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Abstract

In this paper it is studied the role of the axiom of choice in some theorems in which the co
of first and second countability are used. Results such as the following are established:

(1) In ZF (Zermelo–Fraenkel set theory without the axiom of choice), equivalent are:
(i) every base of a second countable space has a countable subfamily which is a base;

(ii) the axiom of countable choice for sets of real numbers.
(2) In ZF, equivalent are:

(i) every local base at a pointx, in a first countable space, contains a countable base atx;
(ii) the axiom of countable choice (CC).

(3) In ZF, equivalent are:
(i) for every local base system(B(x))x∈X of a first countable spaceX, there is a local bas

system(V(x))x∈X such that, for eachx ∈ X, V(x) is countable andV(x) ⊆ B(x);
(ii) for every family (Xi)i∈I of non-empty sets there is a family(Ai)i∈I of non-empty, at mos

countable sets, such thatAi ⊆ Xi for everyi ∈ I (ω-MC) andCC.
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1. Introduction
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The idea that triggered the investigations on this paper was to find out the set the
status of the following Theorem ofZFC, i.e.,Zermelo–Fraenkel set theory including t
axiom of choice.

Theorem 1.1. (ZFC) Every base of a second countable space has a countable sub
which is a base.

We will see that this theorem is not provable inZF, Zermelo–Fraenkel set theory witho
the axiom of choice, by proving its equivalence to the axiom of countable choice for
of reals.

It is clear that Theorem 1.1 provides an alternative definition of second countabili
that, in the absence of the axiom of choice, turns out to be non-equivalent to the famili
definition. Starting from these two definitions of second countability, we will discuss the
consequences of replacing one by another in some well-known theorems. Namely, w
study the relations between this “new” class of second countable spaces, and the cl
separable, Lindelöf spaces.

In the literature it may be found a discussion of the equivalence, inZF, of different ways
of defining some well-known topological notions. As interesting examples of this kin
study, we have that the relations between different notions of compactness (e.g., [9
of Lindelöfness [18,10] were studied.

We also present two different attempts to generalize Theorem 1.1 to the class
countable spaces, as well as their relations with the axiom of choice.

The following forms of choice will be usedthroughout this paper. Their definitions,
everything else in this work, take place in the setting ofZF.

Definition 1.2. Theaxiom of countable choice(CC) states that every countable family
non-empty sets has a choice function.

Definition 1.3. CC(R) is the axiom of countable choice restricted to families of sets of
numbers.

Proposition 1.4 ([6, p. 76], [11]).Equivalent are:

(i) CC (respectivelyCC(R));
(ii) every countable family of non-empty sets(respectively subsets ofR) has an infinite

subfamily with a choice function;
(iii) for every countable family(Xn)n of non-empty sets(respectively subsets ofR), there

is a sequence that meets infinitely many of theXn ’s.

Lemma 1.5.

(a) If (X,T ) is a second countable space, then|T| � |R| = 2ℵ0.
(b) If (X,T ) is a second countableT0-space, then|X| � |R| = 2ℵ0.
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2. Second countable spaces
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We start this section recalling some definitions.

Definitions 2.1.

(a) A topological space isseparableif it contains an at most countable dense subset.
(b) A topological spaceX is Lindelöf if every open cover ofX has an at most countab

subcover.

The next lemma will play an important role in the proof the main result of the sec
Theorem 2.3.

Lemma 2.2. Equivalent are:

(i) CC(R);
(ii) the axiom of countable choice holds for families of dense subspaces ofR;
(iii) every subspace ofR is separable;
(iv) every dense subspace ofR is separable.

Proof. The equivalence between (i) and (iii) was proved by Diener—cited in [5, p.
(see also [12]). That (i) implies (ii) and that (iii) implies (iv) is clear.

We consider the base ofR consisting of open intervals((qn, rn))n∈N with rational
endpoints. For eachn ∈ N, one can define a bijectionfn :R → (qn, rn) betweenR and
(qn, rn).

(iv) ⇒ (i) Let (An)n be a countable family of non-empty subsets ofR and define
the setsBn := fn(An) and B := ⋃

n Bn. The spaceB is dense inR. By (iv), there is
C := {xn: n ∈ N} countable and dense inB, which implies that it is also dense inR.

Infinitely many of the setsBn ∩ C are not empty, otherwiseC would be bounded
and then not dense inR. For each element ofM := {n ∈ N: Bn ∩ C �= ∅}, we define
φ(m) := min{k ∈ N: xk ∈ Bm}. The set{f −1

m (xφ(m)): m ∈ M} induces a choice functio
in the infinite subfamily(Am)m∈M of (An)n∈N. In view of Proposition 1.4, the proof i
complete.

