,
is plotted versus the density, and it is seen that it decreases
exponentially, showing a steeper decrease for B∗ = 102. We
may ask what is the impact of these structures in the neutron
star and, in particular, what is their size. To make an estimate,
we have considered a 1.4M� star profile and calculated the
localization of the instabilities. This allows the determination
of the thickness of the instability regions, �l, in meters, and
the distance between the instabilities, �L, also in meters. The
results are shown in the middle and bottom panels of Fig. 6,
respectively. Some conclusions are in order: for B∗ = 102, the
spacing between peaks increases with density from ∼6 m to
∼9 m, until the homogeneous core sets in, while for B∗ = 103,
this spacing is one order of magnitude larger; the width of the
peaks decreases exponentially from ∼1 m for ρ = 0.085 fm−3

to ∼5 mm for ρ = 0.1 fm−3 for B∗ = 102, and is one to two
orders of magnitude larger if B∗ = 103. In the bottom panel,
we may identify two almost parallel curves which correspond
to the distance between peaks with the polarization aligned or
anti-aligned with the magnetic field.

These properties indicate that at the crust-core transition,
matter is very complex and that the magnetic field favors the
large charge concentration in the clusters. Even considering
matter below the B = 0 crust-core transition, the present
calculation indicates that there is a fast change of the cluster
size. This change will probably cause the cluster size and
structure to change more strongly with density than it would be
expected for B = 0, giving rise to more heterogeneous matter.

Simulations of the time evolution of the magnetic field at
the crust have shown that the existence of amorphous and
heterogeneous matter deep in the inner crust, with a high
impurity parameter and, therefore, highly resistive, favors a
fast decay of the magnetic fields. This has been proposed as
an explanation for the nonobservation of x-ray pulsars with a
period above 12 s [5].

IV. CONCLUSIONS

We present a formalism to calculate the eigenmodes of
nuclear and stellar matter in the presence of very strong
magnetic fields, as may be found in magnetars. The AMM
of protons and neutrons is taken into account and it is shown
that it is not negligible for magnetic fields above 1015 G.
Within this formalism, it is possible to estimate the crust-core
transition inside neutron stars from the spinodal section, the
surface where the eigenmodes go to zero. Inside these surfaces,
matter will separate into a dense and a gas phase. This
RMF description of stellar matter takes into account both the
Coulomb field and finite-size effects related to the finite range
of nuclear force. We have only considered the propagation of
waves in the direction of the magnetic field.

The main objective of this work was to complete the
discussion published in Ref. [34], where the linearized Vlasov
equation was used to determine the importance of taking
into account explicitly the effect of magnetic fields of the
order of 1015–1017 G on the description of stellar matter
at subsaturation densities, in particular, the effect of the
magnetic field on the crust-core transition in magnetized
neutron stars. It was shown in Refs. [37,46] that only fields

two to three orders of magnitude stronger than the critical
electron magnetic field have a finite effect on the EoS at
densities above saturation density, but no discussion has been
presented for lower densities of interest for the inner crust.
However, in Refs. [32,33], the non-negligible effect of the
magnetic field on the properties of the outer crust has already
been discussed. Even though the largest fields detected on
the surface of magnetars are 2 × 1015 G on the SGR 180620
(see, e.g., Ref. [47] and the McGill Online Magnetar Catalog
[4]), we expect that stronger fields are still realistic, because
in Refs. [42,43] equilibrium configurations of magnetars with
fields well above 1015 G in the interior have been obtained
when a toroidal component of the magnetic field is considered.

The effect of the Landau quantization of the levels of
charged particles gives rise to a spinodal section that presents
a structure of bands at the border between clusterized and
homogeneous matter. As a consequence, it was shown that
the transition between the crust and the core of magnetars is
defined by a complex region that is ∼0.02–0.04 fm−3 wide,
characterized by a succession of homogeneous and clusterized
matter. Calculations have been performed with and without the
inclusion of the AMM, and it was shown that the AMM has a
non-negligible effect and, moreover, it contributes to an extra
complexity of matter at the crust-core transition.

The determination of the mode associated with the maxi-
mum growth rate in the density range delimited by the spinodal
section, allowed the estimation of several properties of the
clusters that are formed in the unstable regions, in particular,
the size and a qualitative charge content. Two different density
regions should be considered independently: (a) inside the
density region delimited by the B = 0 spinodal, the size
and the δρp/δρn ratio change along the trend defined by
the corresponding B = 0 results, showing fluctuations around
these values, the larger the field the larger the fluctuations;
(b) the density region outside the B = 0 spinodal section,
where an alternation of unstable and stable regions occurs.
In this region, the clusters formed inside the unstable regions
vary between ∼5–10 fm inside very small density ranges,
and the larger the densities, the larger the proton fraction
inside the clusters. In a 1.4M� star, this region has a width
of ∼200 m for B∗ = 102, and a bit larger for B∗ = 103 and
104. If B∗ = 102, the spacing between peaks is ∼6–9 m, and
the width of the peaks decreases exponentially from 1 m at
the B = 0 crust-core transition, to 2 × 10−3 m at the onset of
homogeneous matter. For B∗ = 103 these quantities are one to
two orders of magnitude larger. Including this complex region
in the crust, the crust moment of inertia can be as large as
9%–10% of the total star moment of inertia, circa 30% larger
than the ratio obtained for B = 0.

