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Abstract

We prove an inequality relating the number of nontrivial invariant factors of n × n matrices
A and B, with those of AB, and get some results on the cases of equality. In particular, we
characterize the similarity classes, A and B, with all eigenvalues in the base field, such that
AB is nilpotent for some A ∈ A and B ∈ B.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Nilpotent matrices; Invariant factors; Similarity

1. Introduction

This paper is about matrices over an arbitrary field F. We denote by F its algebraic
closure, and by F∗ the set of nonzero elements of F. We shall consider polynomials
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from the polynomial ring F[x]. The script letters A and B represent n × n similarity
classes. So, if A ∈ A, then A is an n × n matrix over F and A is the set of all
matrices over F similar to A. The invariant factors, eigenvalues, rank, etc, of A are
defined as the corresponding concepts of any A ∈ A. There exists a matrix in A of
the form A1 ⊕ N , where A1 is nonsingular and N is nilpotent; the similarity classes
of A1 and N are well defined and called the nonsingular and nilpotent parts of A.
Define

R(A) := min{rank [λI − A] : λ ∈ F},
R∗(A) := min{rank [λI − A] : λ ∈ F

∗}.
As R∗ is invariant under similarity, we define R∗(A), for any class A, in the obvious
way.

In recent literature, the problem of relating the similarity classes of two matrices
with the similarity class of their product has received some attention. Those problems
are, in general, of a very high degree of difficulty. In our references, we indicate some
papers on that subject [1,3–6,8] for more information and related problems we send
the reader to the references in [3].

In [9], the following theorem has been proved in the case A and B are non-
singular.

Theorem 1.1. For any A ∈ A and B ∈ B, we have:
R∗(AB) � min{n,R∗(A) + R∗(B)}. (1)

Proof. We give the following sketch of proof with no further ado:

R∗(AB) = min
λ /=0

rank (λI − AB)

= min
µ/=0

min
λ /=0

rank (λI − AB + µB − µB)

� min
µ/=0

min
λ /=0

[rank [(µI − A)B] + rank (λI − µB)]

� min
µ/=0

min
λ /=0

[rank (µI − A) + rank (λI − µB)]

= R∗(A) + R∗(B). �

The theorem may be obtained as a corollary of Theorem 4 of [3], but the argument
given above is easier.

We shall denote by α1, . . . , αn the invariant factors of A; the α’s are monic
polynomials ordered so that α1| · · · |αn. If we eliminate those α’s equal to 1, we
obtain the chain f1| · · · |fr , of the nontrivial invariant factors of A; in the sequel, the
number r will be denoted by i(A), and i∗(A) denotes the number of invariant
factors of A with at least one nonzero root in F. It is not difficult to prove that
i∗(A) = n − R∗(A), and i∗(A) = i(A1), where A1 is the nonsingular part of A.
With this notation, (1) reads

i∗(AB) � max{0, i∗(A) + i∗(B) − n}. (2)
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An interesting problem is the characterization of the similarity classes for which we
have equality in (1)–(2) for some A ∈ A and B ∈ B. This problem naturally splits
into two subproblems:

Problem I. Characterize the classes A and B, for which there exist A ∈ A and
B ∈ B such that i∗(AB) = 0.

Problem II. Characterize the classes A and B, for which there exist A ∈ A and
B ∈ B such that i∗(AB) = i∗(A) + i∗(B) − n.

We obtain partial results on these problems. In particular, we solve Problem I
when all eigenvalues of A and B lie in F, and solve Problem II over algebraically
closed fields.

2. Results on Problem I

As i∗(X) = 0 iff X is nilpotent, Problem II consists in the characterization of A
and B, for which there exist A ∈ A and B ∈ B such that AB is nilpotent. Clearly, if
AB is nilpotent, then either A or B is singular, and i∗(A) + i∗(B) � n, by inequal-
ity (2). We conjecture that the converse is true with a tiny exception. More precisely,
we state

Conjecture 2.1. Given two n × n similarity classes A and B over F, there exist
A ∈ A and B ∈ B such that AB is nilpotent, if and only if one of A,B is singular,
i∗(A) + i∗(B) � n, and A,B do not fall in the following

EXCEPTIONAL CASE. n = 2, the classes A and B are both nonzero, one of
them is nilpotent and the characteristic polynomial of the other is irreducible
over F.

We shall prove the conjecture in several cases, namely:

Theorem 2.2. Conjecture 2.1 holds if one of the following conditions holds:

(a) One of the classes, A or B, has a zero Jordan block;
(b) i∗(A) + i∗(B) = n;
(c) All eigenvalues of A and B lie in F.

