LINEAR ALGEBRA AND ITS APPLICATIONS

On the number of invariant factors of matrix products

E. Marques de Sá ${ }^{\mathrm{a}, *, 1}$, Yu Lin Zhang ${ }^{\text {b, }}{ }^{2}$
${ }^{\text {a }}$ Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal
${ }^{\mathrm{b}}$ Departamento de Matemática, Universidade do Minho, 4710 Braga, Portugal
Received 15 October 2003; accepted 25 October 2004
Available online 18 December 2004
Submitted by J. Queiró
Dedicated to G. de Oliveira

Abstract

We prove an inequality relating the number of nontrivial invariant factors of $n \times n$ matrices A and B, with those of $A B$, and get some results on the cases of equality. In particular, we characterize the similarity classes, \mathscr{A} and \mathscr{B}, with all eigenvalues in the base field, such that $A B$ is nilpotent for some $A \in \mathscr{A}$ and $B \in \mathscr{B}$. © 2004 Elsevier Inc. All rights reserved.

Keywords: Nilpotent matrices; Invariant factors; Similarity

1. Introduction

This paper is about matrices over an arbitrary field \mathbb{F}. We denote by $\overline{\mathbb{F}}$ its algebraic closure, and by \mathbb{F}^{*} the set of nonzero elements of \mathbb{F}. We shall consider polynomials

[^0]from the polynomial ring $\mathbb{F}[x]$. The script letters \mathscr{A} and \mathscr{B} represent $n \times n$ similarity classes. So, if $A \in \mathscr{A}$, then A is an $n \times n$ matrix over \mathbb{F} and \mathscr{A} is the set of all matrices over \mathbb{F} similar to A. The invariant factors, eigenvalues, rank, etc, of \mathscr{A} are defined as the corresponding concepts of any $A \in \mathscr{A}$. There exists a matrix in \mathscr{A} of the form $A_{1} \oplus N$, where A_{1} is nonsingular and N is nilpotent; the similarity classes of A_{1} and N are well defined and called the nonsingular and nilpotent parts of \mathscr{A}. Define
\[

$$
\begin{aligned}
& R(A):=\min \{\operatorname{rank}[\lambda I-A]: \lambda \in \overline{\mathbb{F}}\} \\
& R^{*}(A):=\min \left\{\operatorname{rank}[\lambda I-A]: \lambda \in \overline{\mathbb{F}}^{*}\right\}
\end{aligned}
$$
\]

As R^{*} is invariant under similarity, we define $R^{*}(\mathscr{A})$, for any class \mathscr{A}, in the obvious way.

In recent literature, the problem of relating the similarity classes of two matrices with the similarity class of their product has received some attention. Those problems are, in general, of a very high degree of difficulty. In our references, we indicate some papers on that subject $[1,3-6,8]$ for more information and related problems we send the reader to the references in [3].

In [9], the following theorem has been proved in the case \mathscr{A} and \mathscr{B} are nonsingular.

Theorem 1.1. For any $A \in \mathscr{A}$ and $B \in \mathscr{B}$, we have:

$$
\begin{equation*}
R^{*}(A B) \leqslant \min \left\{n, R^{*}(\mathscr{A})+R^{*}(\mathscr{B})\right\} \tag{1}
\end{equation*}
$$

Proof. We give the following sketch of proof with no further ado:

$$
\begin{aligned}
R^{*}(A B) & =\min _{\lambda \neq 0} \operatorname{rank}(\lambda I-A B) \\
& =\min _{\mu \neq 0} \min _{\lambda \neq 0} \operatorname{rank}(\lambda I-A B+\mu B-\mu B) \\
& \leqslant \min _{\mu \neq 0} \min _{\lambda \neq 0}[\operatorname{rank}[(\mu I-A) B]+\operatorname{rank}(\lambda I-\mu B)] \\
& \leqslant \min _{\mu \neq 0} \min _{\lambda \neq 0}[\operatorname{rank}(\mu I-A)+\operatorname{rank}(\lambda I-\mu B)] \\
& =R^{*}(\mathscr{A})+R^{*}(\mathscr{B}) .
\end{aligned}
$$

The theorem may be obtained as a corollary of Theorem 4 of [3], but the argument given above is easier.

