
An Intemational Journal 

computers & 
mathematics 
with rpplkations 

PERGAMON Computers and Mathematics with Applications 42 (2001) 1177-1188 
www.elsevier.nl/locate/camwa 

Deflation for Block Eigenvalues 
of Block Partitioned Matrices 

with an Application to 
Matrix Polynomials of 
Commuting Matrices 

E. PEREIRA* 
Departamento de Matemdtica 
Universidade da Beira Interior 

6200 Covilhl, Portugal 
epereiraQalpha.ubi.pt 

J. VIT~RIA* 
Departamento de Matematica 

Universidade de Coimbra 
3000 Coimbra, Portugal 

jvitoria@mat.uc.pt 

Abstract-A method for computing a complete set of block eigenvalues for a block partitioned 
matrix using a generalized form of Wielandt’s deflation is presented. An application of this process 
is given to compute a complete set of solvents of matrix polynomials where the coefficients and the 
variable are commuting matrices. @ 2001 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The definition of block eigenvalue (see Definition 1.1) was presented in a technical report by 

Dennis, Traub and Weber [l] in a method for computing one solvent of matrix polynomials. We 

extend such a method for finding a complete solution; see the definition of a complete set of 

solvents (Definition 4.5), for this sake: first we develop a block version of the classical Wielandt 

deflation, and then we apply this block deflation to matrix polynomials with some restrictions. 

Our approach casts in a new special form of matrix which we baptize as an L-shaped matrix. 

DEFINITION 1.1. A matrix X of order n is a block eigenvalue of order n of a matrix A of order mn 

if there exists a block vector V of full rank, such that AV = VX. V is a block eigenvector of A. 

The matrix A is partitioned into m x m blocks of order n, and the block vector V is of type 

mn x n (a column of m blocks of order n). This is a particular case of the classical problem 
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AX = XB (see [2]) with the order of A being a multiple of the order of B (X in our notation) 
and X (the block vector V in our notation) being an invariant subspace of A (see [3]). 

We will work with matrices having entries in the field of complex numbers, and sometimes we 
will name scalar eigenvalues the eigenvalues in order to distinguish from block eigenvalues. We 
will denote the jth block (n x n) of a block vector V by (V)j and the jth block row (n x mn) of 
a block partitioned matrix A by (A)j as follows: 

h 

v= vj ) 

_KZ_ 

(V)j = vj and A= Ajl 

All 

A _ ml 

. . . 

. . . 

. . . 
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4, 

A mm 

and unless otherwise explicitly referred to, we will assume the order of a block matrix to be mn, 
the order of a block eigenvalue to be n, and the type of a block eigenvector to be mn x n. 

Furthermore, the following known results and definitions related to the Definition 1.1 will be 
used in this paper. 

THEOREM 1.1. If AV = VX, with V of full rank, then all the eigenvalues of X are eigenvalues 
of A (11. 

DEFINITION 1.2. A set of block eigenvalues of a block matrix is a complete set if the set of all 
the eigenvalues of these block eigenvalues is the set of eigenvalues of the matrix [II. 

THEOREM 1.2. Every matrix, of order mn, has a complete set of block eigenvalues of order n [l]. 

DEFINITION 1.3. In a complete set of block eigenvalues, one of them is weakly dominant if all its 

eigenvalues are greater than or equal (in moduli) to the eigenvalues of any other block eigenvalue 
in the complete set 111. 

THEOREM 1.3. Every block matrix has a complete set of block eigenvalues with one of them 

weakly dominant [l]. 

THEOREM 1.4. Any matrix similar to a block eigenvalue of a matrix A is also a block eigenvalue 
of A [l]. 

THEOREM 1.5. det(1p - RS) = det(lq - SR), where R and S are arbitrary p x q and q x p 

matrices 131. 

