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Abstract

In this paper we present a unified theory for studying the so-called Krall-type discrete ortho
polynomials. In particular, the three-term recurrence relation, lowering and raising operators
as the second order linear difference equation that the sequences of monic orthogonal poly
satisfy are established. Some relevant examples ofq-Krall polynomials are considered in detail.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let u be a quasi-definite linear functional in the vector spaceP of polynomials with
complex coefficients. Then there exists a sequence of monic polynomials(Pn)n with
degPn = n, such that [14]

〈u,PnPm〉 = knδn,m, kn �= 0, n,m = 0,1,2, . . . .

Special cases of quasi-definite linear functionals are the classical ones (those of Jaco
Laguerre, Hermite and Bessel). In the last years perturbations of the functionalu via the
addition of Dirac delta functions—the so-called Krall-type orthogonal polynomials—hav
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been extensively studied (see, e.g., [6,7,16,20–22,26]and references therein), i.e., th
functional

ũ = u +
M∑
i=1

Aiδ(x − ai), (1.1)

where(Ai)
M
i=1 are nonzero real numbers andδ(x − y) means the Dirac linear function

defined by〈δ(x − y), p(x)〉 = p(y),∀p ∈ P. In the very recent paper [2] we have cons
ered the case of the more general functionalũ = u + ∑M

i=1 Aiδ(x − ai) − ∑N
j=1 Bj δ

′(x −
bj ), which also involves the case of derivatives of delta Dirac functionals define
〈δ′(x − a),p(x)〉 = −p′(a). Moreover, in [2] a necessary and sufficient condition for
quasi-definiteness of the linear functionalũ was established and a detailed study when
original functionalu is a semiclassical functional was worked out in detail.

In the present paper we will suppose that the functionalu in (1.1) is a semiclassica
discrete [31] orq-discrete [28] functional making an special emphasis in the case w
u is a classical discrete [17] orq-classical functional [29]. The interest of such modific
tions for the discrete case starts after theThird International Symposium on Orthogon
Polynomials and Their Applicationsheld in Erice (Italy) when R. Askey raised the que
tion of identify and study the resulting polynomials of adding a delta Dirac measure
classical Meixner linear functional. This problem was independently solved in [3] and
and it was extended to other families of classical polynomials (see [4] for the Hah
Kravchuk cases and [5,13] for the Charlier one, for a general framework see [19]
case whenu is aq-classical linear functional is still open and only few results by Cos
Santos [15] are known. Another connected problem is related with the so-called co
pairs for measures [27,30] that leads to similar linear discrete functionals [9–11].

Let us also point out that there are also the so-called discrete (see, e.g., [8])q-
discrete Sobolev type orthogonal polynomials associated with the classical discre
q-classical functionals [23,24]. In both cases the corresponding polynomials can
duced to the Krall-type one (except for theq-case when the mass is added at zero whe
more careful study is needed [23,24]) since the differences∆f (x) = f (x + 1) − f (x) and
Dqf (x) = (f (qx) − f (x))/(qx − x).

The aim of this contribution is to present a simple and unified approach to the stu
such perturbations of the semiclassical andq-semiclassical functionals.

The structure of the paper is as follows. In Section 2 some remarks on the general the
[2] are included as well as a detailed discussion whenu is a semiclassical functional. I
Section 3 the algebraic properties of the new family are obtained, and finally, in Sec
some examples are developed in details.

2. General theory

2.1. Representation formula

We follow [2]. If ũ in (1.1) is quasi-definite then there exists a sequence of m
polynomials(P̃n)n orthogonal with respect tõu and therefore we can consider the Fou
expansion
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P̃n(x) = Pn(x) +
n−1∑
k=0

λn,kPk(x), n = 0,1,2, . . . . (2.1)

Then, for 0� k � n − 1,

λn,k = 〈u, P̃n(x)Pk(x)〉
〈u,P 2

k (x)〉 = −
M∑
i=1

AiP̃n(ai)
Pk(ai)

〈u,P 2
k (x)〉 .