We shall denote by $\alpha_{1}, \ldots, \alpha_{n}$ the invariant factors of \mathscr{A}; the α 's are monic polynomials ordered so that $\alpha_{1}|\cdots| \alpha_{n}$. If we eliminate those α 's equal to 1 , we obtain the chain $f_{1}|\cdots| f_{r}$, of the nontrivial invariant factors of \mathscr{A}; in the sequel, the number r will be denoted by $i(\mathscr{A})$, and $i^{*}(\mathscr{A})$ denotes the number of invariant factors of \mathscr{A} with at least one nonzero root in $\overline{\mathbb{F}}$. It is not difficult to prove that $i^{*}(\mathscr{A})=n-R^{*}(\mathscr{A})$, and $i^{*}(\mathscr{A})=i\left(\mathscr{A}_{1}\right)$, where \mathscr{A}_{1} is the nonsingular part of \mathscr{A}. With this notation, (1) reads

$$
\begin{equation*}
i^{*}(A B) \geqslant \max \left\{0, i^{*}(\mathscr{A})+i^{*}(\mathscr{B})-n\right\} . \tag{2}
\end{equation*}
$$

An interesting problem is the characterization of the similarity classes for which we have equality in (1)-(2) for some $A \in \mathscr{A}$ and $B \in \mathscr{B}$. This problem naturally splits into two subproblems:

Problem I. Characterize the classes \mathscr{A} and \mathscr{B}, for which there exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ such that $i^{*}(A B)=0$.

Problem II. Characterize the classes \mathscr{A} and \mathscr{B}, for which there exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ such that $i^{*}(A B)=i^{*}(\mathscr{A})+i^{*}(\mathscr{B})-n$.

We obtain partial results on these problems. In particular, we solve Problem I when all eigenvalues of \mathscr{A} and \mathscr{B} lie in \mathbb{F}, and solve Problem II over algebraically closed fields.

2. Results on Problem I

As $i^{*}(X)=0$ iff X is nilpotent, Problem II consists in the characterization of \mathscr{A} and \mathscr{B}, for which there exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ such that $A B$ is nilpotent. Clearly, if $A B$ is nilpotent, then either \mathscr{A} or \mathscr{B} is singular, and $i^{*}(\mathscr{A})+i^{*}(\mathscr{B}) \leqslant n$, by inequality (2). We conjecture that the converse is true with a tiny exception. More precisely, we state

Conjecture 2.1. Given two $n \times n$ similarity classes \mathscr{A} and \mathscr{B} over \mathbb{F}, there exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ such that $A B$ is nilpotent, if and only if one of \mathscr{A}, \mathscr{B} is singular, $i^{*}(\mathscr{A})+i^{*}(\mathscr{B}) \leqslant n$, and \mathscr{A}, \mathscr{B} do not fall in the following

Exceptional Case. $n=2$, the classes \mathscr{A} and \mathscr{B} are both nonzero, one of them is nilpotent and the characteristic polynomial of the other is irreducible over \mathbb{F}.

We shall prove the conjecture in several cases, namely:
Theorem 2.2. Conjecture 2.1 holds if one of the following conditions holds:
(a) One of the classes, \mathscr{A} or \mathscr{B}, has a zero Jordan block;
(b) $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})=n$;
(c) All eigenvalues of \mathscr{A} and \mathscr{B} lie in \mathbb{F}.

3. Results on Problem II

We consider two cases: (i) when \mathscr{A} and \mathscr{B} are both nonsingular; (ii) either \mathscr{A} or \mathscr{B} is singular. The first theorem of this section is a simple consequence of the main result of [9], so it goes with no proof.

Theorem 3.1. Assume \mathscr{A} and \mathscr{B} are nonsingular, $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})>n$, and \mathbb{F} is algebraically closed. Then there exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ such that $i^{*}(A B)=$ $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})-n$.