We summarize the context of this paper. In Section 2, we define ordered sets of block eigenval- 
ues. In Section 3, we develop a block deflation process for an ordered set of block eigenvalues. We 
present the basic theory of matrix polynomials in Section 4. In Section 5, we apply the deflation 
to the block companion matrix of a matrix polynomial of commuting matrices, and in Section 6 
we give a numerical example. 

2. ORDERED SETS OF BLOCK EIGENVALUES 

In the scalar eigenvalue problem, every matrix of order n has n eigenvalues, including multi- 
plicities, and for any matrix, a typical deflation process to compute the n eigenvalues consists 
of 

(1) find iteratively the dominant eigenvalue of the matrix of order n, and then get the matrix 
of order n - 1 which has only the remaining eigenvalues, and 

(2) repeat Step 1 with the deflated matrix until the order 1. 

We will generalize this process to compute a complete set of block eigenvalues for a block parti- 
tioned matrix under certain conditions, being aware that, unlike in the scalar case, a partitioned 
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matrix into m x m blocks generally has more than m block eigenvalues 2nd hence more than one 
complete set. 

Let us suppose now that we have computed the mn scalar eigenvalues of a partitioned ma- 
trix A. We can construct a complete set of block eigenvalues by taking m matrices of order n in 
Jordan form where the diagonal elements are those scalar eigenvalues. Furthermore, if the scalar 
eigenvalues of A are distinct, these m matrices are diagonal matrices as is shown in the following 
construction: x1 x1 = 

[ 1 . . . , &I 

+r-l)n+l 

x, = . . 1. x ?nn 

where the Xi, i = 1,. . . , mn, are the eigenvalues of A. The proof that the matrices Xj, j = 

1 , . . . , m, are a complete set of block eigenvalues of A is in [l, p. 741. 
We stress that our goal is to compute the block eigenvalues without knowing its scalar eigen- 

values. 

DEFINITION 2.1. In a complete set of block eigenvalues, one of them is dominant if all its eigen- 
values are greater (in moduli) than the eigenvalues of any other block eigenvalue in the complete 
set. 

DEFINITION 2.2. If a matrix A of order mn has Icn distinct scalar eigenvalues ordered as follows: 

IhI L 1x21 > .” 2 Pknl 

and X1, X2, . . . , Xk are block eigenvalues of A, where the eigenvalues of 

XI areXl,...,X,, 

X2 areh+1,...,A2n, 

and XI, are +-I)~+I,. . . , b, 

then X1,X2,. . . , XI, are an ordered set of block eigenvalues of A with k elements. And if k = m, 

thenXl,Xz,..., X, are a complete ordered set of block eigenvalues of A. 

We are now in position for presenting our first proposition. 

PROPOSITION 2.1. Every block matrix with distinct scalar eigenvalues has a complete ordered 
set of block eigenvalues, the first of them being weakly dominant. 

PROOF. The result follows from construction (1) w h ere the scalar eigenvalues Xi are ordered 
according to Definition 2.2 and X1 is, by Definition 1.3, the weakly dominant block eigenvalue. 1 

3. THE BLOCK DEFLATION PROCESS 

Let us consider a matrix A of order mn partitioned into blocks of order n. Let us assume 
that A is nonsingular and that all of its mn eigenvalues are distinct. Denote by X1 a weakly 
dominant block eigenvalue and by VI the corresponding block eigenvector. 
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Consider a matrix B defined as follows: 

B = A - V,X,U, (2) 

where U is any block vector of type n x mn (i.e., a row of m blocks of order n) verifying the 
relation 

uv, = I,. (3) 

Multiplying both sides of (2) on the right by VI and taking (3) into account, we have 

BV, = Al’1 - V,XlUV, = 0. (4 

In relation (4), it is shown that VI is also a block eigenvector of B corresponding to the null 
block eigenvalue. We will show that the matrix B has the remaining block eigenvalues of the 
matrix A. This procedure is a generalized form of the Wielandt’s deflation [3,4]. Householder [5] 
and Wilkinson [3, p. 5991 have considered a similar deflation process, nevertheless not related to 
the block eigenvalue problem, as their work dealt with the deflation of several scalar eigenvalues 
at one step. 