3. Results on Problem II

We consider two cases: (i) when A and B are both nonsingular; (ii) either A or
B is singular. The first theorem of this section is a simple consequence of the main
result of [9], so it goes with no proof.
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Theorem 3.1. Assume A and B are nonsingular, i∗(A) + i∗(B) > n, and F

is algebraically closed. Then there exist A ∈ A and B ∈ B such that i∗(AB) =
i∗(A) + i∗(B) − n.

Theorem 3.2. Assume either A or B is singular, and i∗(A) + i∗(B) > n. Then
there exist A ∈ A and B ∈ B such that i∗(AB) = i∗(A) + i∗(B) − n.

4. Proofs

First we check the ‘exceptional case’ of Conjecture 2.1. If, say, B is the nilpotent
class, all products AB, with A ∈ A and B ∈ B, are similar to[

a b

c d

] [
0 1
0 0

]
,

where the first factor has an irreducible characteristic polynomial. As c is nonzero,
AB is not nilpotent.

Proof of Theorem 2.2. The result clearly holds for n � 2, or if one of the classes
is scalar. So we may assume n � 3, and A and B are non-scalar.

Proof of (a). We argue by induction on n. We assume B has a zero Jordan block;
this means we may pick B ∈ B of the form

B =
[
B ′ 0
0 0

]
,

where B ′ is square of order n − 1. Partition all matrices A ∈ A as

A =
[
CA ∗
∗ ∗

]
,

with CA a square block of order n − 1. Let α1| · · · |αn and γ1| · · · |γn−1 be the invari-
ant factors of A and CA. According to the interlacing inequalities for similarity
invariant factors [2,7], for a given class A the possible γ ’s are characterized by

deg(γ1 · · · γn−1) = n − 1 and αi |γi |αi+2, (3)

for 1 � i � n − 1 (with the convention αn+1 := 0). Note that α1 = 1 and the degree
of αn, call it a, satisfies a � 2, because A is nonscalar. Now let z be the largest i < n

such that αi is not a multiple of x (recall: our polynomials are taken from F[x]).
If z < n − 1, define γz := xαz, γn−1 := xa−2αn−1, and γi := αi for all i ∈

{1, . . . , n − 2}, i /= z. If z = n − 1, define γn−1 := x(x − 1)a−2αn−1, and γi := αi

for all i ∈ {1, . . . , n − 2}.
In either case, the γ ’s satisfy (3), and any CA having them as invariant factors

satisfies the properties: CA is nilpotent if A is nilpotent; i∗(CA) = i∗(A) − 1, if A
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is not nilpotent; CA has a zero Jordan block (because 0 is a simple root of one of
the γ ’s). So we have i∗(CA) + i∗(B ′) � n − 1; by induction on n, we may choose
CA such that CAB

′ is nilpotent. Therefore AB is nilpotent as well.

Proof of (b). We may assume A and B have no zero Jordan block, and A is singular.
Note that i∗(A) + i∗(B) = n implies A, B do not fall in the exceptional case. The
proof is by induction on n.

Case 1: when B has an invariant factor of degree one.
Assume B has x − b as invariant factor. We consider matrices A ∈ A and B ∈ B

of the form

A =
[
A1 ∗
0 0

]
and B =

[
B1 0
0 b

]
,

where A1 and B1 are square matrices of order n − 1. As A and B have no zero
Jordan block, b is nonzero and A1 is singular. Clearly, i∗(A1) + i∗(B1) = n − 1. By
induction we may select A1 and B1 such that A1B1 is nilpotent, and therefore get
a nilpotent AB.

Case 2: B has no invariant factor of degree one.
As A is non-scalar, i∗(A) < n; therefore B is non-nilpotent. So B has an invari-

ant factor with a nonzero root over F; let β be such an invariant factor of lowest
positive degree, and let d be the degree of β. The companion matrix Cβ is of order
d , and i∗(Cβ) = 1. Note that i∗(A) � n − 2, because A has eigenvalue 0 with
multiplicity � 2; so we have i∗(B) � 2, and n � 4.

Now, from i∗(B)d � n, we obtain d � n/2, and i∗(A) � n − n/d . Let u be the
number of invariant factors of the nonsingular part of A with degree one; these u

invariant factors are all equal to, say, x − a. We have u + 2[i∗(A) − u] � n − 2
(the ‘n − 2’ comes from the fact that A has at least two zero eigenvalues). There-
fore u � n + 2 − 2n/d . For n � 3, the function f (x) := n + 2 − 2n/x is strictly
concave for x > 0, and satifies f (2) = 2, f (n) = n; we thus have f (x) > x in the
interval ]2, n[. Therefore

n + 2 − 2n/d � d, with equality iff d ∈ {2, n}. (4)

From this we get u � d . So the invariant factor x − a occurs in A at least d times.
Accordingly, we choose A ∈ A and B ∈ B of the form

A =



A1

1

Da


 and B =



B1

Cβ


 , (5)

where A1 and B1 are square matrices of order n − d , and Da is a d × d diagonal
matrix with diagonal entries 0, a . . . , a (with a repeated d − 1 times).