Theorem 3.2. Assume either \mathscr{A} or \mathscr{B} is singular, and $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})>n$. Then there exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ such that $i^{*}(A B)=i^{*}(\mathscr{A})+i^{*}(\mathscr{B})-n$.

4. Proofs

First we check the 'exceptional case' of Conjecture 2.1. If, say, \mathscr{B} is the nilpotent class, all products $A B$, with $A \in \mathscr{A}$ and $B \in \mathscr{B}$, are similar to

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

where the first factor has an irreducible characteristic polynomial. As c is nonzero, $A B$ is not nilpotent.

Proof of Theorem 2.2. The result clearly holds for $n \leqslant 2$, or if one of the classes is scalar. So we may assume $n \geqslant 3$, and \mathscr{A} and \mathscr{B} are non-scalar.

Proof of (a). We argue by induction on n. We assume \mathscr{B} has a zero Jordan block; this means we may pick $B \in \mathscr{B}$ of the form

$$
B=\left[\begin{array}{cc}
B^{\prime} & 0 \\
0 & 0
\end{array}\right]
$$

where B^{\prime} is square of order $n-1$. Partition all matrices $A \in \mathscr{A}$ as

$$
A=\left[\begin{array}{cc}
C_{A} & * \\
* & *
\end{array}\right]
$$

with C_{A} a square block of order $n-1$. Let $\alpha_{1}|\cdots| \alpha_{n}$ and $\gamma_{1}|\cdots| \gamma_{n-1}$ be the invariant factors of A and C_{A}. According to the interlacing inequalities for similarity invariant factors [2,7], for a given class \mathscr{A} the possible γ 's are characterized by

$$
\begin{equation*}
\operatorname{deg}\left(\gamma_{1} \cdots \gamma_{n-1}\right)=n-1 \quad \text { and } \quad \alpha_{i}\left|\gamma_{i}\right| \alpha_{i+2} \tag{3}
\end{equation*}
$$

for $1 \leqslant i \leqslant n-1$ (with the convention $\alpha_{n+1}:=0$). Note that $\alpha_{1}=1$ and the degree of α_{n}, call it a, satisfies $a \geqslant 2$, because \mathscr{A} is nonscalar. Now let z be the largest $i<n$ such that α_{i} is not a multiple of x (recall: our polynomials are taken from $\mathbb{F}[x]$).

If $z<n-1$, define $\gamma_{z}:=x \alpha_{z}, \gamma_{n-1}:=x^{a-2} \alpha_{n-1}$, and $\gamma_{i}:=\alpha_{i}$ for all $i \in$ $\{1, \ldots, n-2\}, i \neq z$. If $z=n-1$, define $\gamma_{n-1}:=x(x-1)^{a-2} \alpha_{n-1}$, and $\gamma_{i}:=\alpha_{i}$ for all $i \in\{1, \ldots, n-2\}$.

In either case, the γ 's satisfy (3), and any C_{A} having them as invariant factors satisfies the properties: C_{A} is nilpotent if \mathscr{A} is nilpotent; $i^{*}\left(C_{A}\right)=i^{*}(\mathscr{A})-1$, if \mathscr{A}
is not nilpotent; C_{A} has a zero Jordan block (because 0 is a simple root of one of the γ^{\prime} s). So we have $i^{*}\left(C_{A}\right)+i^{*}\left(B^{\prime}\right) \leqslant n-1$; by induction on n, we may choose C_{A} such that $C_{A} B^{\prime}$ is nilpotent. Therefore $A B$ is nilpotent as well.

Proof of (b). We may assume \mathscr{A} and \mathscr{B} have no zero Jordan block, and \mathscr{A} is singular. Note that $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})=n$ implies \mathscr{A}, \mathscr{B} do not fall in the exceptional case. The proof is by induction on n.