The deflation process is stated in the following proposition. 

PROPOSITION 3.1. If 

(1) A is a matrix of order mn having nonzero distinct scalar eigenvalues, 

(2) Xl,..., X, are a complete ordered set of block eigenvalues of A, 

(3) VI is a block eigenvector corresponding to the weakly dominant block eigenvalue Xi, 
(4) B is a matrix of order mn defined by 

B = A - V,X,U, 

where U is any block vector of type n x mn such that 

uv, = In, 

then 

(a) 0, is a block eigenvalue of B corresponding to VI, 

(b) X2,.. ., X,,, are block eigenvalues of B, 

(c) B has an m- 1 ordered set of block eigenvalues that form an ordered set of block eigenvalues 
of A, as well. 

PROOF OF PART (a). 

BVl = A& - V,X,UV, 

= v,x, - V,Xl = Vl(Xl - Xl) = v,o,. 

PROOF OF PART (b). Let us define the block vector Zi of type mn x n by 

zi = vl, - v,x,uT/‘x,l, i = 2,3,. . . , m, 

where Vi is a block eigenvector of A corresponding to the block eigenvalue Xi. 
Now from (2) and (5)) we have 

SZi = AVi - AViXiUViXil - VlXlUVi + V~XIUV~XIUViXC”, 

and from (3) and A& = V,X,, we obtain 

BZi = AV, - V,X,UV, 

= ViXi - VlXllJVi 

= (vi - v,x,uv,xz~l) x, 

= ZiXs; 

hence, Xi is also a block eigenvalue of B corresponding to the block eigenvector Zi. 

To prove Part (c), we need the following lemma. 

I 

(5) 
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LEMMA 3.1. B has the scalar eigenvalues of A except those n ones which are eigenvalues of X1 

that are replaced by zeros. 

PROOF. Let Xi, i = n + 1,. . . , nm, be an eigenvalue of A that it is not an eigenvalue of X1, and 

let A, = Xi + 6, for any E > 0, such that A, is not an eigenvalue of A; then from 

it follows that 

X,V, -A& = X,V, - VlX,, 

(urm - A) K = VI (&In - Xl) , 

or 

VI (&I, -X1)-’ = (&I,, -A)-’ V,. (6) 

Now we have 

det (&I,, - B) = det (&I,, - A + VlXlV) 

= det (X,1,, - A) det (I,,, + (&I,, - A)-l VlX,U) 

= det (&I,, - A) det (I,, + VI (Xd, - Xl)-’ XlU) from (6) 

= det (&I,, - A) det (I, + X1UVl (&In - Xl)-‘) from Theorem 1.5 

= det (&I,, - A) det (I, + XI (X,1, - XI)-‘) from (3) 

= det (A&, - A) X: det (&In - XI)-‘, 

and thus by continuity of the characteristic polynomial of B and taking into account that, by 

hypothesis, det(X&, - A) = 0 and det(Xil, - XI) # 0, we have 

det (A&, - B) = 0, &?GE-+O; 

hence, Xi is an eigenvalue of B. 

Furthermore, if the eigenvalues of the block eigenvalue 0, are eigenvalues of B, then B has n 

vanishing eigenvalues and the proof is complete. I 

PROOF OF PART (c). From Lemma 3.1, it follows that B has mn - n nonzero distinct scalar 

eigenvalues from A, and therefore, we can construct an m - 1 ordered set of block eigenvalues 

of B 

~Iyz,..~,Kz-l, 

such that the eigenvalues of 

YI are those of Xp, 

Y2 are those of X3, 

Y,_l are those of Xm; 

hence, the n scalar eigenvalues of Yi are the same of Xi+l, i = 1,. . . , m - 1, and as these 
eigenvalues are distinct, Yi and Xi+1 have the same Jordan form and then they are similar and, 
by Theorem 1.4, Yi is also a block eigenvalue of A. I 
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COROLLARY 3.1. If 

(1) VI is normalized by putting the jth block (Vl)j = I,, 

(2) XlU = (A)j, 
(3) we construct the matrix A1 of order mn - n from B by taking off both the jth block row 

and the jth block column, 

thenYl,Yz,..., Y,_l are a complete ordered set of block eigenvalues of A’. 