Thus, (2.1) becomes

P̃n(x) = Pn(x) −
M∑
i=1

AiP̃n(ai)Kn−1(x, ai), (2.2)

where, as usual,

Kn(x, y) =
n∑

l=0

Pl(x)Pl(y)

〈u,P 2
l (x)〉

denotes the reproducing kernel associated with the linear functionalu. Therefore from
(2.2) we get the following system ofM linear equations in the variables(P̃n(ak))

M
k=1,

P̃n(ak) = Pn(ak) −
M∑
i=1

AiP̃n(ai)Kn−1(ak, ai), k = 1,2, . . . ,M. (2.3)

To simplify the above expressions we use the notations of [2] (AT is the transpose ofA):

Pn(�z) = (
Pn(z1),Pn(z2), . . . ,Pn(zk)

)T
, �z = (z1, z2, . . . , zk)

T .

Also we introduce the matricesKn−1(�z, �y) ∈ Cp×q whose(m,n) entry isKn−1(zm, yn).
Here�z = (z1, z2, . . . , zp) and �y = (y1, y2, . . . , yq). Finally, we introduce the matrix ass
ciated with the mass pointsD = diag(A1,A2, . . . ,AM). With this notation (2.3) can b
rewritten as

P̃n(�a) =Pn(�a) − Kn−1DP̃n(�a), Kn−1 =Kn−1(�a, �a), (2.4)

where�a = (a1, a2, . . . , aM). If the matrix I + Kn−1D, whereI is the identity matrix, is
nonsingular, then we get the existence and uniqueness for the solution of (2.4) and th
(2.2) becomes

P̃n(x) = Pn(x) −KT
n−1(x, �a)D(I + Kn−1D)−1Pn(�a). (2.5)

The above formula constitutes the first representation formula for the polynomials(P̃n)n.
From the above expression and following [2] we obtain the following

Theorem 1. The linear functional̃u defined in(1.1) is a quasi-definite linear functional
and only if

(i) The matrixI + Kn−1D is nonsingular for everyn ∈ N.
(ii) 〈u,P 2

n (x)〉 +PT
n (�a)D(I + Kn−1D)−1Pn(�a) �= 0 for everyn ∈ N.



58 R. Álvarez-Nodarse, J. Petronilho / J. Math. Anal. Appl. 295 (2004) 55–69

r

–

dent
erm

mials

n order
s

In such a case the norm̃d2
n := 〈ũ, P̃ 2

n (x)〉 is given by〈
ũ, P̃ 2

n (x)
〉 = 〈

u,P 2
n (x)

〉 +PT
n (�a)D(I + Kn−1 D)−1Pn(�a), (2.6)

and the corresponding sequence(P̃n)n of monic orthogonal polynomials is given by(2.5).

Furthermore, since the entries of the matrixD are nonzero, thenD is a nonsingula
matrix, thusD(I + Kn−1D)−1 = (D−1 + Kn−1)

−1 := Mn−1, so (ii) means that

1+ εnP̂T
n (�a)Mn−1P̂n(�a) �= 0, P̂n(ai) = Pn(ai)√|〈u,P 2

n (x)〉| ,

andεn = e−i arg〈u,P 2
n 〉, where argz means the principal argument ofz ∈ C.

Similarly to [2], if we multiply (2.5) byφ(x) = ∏M
i=1(x − ai), and use the Christoffel

Darboux formula

Kn−1(x, y) = 1

kn

[
Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

x − y

]
, kn = 〈

u,P 2
n (x)

〉
, (2.7)

then we obtain the representation

φ(x)P̃n(x) = A(x;n)Pn(x) + B(x;n)Pn−1(x), (2.8)

whereA(x;n) andB(x;n) are polynomials of degree bounded by a number indepen
of n and at mostM and M − 1, respectively. On the other hand, from the three-t
recurrence relation that the sequence(Pn)n satisfies

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), γn �= 0, ∀n ∈ N, (2.9)

and taking into account (2.8) we get, forn � 1,

φ(x)P̃n−1(x) = C(x;n)Pn(x) + D(x;n)Pn−1(x),

C(x;n) = −B(x;n − 1)

γn−1
,

D(x;n) = A(x;n − 1) + x − βn−1

γn−1
B(x;n − 1). (2.10)

Let us point out that the above representations are valid for any family of polyno
orthogonal with respect to the linear functional (1.1) and not only for the case whenu is a
classical or semiclassicalcontinuous functional.