Case 1: when \mathscr{B} has an invariant factor of degree one.
Assume \mathscr{B} has $x-b$ as invariant factor. We consider matrices $A \in \mathscr{A}$ and $B \in \mathscr{B}$ of the form

$$
A=\left[\begin{array}{cc}
A_{1} & * \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & b
\end{array}\right]
$$

where A_{1} and B_{1} are square matrices of order $n-1$. As \mathscr{A} and \mathscr{B} have no zero Jordan block, b is nonzero and A_{1} is singular. Clearly, $i^{*}\left(A_{1}\right)+i^{*}\left(B_{1}\right)=n-1$. By induction we may select A_{1} and B_{1} such that $A_{1} B_{1}$ is nilpotent, and therefore get a nilpotent $A B$.

Case 2: \mathscr{B} has no invariant factor of degree one.
As \mathscr{A} is non-scalar, $i^{*}(\mathscr{A})<n$; therefore \mathscr{B} is non-nilpotent. So \mathscr{B} has an invariant factor with a nonzero root over $\overline{\mathbb{F}}$; let β be such an invariant factor of lowest positive degree, and let d be the degree of β. The companion matrix C_{β} is of order d, and $i^{*}\left(C_{\beta}\right)=1$. Note that $i^{*}(\mathscr{A}) \leqslant n-2$, because \mathscr{A} has eigenvalue 0 with multiplicity $\geqslant 2$; so we have $i^{*}(\mathscr{B}) \geqslant 2$, and $n \geqslant 4$.

Now, from $i^{*}(\mathscr{B}) d \leqslant n$, we obtain $d \leqslant n / 2$, and $i^{*}(\mathscr{A}) \geqslant n-n / d$. Let u be the number of invariant factors of the nonsingular part of \mathscr{A} with degree one; these u invariant factors are all equal to, say, $x-a$. We have $u+2\left[i^{*}(\mathscr{A})-u\right] \leqslant n-2$ (the ' $n-2$ ' comes from the fact that \mathscr{A} has at least two zero eigenvalues). Therefore $u \geqslant n+2-2 n / d$. For $n \geqslant 3$, the function $f(x):=n+2-2 n / x$ is strictly concave for $x>0$, and satifies $f(2)=2, f(n)=n$; we thus have $f(x)>x$ in the interval $] 2, n[$. Therefore

$$
\begin{equation*}
n+2-2 n / d \geqslant d, \quad \text { with equality iff } d \in\{2, n\} . \tag{4}
\end{equation*}
$$

From this we get $u \geqslant d$. So the invariant factor $x-a$ occurs in \mathscr{A} at least d times. Accordingly, we choose $A \in \mathscr{A}$ and $B \in \mathscr{B}$ of the form

$$
A=\left[\begin{array}{l|ll}
A_{1} & & \tag{5}\\
& 1 & \\
\hline & & \\
& & D_{a}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{l|l}
B_{1} & \\
\hline & C_{\beta}
\end{array}\right]
$$

where A_{1} and B_{1} are square matrices of order $n-d$, and D_{a} is a $d \times d$ diagonal matrix with diagonal entries $0, a \ldots, a$ (with a repeated $d-1$ times).

Now we apply induction to the two pairs of diagonal blocks. As D_{a} is singular and $i^{*}\left(D_{a}\right)+i^{*}\left(C_{\beta}\right)=d$, there exists C similar to C_{β} such that $D_{a} C$ is nilpotent. On
the other hand, A_{1} is singular and $i^{*}\left(A_{1}\right)+i^{*}\left(B_{1}\right)=n-d$; so there exists B_{1}^{\prime} similar to B_{1} such that $A_{1} B_{1}^{\prime}$ is nilpotent. Therefore, $A\left(B_{1}^{\prime} \oplus C\right)$ is nilpotent, and we are done.

Proof of (c). We go by induction on n. The previously proved items leave us with the case when $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})<n$, and the classes have no zero Jordan block. Without loss of generality we assume \mathscr{B} is singular.