These results indicate that it is necessary to study the
transport properties, such as electric conductivity and shear
viscosity, of this complex matter; see Refs. [16,48]. Also, the
overall properties obtained for stellar matter at subsaturation
densities seem to support the occurrence of a larger electrical
resistivity in the presence of a strong magnetic field, supporting
the existence of a resistive layer deep inside the inner crust of
magnetized neutron stars, as proposed in Ref. [5], that would
cause a fast decay of the magnetic field, and explain the nonob-
servation of isolated pulsars with periods larger than 12 s.
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APPENDIX

The coefficients aij of the matrix (36) can be written as

a11 =
∑
ν,s

gs

2π2

Gφp
M∗

ω2
s

eB

P
p
F

(
s2
p − 1

) ,

a12 = −
∑
ν,s

eB

2π2V
p
F

(
s2
p − 1

)[(
1 − ω2

k2
z

C1p

)
gvD1p

+
(

1 − ω2

k2
z

C2p

)
gρ

2
D2p +

(
1 − ω2

k2
z

)
e2

ω2
A

]
− 1,

a13 =
∑
ν,s

gs

2π2

Gφp
M∗

ω2
s

1

V
p
F εn

F

(
s2
p − 1

) ,

a14 = −
∑
ν,s

1

2π2V
p
F

(
s2
p − 1

)[(
1 − ω2

k2
z

C1p

)
gvD1n

+
(

1 − ω2

k2
z

C2p

)
gρ

2
D2n

]
,

a15 =
∑
ν,s

(
1 − ω2

k2
z

)
e2

2π2ω2
A

eB

V
p
F

(
s2
p − 1

) ,

a21 = m̄p

m̃p

a11 − 1, a22 = m̄p

m̃p

(a12 + 1),

a23 = m̄p

m̃p

a13, a24 = m̄p

m̃p

a14, a25 = m̄p

m̃p

a15,

a31 =
∑

s

gsM
∗

(2π )2

eB

ω2
s ε

p
F

εn
F P n

F L∗(sn),

a32 = −
∑

s

[(
1 − ω2

k2
z

C1n

)
gvD1p −

(
1 − ω2

k2
z

C2n

)
gρ

2
D2p

]

× eB

4π2
εn
F P n

F L(sn),

a33 =
∑

s

gsM
∗

(2π )2

P n
F

ω2
s

L∗(sn),

a34 = −
∑

s

[(
1 − ω2

k2
z

C1n

)
gvD1n −

(
1 − ω2

k2
z

C2n

)
gρ

2
D2n

]

× εn
F P n

F L(sn)

4π2
− 1,

a35 = 0,

a41 = a31
H ∗(sn)

L∗(sn)
, a42 = a32

H (sn)

L(sn)
,

a43 = a33
H ∗(sn)

L∗(sn)
− 1, a44 = (a34 + 1)

H (sn)

L(sn)
, a45 = 0,

a51 = a53 = a54 = 0,

a52 =
∑
ν,s

(
1 − ω2

k2
z

)
e2

2π2ω2
A

eB

V e
F

(
s2
e − 1
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a55 = −
∑
ν,s

(
1 − ω2
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z
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e2
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V e
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where m̃p = m̄p + sμNκpB, ω2
s = ω2 − k2

z − m2
s,eff, ω2

A =
ω2 − k2

z , and si = ω
ω0i

, i = p,n,e.
The remaining coefficients are given by

Gφp
= gsM

∗m̄p

ε
p
F (m̄p + sμNκpB)

,

Gφn
= gsM

∗

εn
F

⎛
⎝1 − sμNκnB√

M∗2 + P n2
F (1 − x2)

⎞
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C1i = 1 − τigρχ

2gvω2
ρ

,
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gρω2
v

,

D1i = τigρχ

2Dν

+ gvω
2
ρ

Dν

,

D2i = gvχ

Dν

+ τigρω
2
v

2Dν

,

Dν = ω2
vω

2
ρ − χ,

L(sn) =
∫ 1

−1

x

(sn − x)
dx, L∗(sn) =

∫ 1

−1

Gφn
xdx

(sn − x)
,

H (sn) =
∫ 1

−1

⎛
⎝1 − sμNκnB√

M∗2
n + P n2

F (1 − x2)

⎞
⎠ xdx

(sn − x)
,

H ∗(sn) =
∫ 1

−1

⎛
⎝1 − sμNκnB√

M∗2
n + P n2

F (1 − x2)

⎞
⎠Gφn

xdx

(sn − x)
.

The amplitudes of the scalar densities fluctuations, Ais
ω,ν,s ,

and of the vector densities fluctuations, Ai
ω,ν,s , are given by

Aps
ω,ν,s =

∑
ξ

ξ
m̄p

(m̄p + sμNκpB)
Sp

ω,ν,s(ξ ),

Ans
ω,s =

∫ 1

−1
P n2

F x

⎛
⎝1 − sμNκnB√

M∗2
n + P n2

F (1 − x2)

⎞
⎠Sn

ω,sdx,

Ap
ω,ν,s =

∑
ξ

ξSp
ω,ν,s(ξ ),

An
ω,s =

∫ 1

−1
P n2

F xSn
ω,sdx, Ae

ω,ν,s =
∑

ξ

ξSe
ω,ν,s(ξ ).
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