Notice also that, as in the continuous case [2], an inverse process can be done i
to recover the linear functionalu in terms ofũ (it is sufficient to add tõu the same masse
but with opposite sign). Therefore, there exist two polynomialsĀ(x;n) andB̄(x;n) with
degrees bounded by a number independent ofn such that

φ(x)Pn(x) = Ā(x;n)P̃n(x) + B̄(x;n)P̃n−1(x). (2.11)
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2.2. Representation formula in the semiclassical case

If u is a semiclassical discrete linear functional, then there exist a polynomialψ(x) and
two polynomialsM1(x;n) andN1(x;n), with degree bounded by a number independ
of n, such that [31]

ψ(x)∆Pn(x) = M1(x;n)Pn(x) + N1(x;n)Pn−1(x), (2.12)

where∆ is the forward difference operator∆f (x) = f (x + 1) − f (x). Notice that using
the TTRR (2.9) we get a similar expression but in terms ofPn andPn−1,

ψ(x)∆Pn(x) = M2(x;n)Pn(x) + N2(x;n)Pn+1(x), (2.13)

where again the degree ofM2(x;n) andN2(x;n) are bounded by a number independ
of n. Usually the formulas (2.12) and (2.13) are called the lowering and raising ope
for the family(Pn)n.

Similarly, for theq-semiclassical case a similar result is known [28], i.e., there ex
polynomialψ(x) and the polynomialsM1(x;n), N1(x;n), M2(x;n) andN2(x;n), with
degree bounded by a number independent ofn, such that

ψ(x)DqPn(x) = M1(x;n)Pn(x) + N1(x;n)Pn−1(x), (2.14)

ψ(x)DqPn(x) = M2(x;n)Pn(x) + N2(x;n)Pn+1(x), (2.15)

whereDq is theq-Jackson derivatives1

DqP(x) = P(qx) − P(x)

x(q − 1)
, q �= 0,±1.

Using either (2.8) and (2.12) or (2.10) and (2.13) we obtain the following represen
formula:

π(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)Pn(x + 1), (2.16)

wherea, b andπ are polynomials of degree bounded by a number independent ofn.
In theq-case the situation is the same. In fact using (2.8) and (2.14) or (2.10) and

we obtain the following representation formula:

π(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)Pn(qx), (2.17)

wherea, b andπ are polynomials of degree bounded by a number independent ofn.

3. Algebraic properties of the polynomials P̃n(x)

3.1. The three-term recurrence relation for(P̃n)n

In the following we assume thatũ is quasi-definite. Then, the sequence(P̃n)n of monic
polynomials orthogonal with respect toũ satisfies a three-term recurrence relation (TTR

xP̃n(x) = P̃n+1(x) + β̃nP̃n(x) + γ̃nP̃n−1(x), n ∈ N, (3.1)

1 Usuallyq ∈ (0,1).
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with the initial conditionsP̃−1(x) = 0, P̃0(x) = 1. To obtain the coefficients̃βn andγ̃n of
the TTRR (3.1) for the polynomials̃Pn orthogonal with respect tõu we use the standar
formulas for orthogonal polynomials (see, e.g., [14]). Thus, using (2.6) we find

γ̃n = 〈ũ, P̃ 2
n (x)〉

〈ũ, P̃ 2
n−1(x)〉 = γn

1+ εnP̂T
n (�a)Mn−1P̂n(�a)

1+ εn−1P̂T
n−1(�a)Mn−2P̂n−1(�a)

, n > 1,

as well as, forn = 1,

γ̃1 = γ1
1+ ε1P̂T

n (�a)M0P̂n(�a)

1+ ∑M
i=1 Ai/u0

,

whereu0 = 〈u,1〉 is the first moment of the functionalu.
On the other hand,̃βn = b̃n − b̃n+1, whereb̃n denotes the coefficient ofxn−1 for P̃n and

bn is the corresponding coefficient ofxn−1 for Pn. To computẽbn we use (2.5), so that

b̃n = bn − εnεn−1|γn|1/2P̂T
n−1(�a)Mn−1P̂T

n (�a)

and therefore

β̃n = βn + εnεn+1|γn+1|1/2P̂T
n (�a)MnP̂T

n+1(�a)

− εnεn−1|γn|1/2P̂T
n−1(�a)Mn−1P̂T

n (�a).