There exist $A \in \mathscr{A}$ and $B \in \mathscr{B}$ of the form

$$
A=\left[\begin{array}{cc}
A_{1} & * \\
0 & \tau
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
B_{1} & * \\
0 & 0
\end{array}\right]
$$

where A_{1} and B_{1} are square matrices of order $n-1$. Clearly, B_{1} is singular, and $i^{*}\left(A_{1}\right)+i^{*}\left(B_{1}\right) \leqslant n-1$; by induction we may choose A_{1} and B_{1} such that $A_{1} B_{1}$ is nilpotent, and so $A B$ is nilpotent as well.

To prove Theorem 3.2 we need a lemma where the following notation is used. Let $f_{1}\left|f_{2}\right| \cdots \mid f_{r}$ and $g_{1}\left|g_{2}\right| \cdots \mid g_{s}$ be the nontrivial invariant factors of \mathscr{A} and \mathscr{B}, respectively. We consider $A \in \mathscr{A}$ and $B \in \mathscr{B}$ in companion normal form:

$$
A=C\left(f_{1}\right) \oplus \cdots \oplus C\left(f_{r}\right), \quad B=C\left(g_{1}\right) \oplus \cdots \oplus C\left(g_{s}\right)
$$

Here, $C(\varphi)$ is any companion matrix of polynomial φ (in fact, we only need $C(\varphi)$ to be nonderogatory, with characteristic polynomial φ).

Lemma 4.1. Assume $i^{*}(\mathscr{A})+i^{*}(\mathscr{B})>n, i^{*}(\mathscr{A}) \geqslant i^{*}(\mathscr{B})$, and \mathscr{A} is not scalar. There exists m such that the direct sum decompositions of the above matrices A and B, as $A=A_{1} \oplus A_{2}$, and $B=B_{1} \oplus B_{2}$, where A_{2} and B_{2} are $m \times m$, satisfy $i^{*}\left(A_{2}\right)+i^{*}\left(B_{2}\right)=m$, and the block A_{1} is scalar.

Proof. We go by induction on n. As $i^{*}(\mathscr{A})>n / 2, f_{1}$ must have degree 1 , and $f_{1}=x-a$, for a nonzero a. Let d be the degree of g_{1}, the first nontrivial invariant factor of \mathscr{B}. We have $i^{*}(\mathscr{B}) \leqslant n / d$, and $i^{*}(\mathscr{A}) \geqslant n-n / d+1$. We may argue as in the proof of (4), to prove that the number of invariant factors of \mathscr{A} of degree 1 is at least d. So $f_{d}=f_{1}$.

We now partition $A=\left(a I_{d}\right) \oplus A^{\prime}$, and $B=C\left(g_{1}\right) \oplus B^{\prime}$, where A^{\prime} and B^{\prime} are square of order $n^{\prime}:=n-d$. Clearly, $i^{*}\left(A^{\prime}\right)=i^{*}(A)-d$, and $i^{*}\left(B^{\prime}\right) \in\left\{i^{*}(B)\right.$, $\left.i^{*}(B)-1\right\}$; we thus have $i^{*}\left(A^{\prime}\right)+i^{*}\left(B^{\prime}\right) \geqslant n^{\prime}$. If we have equality, the proof is done. Now assume that $i^{*}\left(A^{\prime}\right)+i^{*}\left(B^{\prime}\right)>n^{\prime}$. To apply induction to A^{\prime}, B^{\prime}, we need to show

$$
\begin{equation*}
i^{*}\left(A^{\prime}\right) \geqslant i^{*}\left(B^{\prime}\right) \tag{6}
\end{equation*}
$$

If $d=1$ and $i^{*}(A)>i^{*}(B)$, then (6) trivially holds; if $d=1$ and $i^{*}(A)=i^{*}(B)$, then $i^{*}\left(B^{\prime}\right)=i^{*}(B)-1$, and (6) holds as well. In case $d \geqslant 2$, we may take (4) into account, and get

$$
\begin{align*}
i^{*}\left(A^{\prime}\right) & \geqslant n+1-i^{*}(B)-d \geqslant n+1-n / d-d \\
& \geqslant n / d-1 \geqslant i^{*}(B)-1 . \tag{7}
\end{align*}
$$

If one of the inequalities is strict, we have (6). If $i^{*}\left(A^{\prime}\right)=i^{*}(\mathscr{B})-1$ then all 4 inequalities in (7) are equalities; this implies $d=2$, and $i^{*}(\mathscr{B})=n / 2$, i.e., all invariant factors of \mathscr{B} are equal, of degree 2 ; as \mathscr{B} is not nilpotent, we have $i^{*}\left(B^{\prime}\right)=$ $i^{*}(\mathscr{B})-1$, and we again get (6).