(ii) ⇒ (iv) Let A be a dense subspace ofR. For everyn ∈ N, f −1
n (A∩ (qn, rn)) is dense

in R. A choice function in this family gives us a countable dense subspace ofA. �
Theorem 2.3. Equivalent are:

(i) CC(R);
(ii) every base of a second countable space has a countable subfamily which is a b;
(iii) every base for the open sets ofR has a countable subfamily which is a base.

Proof. (i) ⇒ (ii) Following the usual proof of (ii) (e.g., [2, 2.4.17], [8, 1.1.20]), we eas
see that the only use of the axiom of choice is a countable choice in a family of su
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of the topologyT of the second countable space. Lemma 1.5 says that|T| � |R|, and then
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CC(R) is enough to prove (ii).
(ii) ⇒ (iii) Clear.
(iii) ⇒ (ii) Let A be a dense subset ofR. By Lemma 2.2, it suffices to prove thatA is

separable. The fact thatA is dense inR implies thatC := {(a, b): a < b anda, b ∈ A} is a
base for the open sets ofR. By (iii), there is a countable base{(an, bn): n ∈ N} contained
in C. The set{an: n ∈ N} is countable and dense inA. �

It is well known that, in ZFC, for (pseudo)metric spaces the notions of sec
countability, separability and Lindelöfness are equivalent. Good and Tree [7] asked u
which conditions these equivalences or implications remain valid inZF. These question
are almost all answered (see [12,1,17]).

Motivated by condition (ii) of Theorem 2.3, we will introduce a definition of secon
countable space that is stronger than the usual one inZF, but equivalent inZFC.

We will look into the relations between this “new” class of topological spaces and t
classes of separable, Lindelöf spaces.

Definition 2.4. A topological space is calledsuper second countable(SSC) if every base
has a countable subfamily which is a base.

Corollary 2.5. Equivalent are:

(i) CC(R);
(ii) R is SSC;
(iii) every separable(pseudo)metric space is SSC.

Note that, inZF, every separable pseudometric space is second countable (see, e
16.11]).

The statement “Every SSC topological(or pseudometric) space is separable” is
equivalent toCC. The proof remains the same as the one for second countable s
[1]. It may seem surprising that, for subsets ofR, this implication is provable inZF.

Theorem 2.6. Every SSC subspace ofR is separable.

Proof. Let A ⊆ R be a SSC space. Without loss of generality, we consider that every
of A is an accumulation point ofA. If a ∈ A is not an accumulation point ofA, {a} must
be in each base for the open sets ofA.

The setB := {(a, b)∩A: a, b ∈ A}∪{[c, d)∩A: c, d ∈ A and(∃δ > 0) (c−δ, c)∩A =
∅}∪{(e, f ]∩A: e, f ∈ A and(∃δ > 0) (f,f +δ)∩A = ∅} is a base for the open sets ofA.
SinceA is SSC, there is a countable base(Bn)n contained inB. For sn := inf Bn, the set
{sn: n ∈ N} is countable and dense inA. �

Since R is second countable and second-countability is hereditary, every se
countable subspace ofR is separable if and only if every subspace ofR is separable, which
turns out to be equivalent toCC(R)—Lemma 2.2.



G. Gutierres / Topology and its Applications 143 (2004) 93–103 97

This last fact, together with Lemma 1.5, implies thatCC(R) is equivalent to: “Every
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second countable metric(or T0) space is separable” (see also [17]).
In view of Theorem 2.6, the proof of this latter result cannot be adapted for SSC s
After these considerations, one can ask the following questions:

(1) Is SSC hereditary?
(2) Are there non-separable SSC metric spaces? Are there uncountable SSCT0-spaces?

The set theoretic status of the condition “Every Lindelöf metric space is seco
countable” is, to my knowledge, still unknown. It is known, however, that this condit
implies the axiom of countable choice for finite sets [7,1,17]).

For SSC spaces, we can go further.

Theorem 2.7. Every Lindelöf subspace ofR is SSC if and only ifCC(R) holds.

Proof. If CC(R) holds, trivially, every subspace ofR is SSC (Theorem 2.3).
One can prove similarly to the proof of Theorem 2.3, thatCC(R) is equivalent to the

fact that the closed interval[0,1] is SSC. So, ifCC(R) fails, [0,1] is Lindelöf, but not
SSC. �

Note that, ifCC(R) fails, the only Lindelöf subspaces ofR are the compact spaces, i.
the closed and bounded ones (see [10]).