PROOF. For a fixed j, the relation 
AVI = &XI 

implies 

From condition (2)) we have 

WjK = (WjXr. 

UV, = X,l(A)jVl = X;‘(V&Xl = In, 

and hence, we can write 
B = A - Vl(A)j, 

where 

Wj = (A)j - (Wj(A)j = 0, (7) 

so that the jth block row of B is null. 

Consequently, by relation (5), we have for Zi, the block eigenvectors of B corresponding to the 

block eigenvalues Xi 

and using condition (1) we get 

wj = 0, fori=2,...,m. (3) 

On the other hand, when proving Proposition 3.1, it has been shown that Yi is similar to Xi+r, 

i= l,..., m - 1, and hence, we can write 

where Pi is a nonsingular matrix. From 

BZi = ZiXq,, 

it follows that 

and by putting 

we obtain from (10) 

Wi = Zi+lP, i=l,...,m-1, 

(9) 
(10) 

(11) 

BWi = WiYiz, i=l,...,m-1, 
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which leads us to conclude that Wi is a block eigenvector of B corresponding to the block 

eigenvalue Yi,; from (8) and (ll), we get 

(Wi)J = 0, i=l,...,m-1, (12) 

and hence, the jth block of Wi is null. 

Now for the sake of simplicity, let us take j = 1. From (7) and (12), it follows that from the 

relation 
BWi = WiYz, 

we can write 

0 0 ... 0 

Bm2 ... B,, 

0 

w2 

WTT 

i=l,...,m-1, 

0 

w2 l_Il yz, i = 1,. . . ,m - 1; (13) 

1 i wm 2 

then we construct the matrix A1 according to condition (3), as follows: 

and from (13), it is easy to verify that 

COROLLARY 3.2. Under the hypothesis of Corollary 3.1, the matrix A1 has nonzero distinct 

eigenvalues. 

PROOF. The eigenvalues of A1 are the eigenvalues of Yi, i = 1, . . . , m - 1 (by Theorem l.l), and 

they are distinct and nonzero by Proposition 3.1. I 

Now we can continue the process. So, Corollaries 3.1 and 3.2 show that the matrix A1 of order 

mn - n obeys the same conditions as the original matrix A for the application of the subsequent 

deflation. 

4. MATRIX POLYNOMIALS 

In this section, we give a brief summary of the basic theory of matrix polynomials as developed 

in [1,6]. 

DEFINITION 4.1. Given n by n matrices Al,. . . , A,, a matrix polynomial M(X) is the matrix 

expression 

M(X) = Xm + AIX”-l + ... + A,, 

where the variable X is also of order n x n. 

We consider the powers of X at the right of the coefficients. We also remark that if we 
consider X = X1,, X E Q1, then the matrix polynomial becomes a lambda-matrix M(X), and we 

indicate that most of the available theory is concerned with matrix polynomials considered as 

lambda-matrices (see [7]). 

DEFINITION 4.2. A matrix S is a (right) solvent of the matrix polynomial M(X) if M(S) = 0. 
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DEFINITION 4.3. A solvent is dominant if all its eigenvalues are greater than (in modujj) to the 

eigenvalues of any other solvent. 

DEFINITION 4.4. Given a matrix polynomial 

M(X) = Xm + AIXm-l + ... + A,, 

its (bottom) block companion matrix is 

c= 

0 I . . . 0 

0 0 I 

0 I 

-A?l -A,_1 . . . -A2 -Al 

The relation between solvents and block eigenvalues of C are stated in the next two theorems. 