So, arguing by induction, we may apply the lemma to the submatrices A^{\prime}, B^{\prime}, and thus obtain the result for the initial matrices A, B.

Proof of Theorem 3.2. The result is trivial if one of the classes is scalar; so we assume that both are nonscalar. Without loss of generality, we assume $i^{*}(\mathscr{A}) \geqslant$ $i^{*}(\mathscr{B})$.

We apply Lemma 4.1 to get $A_{1} \oplus A_{2} \in \mathscr{A}$, and $B_{1} \oplus B_{2} \in \mathscr{B}$. One of the blocks A_{2}, B_{2} is singular. So, by Theorem 2.2(b), there exist A_{2}^{\prime} and B_{2}^{\prime} similar to A_{2} and B_{2}, respectively, such that $A_{2}^{\prime} B_{2}^{\prime}$ is nilpotent, i.e., $i^{*}\left(A_{2}^{\prime} B_{2}^{\prime}\right)=0$. In this way, we get $A^{\prime}:=A_{1}^{\prime} \oplus A_{2}$ and $B^{\prime}:=B_{1}^{\prime} \oplus B_{2}$, satisfying

$$
\begin{aligned}
i^{*}\left(A^{\prime} B^{\prime}\right) & =i^{*}\left(A_{1} B_{1}\right)=i^{*}\left(B_{1}\right)=i^{*}(\mathscr{B})-i^{*}\left(B_{2}\right) \\
& =i^{*}(\mathscr{B})+i^{*}\left(A_{2}\right)-m=i^{*}(\mathscr{B})+i^{*}(\mathscr{A})-n .
\end{aligned}
$$

Acknowledgment

We thank the referee for detailed reading and helpful remarks that improved the presentation of the manuscript.

References

[1] S. Furtado, L. Iglésias, F.C. Silva, Products of matrices with prescribed spectra and ranks, Linear Algebra Appl. 340 (2002) 137-147.
[2] E.M. Sá, Imbedding conditions for λ-matrices, Linear Algebra Appl. 24 (1979) 33-50.
[3] F.C. Silva, Sums and products of matrices with prescribed similarity classes, Linear Multilinear Algebra 27 (1990) 317-323.
[4] F.C. Silva, The eigenvalues of the product of matrices with prescribed similarity classes, Linear Multilinear Algebra 34 (1993) 269-277.
[5] A. Sourour, A factorization theorem for matrices, Linear and Multilinear Algebra 19 (1986) 141-147.
[6] A. Sourour, K. Tang, Factorization of singular matrices, Proc. AMS 116 (1992) 629-634.
[7] R.C. Thompson, Interlacing inequalities for invariant factors, Linear Algebra Appl. 24 (1979) 1-32.
[8] P.Y. Wu, Products of nilpotent matrices, Linear Algebra Appl. 96 (1987) 227-232.
[9] Z. Yu Lin, On the number of invariant polynomials of the product of matrices with prescribed similarity classes, Linear Algebra Appl. 277 (1998) 253-269.

[^0]: * Corresponding author.

 E-mail addresses: emsa@mat.uc.pt (E.M. de Sá), zhang @ math.uminho.pt (Y.L. Zhang).
 ${ }^{1}$ Centro de Matemática da Universidade de Coimbra/FCT. Partially supported by Project PRAXIS XXI Mat/485/94, and Project 574/94 of Fundação Luso-Americana para o Desenvolvimento.
 ${ }^{2}$ Research supported by FCT through the research program POCTI.

 0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.laa.2004.10.029