Corollary 2.8. If every Lindelöf metric space is SSC, thenCC(R) holds.

CC(R) is equivalent to the condition “N is Lindelöf”, and thus also equivalent to th
condition “Every second countable space is Lindelöf” [12]. Correspondingly, “Every SSC
space is Lindelöf” if and only if CC(R) holds, sinceN is SSC.

3. First countable spaces

It is natural to ask whether the result of Theorem 2.3 can be generalized to the c
first countable spaces.

There are two obvious ways of attempting this: a local one, considering a local ba
point, and a global one, considering, at the same time, a local base for each point of a
countable space. The next results are an attempt to answer these questions.

Theorem 3.1. Equivalent are:

(i) CC;
(ii) if a topological space has a countable local base at a pointx, then every local base a

x contains a countable base atx;
(iii) every local base at a pointx, in a first countable space, contains a countable b

at x.



98 G. Gutierres / Topology and its Applications 143 (2004) 93–103

Proof. A proof that (i) implies (ii) can be seen in [2, 2.4.12] and (ii)⇒ (iii) is clear.
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(iii) ⇒ (i) Let (Xn)n be a countable family of non-empty sets. Without loss of genera
we consider the setsXn disjoint. By Proposition 1.4, it is enough to prove that there
sequence that meets infinitely many of theXn ’s.

DefineY := ⋃
n Xn ∪{0}, with 0 /∈ ⋃

n Xn, and for eachn ∈ N, Yn := ⋃∞
k=n+1 Xk ∪{0}.

The topology onY , defined by the local base system:

B(x) :=
{ {{x}} if x �= 0,

{Yn: n ∈ N} if x = 0,

is first countable.
Since, for all n ∈ N and x ∈ Xn+1, Yn+1 ⊆ Yn+1 ∪ {x} ⊆ Yn, the family C(0) :=

{Yn ∪ {x}: x ∈ Xn, n ∈ N} is a local base at 0.
By (iii), there is a countable local base at 0,D := {Dn: n ∈ N} ⊆ C(0). Define, for every

n ∈ N, Cn := {Yn ∪ {x}: x ∈ Xn}.
For eachn ∈ N, there is exactly oneφ(n) ∈ N such thatDn ∈ Cφ(n), becauseC(0) is

the disjoint union of allCn ’s. For everyn ∈ N, let xn be the element of the singleton s
Dn \ Yφ(n). The sequence(xn)n meets infinitely many of theXn’s, otherwiseD would not
be a base. �
Definition 3.2 ([13], [14, Form 76]). ω-MC states that, for every family(Xi)i∈I of non-
empty sets, there is a family(Ai)i∈I of non-empty at most countable sets such thatAi ⊆ Xi

for everyi ∈ I .

Theorem 3.3. If ω-MC holds, then every first countable spaceX has a local base syste
(D(x))x∈X such that, for eachx ∈ X, D(x) is countable.

Proof. Let X be a first countable space and consider the setA(x) of all functionsf :N →
P(X) such thatf (N) is a local base atx ∈ X. SinceX is first countable,(A(x))x∈X is
a family of non-empty sets. So, byω-MC, there is(C(x))x∈X, with C(x) countable and
∅ �= C(x) ⊆ A(x) for eachx in X.

SinceC(x) is countable, one easily shows thatD(x) := {f (n): f ∈ C(x), n ∈ N} is
also countable and then(D(x))x∈X is a local base system with the local base at each p
countable. �
Definition 3.4. The countable union theorem(CUT) says that countable unions
countable sets are countable.

Theorem 3.5. Equivalent are:

(i) ω-MC andCC;
(ii) ω-MC andCUT;
(iii) ω-MC and the axiom of countable choice holds for families of countable set

(CC(ℵ0));
(iv) for every local base system(B(x))x∈X of a first countable spaceX, there is a

local base system(V(x))x∈X such that, for eachx ∈ X, V(x) is countable and
V(x) ⊆ B(x);
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(v) if a topological spaceX has a local base system(D(x))x∈X with each D(x)
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countable, then for every local base system(B(x))x∈X of X, there is a local base
system(V(x))x∈X such that, for eachx ∈ X, V(x) is countable andV(x) ⊆ B(x).

Proof. (i) ⇔ (ii) ⇔ (iii) It is obvious thatCC ⇒ CUT ⇒ CC(ℵ0), and ifω-MC holds,
thenCC is equivalentCC(ℵ0).