THEOREM 4.1. If S is a solvent of M(X), then S is a block eigenvalue of C associated to the 

normalized block eigenvector 
r I - 

v= ZJ . 

cp-1 

THEOREM 4.2. IfCV = VX withV offullrankand (V), isnonsingular, thenS = (V),X(V);’ 

is a solvent of M(X). 

DEFINITION 4.5. A set of m solvents of matrix polynomial M(X) is a complete set if the set of 

mn eigenvalues of the m solvents is the same, counting multiplicities, as the set of mn eigenvalues 

of the block companion matrix C. 

This is a simplification of the original definition [l] in terms of M(X), and an equivalent 

definition (by Definition 1.2) is: a set of solvents is a complete set if they are a complete set of 

block eigenvalues of C. We note that (V), is the first block of the block eigenvector V, and if a 

block matrix has a dominant block eigenvalue, this one will be also a dominant solvent (see [l]). 

Thus, it means that the existence of a dominant block eigenvalue of C is equivalent to the 

existence of a dominant solvent of M(X). N ow we see the importance of our construction of an 

ordered set of block eigenvalues, for the application of the deflation process in order to obtain a 

complete set of solvents of M(X). 

5. APPLICATION TO MATRIX 
POLYNOMIALS OF COMMUTING MATRICES 

Let us suppose that M(X) is a matrix polynomial where the matrix coefficients Al,. _ , A, 

pairwisely commute and the solvents Sr, . 

C= 

0 I . . 0 
0 0 I 

.~ > 

0 I 

-A, -A,_1 . . . -A2 -Al 
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AI = -(SI + . . . + S,), 

AZ = SISZ + S1S3 + . . . + SlS, + S2S3 + . . . + S2S, . . . + Sm_lSm, 

A,_l = (-l)“-1 (S2S3.. .S, + S1S3.. . S, + S1Sz.. . S,_l) , 

A, = (-l)m (S1S2.. . Sm) . 

Notice that if we do not work with commuting matrices, we cannot write the Ai in the classical 

Girard-Newton-V&e formulae. 

We have from Theorem 4.1 that S1 (the dominant solvent) is a block eigenvalue and VI is a 

normalized block eigenvector in the form 

Vl = 

- Wh - 
(Wz 
(W3 = 

_(vAn_ 

- I 

:; 

-ST”-’ 

Now we apply the deflation process to the block companion matrix with &U = (C)l (j = 1 

in condition (2) of Corollary 3.1). The suitability of this choice lies in the fact that the deflated 

matrix C’ (see condition (3) of Corollary 3.1) has a special L form, which we call L-shaped 

matrix 
-W)2 I . . . 0 - 

-w3 0 I 

L1 = cl = . . 

-(Vin-1 I 

_-A,_1 -(VI), -Am-2 ... -A2 -Al_ 

For S2, the second solvent (and dominant of L1), the associated block eigenvector is 

- F-2)1 

(Wz 

v2 = (W3 

_ (v,,,,_, 

- Wl - 

(Vl)Z ($1 

= (Vl)3 + s2 (vz)z . 

_cwLn-, _ _(v2)nL-2_ 

Now we choose S2U = (L’)l, and we get, 

-m.)z I . . . 0 - 

-(b)3 0 I 

L2 = c2 = . . 

-(Vz)m-2 I 

_-Am-z - (V&-1 -A,,_3 . . -A2 -A1 _ 

We see that the L form is preserved, and hence, in the end 

is associated with the (m - l)th solvent ,9,-l. 
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The last deflated matrix is 

L”-’ = cZ'"-~ = [-Al - (Vm-1)2], 

We have 

(K)2 = Sl, 

(vz)2 = Sl + s2, 

w-m-l)2 = Sl + s2 +. . . + Sm_lr 

and 

Al = -(& + ... + Sm); 

hence, 
L”-l = sm. 