Finally, for n = 0 we have

β̃0 = 〈ũ, x〉
〈ũ,1〉 = u1 + ∑M

i=1 aiAi

u0 + ∑M
i=1 Ai

, u1 = 〈u, x〉.

3.2. Second order difference equation for(P̃n)n

In the following we assume thatu is a semiclassical discrete orq-discrete functional.
From the representation formulas (2.8) and (2.16) and (2.17) follows that the poly

als P̃n satisfy a second order difference equation. For the discrete case it is an imm
consequence of Theorem 2.1 or Theorem 3.1 in [1]. In fact, we have

Theorem 2. Suppose that the polynomials(P̃n)n are defined by(2.16)where the polyno
mial Pn is a solution of a second order difference equation(SODE) of the form

σ(x;n)Pn(x − 1) − ϕ(x;n)Pn(x) + ς(x;n)Pn(x + 1) = 0. (3.2)

Then{P̃n} satisfy a SODE of the form

σ̃ (x;n)∆∇P̃n(x) + τ̃ (x;n)∆P̃n(x) + λ̃(x;n)P̃n(x) = 0, (3.3)

whereτ̃ (x;n) = ς̃ (x;n) − σ̃ (x;n), λ̃(x;n) = ς̃ (x;n) + σ̃ (x;n) + ϕ̃(x;n), and σ̃ , ϕ̃ and
ς̃ are given explicitly in(3.8).

Proof. For the sake of completeness we present a sketch of the proof. We start w
representation formula (2.16),

π(x;n)P̃n(x) = a(x;n)Pn(x) + b(x;n)Pn(x + 1), (3.4)
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and evaluate it inx ± 1 and then we use (3.2) to substitute the valuesPn(x − 1) and
Pn(x + 2). So, we obtain

r(x;n)P̃n(x + 1) = c(x;n)Pn(x) + d(x;n)Pn(x + 1),

r(x;n) = ς(x + 1;n)π(x + 1;n),

c(x;n) = −σ(x + 1;n)b(x + 1;n),

d(x;n) = a(x + 1;n)ς(x + 1;n) + b(x + 1;n)ϕ(x + 1;n), (3.5)

and

s(x;n)P̃n(x − 1) = e(x;n)Pn(x) + f (x;n)Pn(x + 1),

s(x;n) = σ(x;n)π(x − 1;n),

e(x;n) = σ(x;n)b(x − 1;n) + a(x − 1;n)ϕ(x;n),

f (x;n) = −a(x − 1;n)ς(x;n). (3.6)

Then, Eqs. (3.4)–(3.6) yield∣∣∣∣∣
π(x;n)P̃n(x) a(x;n) b(x;n)

r(x;n)P̃n(x + 1) c(x;n) d(x;n)

s(x;n)P̃n(x − 1) e(x;n) f (x;n)

∣∣∣∣∣ = 0, (3.7)

where the functionsπ , a andb are given by (2.16) as well asc, d , e, f , r ands in (3.5)
and (3.6). Expanding the determinant in (3.7) by the first column we get

σ̃ (x;n)P̃n(x − 1) − ϕ̃(x;n)P̃n(x) + ς̃ (x;n)P̃n(x + 1) = 0,

where

σ̃ (x;n) = s(x;n)
[
a(x;n)d(x;n)− c(x;n)b(x;n)

]
,

ϕ̃(x;n) = −π(x;n)
[
c(x;n)f (x;n) − e(x;n)d(x;n)

]
,

ς̃ (x;n) = r(x;n)
[
e(x;n)b(x;n)− a(x;n)f (x;n)

]
, (3.8)

or, equivalently, (3.3). �
To conclude this section let us notice that for theq-case a similar equation can be o

tained using the same technique developed here. Nevertheless we can immediatel
the result as follows.