(iv) ⇒ (v) Apparent.
(ii) ⇒ (iv) Let (B(x))x∈X be a local base system of a first countable spaceX.

Theorem 3.3 says thatX has a local base system(D(x))x∈X with the local base at eac
point countable.

For eachx ∈ X andU ∈ D(x), define the setsM(U,x) := {B ∈ B(x): B ⊆ U} and
I := ⋃

x∈X D(x) × {x}.
Since eachB(x) is a local base, it is clear that(M(U,x))(U,x)∈I is a family of non-empty

sets. Thenω-MC implies that there is a family(E(U,x))(U,x)∈I such that eachE(U,x) is
countable and contained inM(U,x). Thus, byCUT, the setsV(x) := ⋃

U∈D(x) E(U,x)

are countable.
Finally, (V(x))x∈X is a family of countable sets withV(x) ⊆ B(x) for eachx ∈ X,

sinceE(U,x) ⊆ M(U,x) ⊆ B(x) for every pair(U,x) ∈ I . From the way it was defined
(V(x))x∈X is also a local base system, which concludes the proof.

(v) ⇒ (i) From Theorem 3.1 we know that condition (v) impliesCC.
Let (Xi)i∈I be a family of non-empty sets. Without loss of generality, consider

family disjoint with its union disjoint fromI .
Define the setsYi := (Xi × N) ∪ {i}, Y := ⋃

i∈I Yi andD(i,n) := {(x, k): x ∈ Xi and
k � n + 1} ∪ {i}. The local base system

D(x) :=
{

{{x}} if x /∈ I ,{
D(x,n): n ∈ N

}
if x ∈ I .

defines a (first countable) topology onY . It is clear that, for each point, the given local ba
is countable.

Since for eachx /∈ I , the singleton set{x} must belong to every local base atx, for
simplicity we consider(B(i) := {D(i,n) ∪ {(x,n)}: x ∈ Xi, n ∈ N})i∈I as a local base
system ofY .

By (v), there exists a family(V(i))i∈I such that for everyi ∈ I , V(i) ⊆ B(i) andV(i)

is at most countable and also non-empty, because it is a local base ati.
Finally, for eachi ∈ I we define the setYi := {x ∈ Xi : (∃C ∈ V(i)) C \ D(i,n) =

{(x,n)} for somen ∈ N}. This process gives a family(Yi)i∈I of non-empty at mos
countable sets, withYi ⊆ Xi . �

The equivalent conditions of Theorem 3.5 are properly weaker than the axiom of c
itself (Cohen/Pincus model—M1(〈ω1〉) in [14]). In Part III of [14] other models with thes
characteristics can be found.
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4. Hausdorff spaces
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This section is motivated by the question: “Are there first countable non-Hausdo
spaces in which every sequence has at most one limit?” As we will see, the answer t
this question is affirmative.

Theorem 4.1. Equivalent are:

(i) CC;
(ii) a first countable space is Hausdorff if and only if every sequence has at most one

Proof. (i) ⇒ (ii) Condition (ii) is Proposition 1.6.17 in [4]. It is not difficult to see that n
condition stronger thanCC is used in the proof.

(ii) ⇒ (i) Let (Xn)n be a countable family of non-empty disjoint sets. In a similar wa
the proof of Theorem 3.1, we construct the setsYn := ⋃∞

k=n Xk andY := ⋃
n Xn ∪ {a, b},

with a �= b and both not in
⋃

n Xn. The local base system

B(x) :=
{ {{x}} if x /∈ {a, b},

{Yn ∪ {x}: n ∈ N} if x ∈ {a, b}
defines a first countable topology onY .

Clearly, the spaceY is not Hausdorff. Thus, by (ii), there is a sequence inY with at least
two limit points. Such a sequence must converge toa and tob. A sequence converging
simultaneously, to these two points meets infinitely many of theXn’s.

This fact together with Proposition 1.4 concludes the proof.�
Theorem 4.2. Equivalent are:

(i) CC(R);
(ii) a second countable space is Hausdorff if and only if every sequence has at mo

limit.

Proof. (i) ⇒ (ii) That in a Hausdorff space every sequence (net) has at most one lim
theorem ofZF (cf. [4, 1.6.7]).

If, in a topological spaceX, every sequence has at most one limit, thenX is aT1-space
(see, e.g., [4, 1.6.16]). Lemma 1.5 implies that, ifX is aT1-space with a countable bas
then|X| � |R|. The usual proof (see [4, 1.6.17]) only uses a countable choice for su
of X.