The generic form of the block eigenvectors is 

- (Wl - - I - 

(W2 

VI = (W3 = :; , 

_(Vljm_ _s+_ 

where 5’1 is the dominant block eigenvalue, hence the dominant solvent, and 

- Wr - - 0%l)r - 

W2 (Y-l)2 (G, 

y= (W3 = WI), +sj (vj)2 ) j=a )...) m-l, 

-W(m-J)+1- _N-r&+1_ JQ),_j _ 

where Sj are the respective block eigenvalues and the remaining solvents. 

The generic form for the L-shaped matrices is 

- w2 I . . . 0 - 

- w3 0 I 

Lj = . . > j=l,...,m-1. 

- (W,-j I 

_-Am-j - (‘l/j)(,_j)+l -A(m-j)-l . .. -A2 -Al _ 

6. NUMERICAL EXAMPLE 

In the next example, we use a generalization of the power method [l] to compute a normalized 

block eigenvector associated to a dominant block eigenvalue. 

Let 
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be a fifth degree matrix polynomial of commuting matrices of order 2 (m = 5 and n = 2). We 

have CVl = VlX, where C is the block companion matrix (of order 10). 

A dominant block eigenvalue (and a dominant solvent) is 

and the corresponding normalized block eigenvector is 

Taking XrU = (C)r, we have 

B = c - VI(C)1 

0 0 

0 0 

0 0 

0 0 

0 0 = 
0 0 

0 0 

0 0 

VI = 

- 1 0 

0 1 

8 -2 

1 11 

62 -38 

19 119 

458 -542 

271 1271 

3122 -6878 

-3439 13439 

0 0 

0 0 

-8 2 

-1 -11 

-62 38 

-19 -119 

-458 542 

-271 -1271 

0 0 00 0 

0 0 00 0 

0 0 000 
1 0 00 0 

0 1 00 0 

0 0 10 0 

0 0 01 0 

0 0 00 1 

-1950 -5790 -2116 12268 100 -1700 -120 220 20 -10 
2895 6735 -6134 -20518 850 2650 -110 -450 5 35 

Now we omit the first block row and the first block column of B and we obtain 

Continuing, we get 

-8 2 1 0 0 0 0 0 
-1 -11 0 1 0 0 0 0 

-62 38 0 0 1 0 0 0 
-19 -119 0 0 0 1 0 0 

-458 542 0 0 0 0 1 0 
-271 -1271 0 0 0 0 0 1 

-2116 12268 100 -1700 -120 220 20 -10 
-6134 -20518 850 2650 -110 -450 5 35 

X2=&= ;. -; ) 
[ 1 

the corresponding normalized block eigenvector being 

v2 = 

1 0 

0 1 

14 -4 

2 20 

142 -102 

51 295 

1208 -1744 

872 3824 
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and 
- -14 4 1 00 0 

-2 -20 0 10 0 

-142 102 0 01 0 

-51 -295 0 00 1 

-1108 44 -120 220 20 -10 

_ -22 -1174 -110 -450 5 35 

L2 = 

Continuing the process, we get from the subsequent deflations 

s 
3 

= 1 4 1 -2 1 7’ 

S 2 
4 

= [ 1 -2 I 5’ 

S O 5 = [ 1 -2 1 33 

thus, Sr, Sz, S’s, S4, and Ss are a complete set of solvents of M(X). 

7. REMARKS AND CONCLUSIONS 

The main purpose of this paper is to present a block deflation procedure for comp.uting a 

complete set of block eigenvalues of a matrix partitioned into blocks, in order to effectively 

compute the solvents of a matrix polynomial. We have generalized a scalar version procedure 

as exposed in [3,4]. We have adapted the proof of Lemma 3.1 from [3] and [5], by presenting a 

formal way to invert lambda-matrices (see [8]). 

The Wielandt deflation may be considered unused by some authors, but we see in the recent 

work of Saad [9] an important application to sparse matrices, and using the first block row of 

the matrices for the deflation led us to the special L-shaped matrices, which preserves the sparse 

characteristic of the companion matrix. The commuting matrices of the numerical example were 

constructed based in the work of Jaffar [lo]. 
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