Let us writex = qs . Thenf (qx) = f (qs+1) and therefore (2.17) can be rewritten
follows:

π(qs;n)P̃n(q
s) = a(qs;n)Pn(q

s) + b(qs;n)Pn(q
s+1),

or, in terms of thes variable

π(s;n)P̃n(s) = a(s;n)Pn(s) + b(s;n)Pn(s + 1),

i.e., they admit the same representation (2.16) changingx byqs . But for theq-semiclassica
polynomials the following second orderq-difference equation is known (see, e.g., [28])

σ(x;n)Pn(q
−1x) − ϕ(x;n)Pn(x) + ς(x;n)Pn(qx) = 0, (3.9)

which becomes with the changex → qs in Eq. (3.2). Thus the following result holds.
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Theorem 3. Suppose that the polynomials(P̃n)n satisfy(2.17)where the polynomialPn is
a solution of aq-SODE of the form(3.9). Then(P̃n)n satisfy aq-SODE of the form

σ̃ (x;n)P̃n(q
−1x) + ϕ̃(x;n)P̃n(x) + ς̃ (x;n)P̃n(qx) = 0, (3.10)

whereσ̃ , ϕ̃ andς̃ are given explicitly by(3.8)but now

r(x;n) = ς(qx;n)π(qx;n),

c(x;n) = −σ(qx;n)b(qx;n),

d(x;n) = a(qx;n)ς(qx;n)+ b(qx;n)ϕ(qx;n),

s(x;n) = σ(x;n)π(q−1x;n),

e(x;n) = σ(x;n)b(q−1x;n) + a(q−1x;n)ϕ(x;n),

f (x;n) = −a(q−1x;n)ς(x;n).

3.3. The lowering and raising operators

In this section we will prove that the polynomials̃Pn orthogonal with respect to th
linear discrete functional̃u, whereu is a semiclassical functional, have lowering and risi
type operators.

Proposition 4. The lowering-type operator associated with the discrete linear functi
ũ is given by the expression

αl(x;n)P̃n(x) + βl(x;n)P̃n(x + 1) = γl(x;n)P̃n−1(x), (3.11)

where

αl(x;n) = φ(x)d(x;n)π(x;n)− [
a(x;n)d(x;n)− c(x;n)b(x;n)

]
Ā(x;n),

βl(x;n) = −φ(x)b(x;n)r(x;n),

γl(x;n) = [
a(x;n)d(x;n)− c(x;n)b(x;n)

]
B̄(x;n).

Proof. Using formulas (3.4) and (3.5) we find

d(x;n)π(x;n)P̃n(x) − b(x;n)r(x;n)P̃n(x + 1)

= [
a(x;n)d(x;n)− c(x;n)b(x;n)

]
Pn(x).

Multiplying the last formula byφ(x) and using (2.11) we obtain the result.�
Notice that from (3.11) and using the TTRR (3.1) we obtain the raising-type oper

αr(x;n)P̃n(x) + βr(x;n)P̃n(x + 1) = γr(x;n)P̃n+1(x), (3.12)

where

αr(x;n) = αl(x;n) + γl(x;n)(β̃n − x)γ̃ −1
n ,

βr (x;n) = βl(x;n),

γr (x;n) = −γl(x;n)γ̃ −1
n .
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Notice that if instead of formula (3.5) we use (3.6) then we will find expressions sim
to (3.11) and (3.12) but with the term̃Pn(x − 1) instead ofP̃n(x + 1).

In a complete analogous way but using (2.17) we have

Proposition 5. The lowering operator associated with theq-linear functionalũ is

αl(x;n)qP̃n(x) + βl(x;n)qP̃n(qx) = γl(x;n)qP̃n−1(x), (3.13)

where

αl(x;n)q = φ(x)d(x;n)π(x;n)− [
a(x;n)d(x;n)− c(x;n)b(x;n)

]
Ā(x;n),

βl(x;n)q = −φ(x)b(x;n)r(x;n),

γl(x;n)q = [
a(x;n)d(x;n)− c(x;n)b(x;n)

]
B̄(x;n).

The raising operator in this case is

αr(x;n)qP̃n(x) + βr(x;n)qP̃n(qx) = γr(x;n)qP̃n+1(x), (3.14)

where

αr(x;n)q = αl(x;n)q + γl(x;n)q(β̃n − x)γ̃ −1
n ,

βr (x;n)q = βl(x;n)q,

γr (x;n)q = −γl(x;n)qγ̃
−1
n .