(ii) ⇒ (i) Let (Xn)n be a countable family of non-empty subsets ofR. We may conside
eachXn as a subset of( 1

n+1, 1
n
). Define the setsY and(Yn)n as in the proof of Theorem 4.1

We define a topology inY in whichY \ {a, b} is open and has the topology of subspa
of R, and the pointsa andb have the same local bases as before. With this topologyY is a
second countable non-Hausdorff space. From this point, the proof proceeds as the proof
Theorem 4.1. �
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It is well known that the condition (ii) of Theorem 4.1 may be generalized to the class of
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topological spaces, replacing sequences by filters (or nets). This result is still valid inZF.
Under theUltrafilter Theorem, i.e., every filter over a set can be extended to

ultrafilter, the convergence of ultrafilters may also be used. We will see that we c
avoid the Ultrafilter Theorem.

The Ultrafilter Theorem is equivalent to the Boolean Prime Ideal Theorem (see
p. 17]).

Theorem 4.3. Equivalent are:

(i) Ultrafilter Theorem;
(ii) a topological spaceX is Hausdorff if and only if, inX, every ultrafilter has at mos

one limit.

Proof. (i) ⇒ (ii) In [4, 1.6.7], (ii) is proved for filters (nets). If (i) does hold, it is clear th
the proof can be done with ultrafilters.

(ii) ⇒ (i) Let F be a free filter overX, anda, b two distinct points ofX. Once again
we define a local base system for a topology onX:

B(x) :=
{ {{x}} if x /∈ {a, b},{

F ∪ {x}: F ∈ F
}

if x ∈ {a, b}.
With this topology,X is not Hausdorff. So, by (ii) there is an ultrafilter converging

two different points inX. These two points can only bea andb, which means that such a
ultrafilter must containF. �

5. Countable products

The last part of this paper is devoted to the study of the countable productivity o
class of second countable spaces. Such a property is provable inZFC. The question wa
studied by Keremedis [16] in the absence of the axiom of choice. He arrived at
interesting results, although not definitive ones. Indeed, an equivalence to a set-th
statement is missing. In Theorems 5.1 and 5.2 below, we will narrow the gap betwe
(known) necessary and sufficient conditions to prove of the countable productivity
class of second countable spaces. We prove this property, using a choiceprinciple properly
weaker thanCC.

Theorem 5.1. If countable products of second countable spaces are second countabl
the countable union theorem does hold.

Proof. Without loss of generality, let(Xn)n be a family of countable disjoint sets an
consider the discrete spacesYn := Xn ∪ {n}.

Clearly everyYn is second countable and then, by hypothesis,Y := ∏
n Yn is also second

countable. LetB := {Bk: k ∈ N} be a base forY . For eachn in N, {pn(Bk): k ∈ N} is a base
for Yn, since the projectionspn are open surjections. This induces the injective func
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fn :Xn → N defined byfn(x) := min{k ∈ N: pn(Bk) = {x}}. Now, it is easy to see that
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f :
⋃

n Xn → N × N with f (x) := (n, k) if x ∈ Xn andfn(x) = k is an injection, which
concludes the proof. �
Theorem 5.2. If the axiom of countable choice holds for families of sets with cardinali
at most2ℵ0 (CC(� 2ℵ0)), then countable products of second countable spaces are se
countable.

Proof. Let ((Xn,Tn))n be a family of second countable spaces. We will prove∏
n(Xn,Tn) has a countable base.
By Lemma 1.5, we know that|Tn| � 2ℵ0, for everyn ∈ N. Consider the setsCn :=

{(f :N → Tn): f (N) is a base of(Xn,Tn)}. We have that, for alln ∈ N, |Cn| � |(Tn)
N| �

(2ℵ0)ℵ0 = 2ℵ0. By CC(� 2ℵ0), there is(fn)n with eachfn an element ofCn.
The subbaseC := {p−1

n (fn(k)): n, k ∈ N} of
∏

n Xn is countable, and then the ba
generated byC is also countable. �

In a analogous way to the proofs of Theorems 5.1 and 5.2, one can prove the fol
corollary.

Corollary 5.3. Equivalent are:

(i) the axiom of countable choice holds for families of finite sets(CC(fin));
(ii) countable products of spaces with finite topologies are second countable.

We recall that the countable union theorem for finite sets—Form 10 A in [14]
equivalent toCC(fin)—Form 10 in [14].
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