Now we apply induction to the two pairs of diagonal blocks. As Da is singular
and i∗(Da)+ i∗(Cβ) = d , there exists C similar to Cβ such that DaC is nilpotent. On
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the other hand, A1 is singular and i∗(A1)+ i∗(B1) = n− d; so there existsB ′
1 similar

toB1 such thatA1B
′
1 is nilpotent. Therefore,A(B ′

1 ⊕ C) is nilpotent, and we are done.

Proof of (c). We go by induction on n. The previously proved items leave us with the
case when i∗(A) + i∗(B) < n, and the classes have no zero Jordan block. Without
loss of generality we assume B is singular.

There exist A ∈ A and B ∈ B of the form

A =
[
A1 ∗
0 τ

]
and B =

[
B1 ∗
0 0

]
,

where A1 and B1 are square matrices of order n − 1. Clearly, B1 is singular, and
i∗(A1) + i∗(B1) � n − 1; by induction we may choose A1 and B1 such that A1B1
is nilpotent, and so AB is nilpotent as well. �

To prove Theorem 3.2 we need a lemma where the following notation is used.
Let f1|f2| · · · |fr and g1|g2| · · · |gs be the nontrivial invariant factors of A and B,
respectively. We consider A ∈ A and B ∈ B in companion normal form:

A = C(f1) ⊕ · · · ⊕ C(fr), B = C(g1) ⊕ · · · ⊕ C(gs).

Here, C(ϕ) is any companion matrix of polynomial ϕ (in fact, we only need C(ϕ) to
be nonderogatory, with characteristic polynomial ϕ).

Lemma 4.1. Assume i∗(A) + i∗(B) > n, i∗(A) � i∗(B), and A is not scalar.
There exists m such that the direct sum decompositions of the above matrices A

and B, as A = A1 ⊕ A2, and B = B1 ⊕ B2, where A2 and B2 are m × m, satisfy
i∗(A2) + i∗(B2) = m, and the block A1 is scalar.

Proof. We go by induction on n. As i∗(A) > n/2, f1 must have degree 1, and
f1 = x − a, for a nonzero a. Let d be the degree of g1, the first nontrivial invariant
factor of B. We have i∗(B) � n/d , and i∗(A) � n − n/d + 1. We may argue as
in the proof of (4), to prove that the number of invariant factors of A of degree 1 is
at least d . So fd = f1.

We now partition A = (aId) ⊕ A′, and B = C(g1) ⊕ B ′, where A′ and B ′ are
square of order n′ := n − d . Clearly, i∗(A′) = i∗(A) − d , and i∗(B ′) ∈ {i∗(B),

i∗(B) − 1}; we thus have i∗(A′) + i∗(B ′) � n′. If we have equality, the proof is
done. Now assume that i∗(A′) + i∗(B ′) > n′. To apply induction to A′, B ′, we need
to show

i∗(A′) � i∗(B ′). (6)

If d = 1 and i∗(A) > i∗(B), then (6) trivially holds; if d = 1 and i∗(A) = i∗(B),
then i∗(B ′) = i∗(B) − 1, and (6) holds as well. In case d � 2, we may take (4) into
account, and get

i∗(A′) � n + 1 − i∗(B) − d � n + 1 − n/d − d

� n/d − 1 � i∗(B) − 1. (7)
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If one of the inequalities is strict, we have (6). If i∗(A′) = i∗(B) − 1 then all 4
inequalities in (7) are equalities; this implies d = 2, and i∗(B) = n/2, i.e., all invari-
ant factors of B are equal, of degree 2; as B is not nilpotent, we have i∗(B ′) =
i∗(B) − 1, and we again get (6).

So, arguing by induction, we may apply the lemma to the submatrices A′, B ′, and
thus obtain the result for the initial matrices A,B. �

Proof of Theorem 3.2. The result is trivial if one of the classes is scalar; so we
assume that both are nonscalar. Without loss of generality, we assume i∗(A) �
i∗(B).

We apply Lemma 4.1 to get A1 ⊕ A2 ∈ A, and B1 ⊕ B2 ∈ B. One of the blocks
A2, B2 is singular. So, by Theorem 2.2(b), there exist A′

2 and B ′
2 similar to A2 and

B2, respectively, such that A′
2B

′
2 is nilpotent, i.e., i∗(A′

2B
′
2) = 0. In this way, we get

A′ := A′
1 ⊕ A2 and B ′ := B ′

1 ⊕ B2, satisfying

i∗(A′B ′) = i∗(A1B1) = i∗(B1) = i∗(B) − i∗(B2)

= i∗(B) + i∗(A2) − m = i∗(B) + i∗(A) − n. �
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