As before, from the above equations similar expression involving the termsP̃n(q
−1x)

can be easily obtained.

4. Examples

Here we will consider some examples. Since the classical case with one or two
delta Dirac measures has been studied intensively (see, e.g., [4,5]) we will focus he
attention in theq-case. For the sake of simplicity we will choose the Al-Salam and Car
polynomial as the starting family. The main data of such family can be found in [25, p.

The Al-Salam and Carlitz I polynomials are defined by

U(a)
n (x) := U(a)

n (x;q) = (−a)nqn(n−1)/2
2ϕ1

(
q−n, x−1

0

∣∣∣∣∣q; xq

a

)
,

where the basic hypergeometric seriesrϕp is defined by [18]

rϕp

(
a1, . . . , ar

b1, . . . , bp
;q, z

)
=

∞∑
k=0

(a1;q)k . . . (ar ;q)k

(b1;q)k . . . (bp;q)k

zk

(q;q)k

[
(−1)kqk(k−1)/2]p−r+1

,

being (a;q)k = ∏k−1
m=0(1 − aqm) the q-shifted factorials. Also we will use the standa

notation(a1, . . . , ar;q)k = (a1;q)k . . . (ar;q)k and(a;q)∞ = ∏∞
k=0(1− aqk).

The polynomialsU(a)
n (x) satisfy the following properties: a second order linear dif

ence equation
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c-

te

d by
aU(a)
n (qx) − [

a + q(1− x)(a − x)
]
U(a)

n (x) + q(1− x)(a − x)U(a)
n (q−1x)

= q1−n(1− qn)x2U(a)
n (x), (4.1)

i.e., an equation of the form (3.9) with

σ(x;n) = q(1− x)(a − x),

ϕ(x;n) = a + q(1− x)(a − x) + q1−n(1− qn)x2,

ς(x;n) = a,

the three-term recurrence relation

xU(a)
n (x) = U

(a)
n+1(x) + (1+ a)qnU(a)

n (x) − aqn−1(1− qn)U
(a)
n−1(x),

n = 0,1,2, . . . , (4.2)

and the differentiation formula

U(a)
n (x) − U(a)

n (qx) = (1− qn)xU
(a)
n−1(x). (4.3)

They satisfy the following orthogonality relation:

1∫
a

(qx;q)∞(qx/a;q)∞U(a)
n (x)U(a)

m (x) dqx = d2
nδn,m, a < 0, (4.4)

where

d2
n = (−a)n(1− q)(q;q)n(q;q)∞(a;q)∞(a−1q;q)∞qn(n−1)/2.

Here
∫ b

a
f (x) dqx denotes theq-integral by Jackson (see, e.g., [18,25]).

From the above orthogonality relation we candefine the positive definite linear fun
tionalu as

ua :P → C, ua

[
P(x)

] =
1∫

a

(qx;q)∞(qx/a;q)∞P(x) dqx, a < 0. (4.5)

A particular case of the above functional is whena = −1 that leads to the discre
q-Hermite I polynomials, aq-analog of the Hermite polynomials.

4.1. Modification of the Al-Salam and Carlitz I polynomials

As an example we will consider the followingperturbedfunctionalũa :P → C:

ũa

[
P(x)

] =
1∫

a

(qx;q)∞(qx/a;q)∞P(x) dqx + AP(x0), a < 0< A. (4.6)

The polynomials orthogonal with respect to the linear functional (4.6) will be denote
U

(a),A
n (x).
Using (2.3) and (2.7) (or (2.8)) we find



R. Álvarez-Nodarse, J. Petronilho / J. Math. Anal. Appl. 295 (2004) 55–69 65

nally
, for

ake of
-

(x − x0)U
(a),A
n (x) = [

x − x0 − AU(a),A
n (x0)d

−2
n U

(a)
n−1(x0)

]
U(a)

n (x)

+ AU(a),A
n (x0)d

−2
n U(a)

n (x0)U
(a)
n−1(x), (4.7)

where

U(a),A
n (x0) = U

(a)
n (x0)

1+ A
∑n−1

k=0 (U
(a)
k (x0))2d−2

k

= U
(a)
n (x0)

1+ AKn−1(x0, x0)
.

Therefore, taking into account (4.3) and (4.7), we find that (2.17) is valid with

π(x;n) = x(x − x0),

a(x;n) = x

(
x − x0 − AU

(a),A
n (x0)U

(a)
n−1(x0)

d2
n

)
+ AU

(a),A
n (x0)U

(a)
n (x0)

(1− qn)d2
n

,

b(x;n) = −AU
(a),A
n (x0)U

(a)
n (x0)

(1− qn)d2
n

.

For these polynomials, by (2.6), we have

d̃n
2 = 〈

ũ,
(
U(a),A

n

)2〉 = d2
n + A

[
U(a)

n (x0)
]2(

1+ AKn−1(x0, x0)
)−1

,

and therefore the coefficients of the TTRR are

β̃n = (1+ a)qn + A

[
U

(a)
n+1(x0)U

(a)
n (x0)

d2
n+1(1+ AKn(x0, x0))

− U
(a)
n (x0)U

(a)
n−1(x0)

d2
n(1+ AKn−1(x0, x0))

]
,

γ̃n = −aqn−1(1− qn)
1+ A[U(a)

n (x0)d
−1
n ]2(1+ AKn−1(x0, x0))

−1

1+ A[U(a)
n−1(x0)d

−1
n−1]2(1+ AKn−2(x0, x0))−1

. (4.8)

Now, from the above explicit expressions ofπ(x;n), a(x;n), b(x;n), σ(x;n), ϕ(x;n),
andς(x;n), we immediately obtain the second order difference equation (3.10). Fi
for finding the lowering and raising operators we should obtain formula (2.11) which
this case, takes the form

U(a)
n (x) = U(a),A

n (x) + AU(a)
n (x0)K̃n−1(x, x0),

or, equivalently

(x − x0)U
(a)
n (x) = Ā(x;n)U(a),A

n (x) + B̄(x;n)U
(a),A
n−1 (x),

where

Ā(x;n) = x − x0 + AU
(a)
n (x0)U

(a),A
n−1 (x0)

d̃2
n

,

B̄(x;n) = −AU
(a)
n (x0)U

(a),A
n (x0)

d̃2
n

,

and therefore, (3.14) and (3.13) give the raising and lowering operators. For the s
simplicity we will omit the explicit expressions of theq-SODE and the raising and low
ering operators and we only present them for the special case of discreteq-Hermite I
polynomials.
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se

e

f the
4.2. Modification of the discreteq-Hermite I polynomials

To conclude this work we will consider the discreteq-Hermite I polynomials, i.e., the
polynomialshn(x;q) := U

(−1)
n (x;q), and let us study in detail the modification of the

polynomials via the addition of a delta Dirac measureA at x0 = 0, which will be denoted
by hA

n (x;q). The main data for theq-Hermite I polynomials follow from the data of th
Al-Salam and Carlitz I puttinga = −1.

According to (4.7), in this case the representation formula (2.8) reads as

xhA
n (x;q) = xhn(x;q) + Γnhn−1(x;q), n � 1, (4.9)

where

Γn =
{

A[h2m(0)]2
d2

2m(1+AK2m−1(0,0))
, n = 2m,

0, n = 2m − 1,

d2
n = (1− q)(q;q)n(q,−1,−q;q)∞q(n

2),

hn(0;q) =
{

qm(m−1)(−1)m(q;q2)m, n = 2m,
0, n = 2m − 1,

m ∈ N,

andKn−1(0,0) = ∑n−1
k=0 [hk(0;q)]2d−2

k . For the special casen = 2m − 1 we have

K2m−1(0,0) = 1

(1− q)(q,−1,−q;q)∞

m−1∑
k=0

q−k(q;q2)k

(q2;q2)k
.

Notice that with the above notation

Γ2m = 1

(1− q)(q,−1,−q;q)∞
A(q;q2)mq−m

(q2;q2)m

1

1+ AK2m−1(0,0)
, m ∈ N.

If now we use (4.9) and the differentiation formula (4.3) witha = −1 we find

xhA
n (x;q) = xhn(x;q) + 1− q

1− qn
ΓnDqhn(x;q), n � 1,

or, equivalently,

x2hA
n (x;q) = (x2 + Λn)hn(x;q) − Λnhn(qx;q), n � 1, (4.10)

whereΛn = Γn/(1− qn).

Remark. Notice that sinceΓ2m−1 = 0 for all m ∈ N then, by (4.9),hA
2m−1(x;q) =

h2m−1(x;q), i.e., the odd degree polynomials are not affected with the addition o
Dirac measure.

Notice also that

xhA
2m(x;q) = xh2m(x;q) + Γ2mh2m−1(x;q) = xh2m(x;q) + Γ2mhA

2m−1(x;q),

i.e., formula (2.11) takes the form

xhn(x;q) = xhA
n (x;q) − Γnh

A
n−1(x;q).
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ator.
n

For this family the square of the norm is

d̃n
2 = (1− q)(q;q)n(q,−1,−q;q)∞q(n

2) (1+ Γn) .

Using the formulas in Section 3 (or (4.8) witha = −1 andx0 = 0) we find

xhA
n (x;q) = hA

n+1(x;q) + β̃nh
A
n (x;q) + γ̃nh

A
n−1(x;q), n ∈ N, (4.11)

where the coefficients of the TTRR are given by

β̃n = 0, γ̃n = qn−1(1− qn)
1+ Γn

1+ Γn−1
, n ∈ N.

To compute theq-SODE we use Theorem 3 with the functions (see [25])

σ(x;n) = q(1− x2), ϕ(x;n) = 1+ q − q1−nx2, ς(x;n) = 1

and (cf. (4.10))

π(x;n) = x2, a(x;n) = x2 + Λn, b(x;n) = −Λn.

Then we have

σ̃ (x;n)hA
n (q−1x;q) + ϕ̃(x;n)hA

n (x;q) + ς̃ (x;n)hA
n (qx;q) = 0,

where

σ̃ (x;n) = q−nx2(−1+ x2)
(−q2Λn(x

2 + Λn) + qn
(
Λn + q2Λ2

n − q(x2 + Λn)
))

,

ϕ̃(x;n) = q−1(−1+ q2x2)Λn(x
2 + q2Λn)

− q
(
q(−1+ x2)Λn + (1+ q − q1−nx2)(q−2x2 + Λn)

)
× (−Λn + qx2(1+ q1−nΛn)

)
,

ς̃ (x;n) = q−nx2(qΛn(x
2 + q2Λn) + qn

(
x2 + qΛn(−1+ q − q2Λn)

))
.

We notice that these are the expressions in Theorem 3 up to the factorx2.
For the lowering-type operator we have, from (3.13),

αl(x;n)qh
A
n (x;q) + βl(x;n)qh

A
n (qx;q) = γl(x;n)qh

A
n−1(x;q),

where (up to the factorqx2Λn)

αl(x;n)q = q1−nx
(−qΛn + qn(−1+ qΛn)

)
,

βl(x;n)q = qx,

γl(x;n)q = (−1+ qn)
(−Λn + q

(
x2 + Λn − qΛn

2 + q1−nΛn(x
2 + Λn)

))
.

Combining the last expression with the TTRR (4.11) we obtain the raising-type oper
To conclude this section let us show that the polynomialshA

n (x;q) can be expressed i
terms of a basic series3ϕ2. For doing that we substitute the representation

hn(x;q) = qn(n−1)/2
2ϕ1

(
q−n, x−1

0

∣∣∣∣∣q;−xq

)

in (4.10). After some straightforward calculations, this leads to the expression
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Pro-
ed
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.

i-

t. 9

nd

ral

.

.

x2hA
n (x;q) = qn(n−1)/2

n∑
k=0

(q−n;q)k(q
−1x−1;q)k(−qx)k

(q;q)k

qx(x2 + Λn)

(qx − 1)

× (
1− δ(x;n)qk

)
,

whereδ(x;n) = (x/q +Λn)/(x
2 +Λn). Finally, using the well-known identity 1− aqk =

(1− a)(aq;q)k/(a;q)k with a = δ(x;n), we obtain

hA
n (x;q) = qn(n−1)/2

3ϕ2

(
q−n, q−1x−1, δ(x;n)q

0, δ(x;n)

∣∣∣∣∣q;−qx

)
,

δ(x;n) = q−1x + Λn

x2 + Λn

.
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