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Abstract

The aim of this work is to study a nonstandard piecewise linear finite element method for elliptic systems of
partial differential equations. This nonstandard method was considered by the authors for scalar elliptic equations
and for a planar elasticity problem. The method enables us to compute a superconvergent numerical approximation
to the solution of the system of partial differential equations.
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1. Introduction

Most physical applications quantities are governed by systems of partial differential equations. An
example is given by the deformations and stresses of elastic and inelastic bodies subject to load, studied
in solid mechanics.

For the computation of a numerical approximation of the solution of a system of partial differential
equations, finite element methods—FEMs—and finite difference methods—FDMs—are the numerical
methods usually used.

In this paper, we study the numerical approximation for the solution of a system of partial differential
equations obtained using a nonstandard piecewise linear FEM. The method was st{gieD]rior
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scalar elliptic equations and considered by the authofs]ifor a planar elasticity problem. Ifi] the
estimates for thel1-norm of the error were obtained using the results prové8]irAs a consequence of

the approach followed if8], the estimates were proved under very restrictive assumptions for the solution

of the continuous problem (it was assumed thattfje,-norms of the fourth-order partial derivatives of

the solution are bounded). [8,10], an alternative approach was introduced which allowed the authors

to prove the same estimates under weaker assumptions. In the present paper, our aim is to generalize th
resuzlts obtained ifil] to elliptic systems of partial differential equations defined on polygonal domains

of R.

We observe that our method allows a family of triangulations of the domain, which does not need to be
guasi-uniform and regular and enables us to compute the humerical approximation of the displacement
with an improved accuracy when compared with standard linear FEMs described in the literature, e.g.
[2-5,16,27,28]

About more than 25 years ago, Zlani@0] found superconvergence of the gradient for certain quadra-
ture FE solutions on nearly rectangular grids. Furthermore, the superconvergence of the gradient of
piecewise linear FE approximations was studied for instanf@& 14,17,20,22,25put assuming that the
triangulations are regular and quasi-uniform.

Assuming that the nonstandard FEM studied in this work is equivalent to a carefully defined FDM, we
conclude that this last method is supraconvergent. Supraconvergent finite difference schemes have beel
largely studied in the literature and without being exhaustive, we mefietb,18,19,21,23,24,29-31]

The paper is organized as follows. In Section 2, we present the problem that we intend to solve. The
nonstandard piecewise linear FEM is described in Section 3. In Section 4, we study the stability of the
bilinear form that defines the nonstandard method. The study &ftieorm of the error is dealt with in
Section 5. In Section 6, we present a FDM equivalent to the piecewise linear FEM described in Section 3,
which enables an easy computation of the finite element solution. Examples illustrating the performance
of the method are considered in Section 7.

2. A second-order elliptic system of partial differential equations

Let us consider the system of partial differential equations
n
Z&‘juj:giinQ, i=1 ..., n, Q)
j=1

subject to Dirichlet boundary conditions
u;=00n0Q, i=1 ..., n, (2)

whereQ is a bounded polygonal domain 8f with boundaryoQ. In (1), ¢;; denotes the second-order
differential operator defined by

0 ouj 0 ouj 0 ouj 0 ouj
bijuj = ——\aij == ) = -\ bij == ) = 5=\ bij =~ ) — 5=\ ¢ij =
0x 0x dy Ox ox dy Jy dy

ou ou
/ +€ij07y]+fijuj. 3)

T
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In this paper, we deal with uniformly strongly elliptic systems of partial differential equations. Follow-
ing [26], the system (1) is uniformly strongly elliptic i if there exists a positive constafiy such that,
for eaché = (¢1, &) € R andy = (4, ..., n,) € R", the inequality

Y (aij (e, E + 2bij(x, )& + cij(x, ) EB)mn; > Co (Z n?) &+ (4)

ij=1 i=1

holds for all(x, y) € Q.

We assume in the sequel that the coefficient functions are smooth etgugh;, c;; € W3>(Q),
dij, eij, fij € W»®(Q) is sufficient) andg; € H(Q).

Fors € N, we defineH*(Q) by H*(Q) = HS(Q) x --- x H(Q) (n-times) endowed with the inner
product

n
(v, Wns @) = Z (vi, wi) s (@)
i=1

for v, w € H*(Q). The norm induced by the inner product.)ys ) is represented by. ||;.

The spacesi;(Q) andL?(Q) are defined analogously replacing in the definitioH6tQ) H* (Q) by
Hj(Q) and L2(Q), respectively, and their inner products are defined using the same modifications as
before.

For the bilinear form

n

a(v, U)) = Z [aij(vj)x(wi)x + blj((vj)x(wl)v + (Uj)y(wi)x) + Cij(vj)}r(wl')y
ij=1
+dij(vj)wi +eij(v;) w; + fijvjw;] %)
defined inH1(Q) x H1(Q), we introduce the variational problem:

find u € H3(Q) such thata(u, v) = (g, v) 2, for all v € H(Q). (6)

The bilinear formu(., .) satisfies the following result:
Theorem 1. Suppose that the system of partial differential equatid)ss uniformly strongly elliptic

i.e., Q verifies(4). Then the bilinear forma(., .) defined in(5) is H%(Q)-coercive i.e., there exist€x € R
andCg > 0 such that

a(u,u)>Cgllul? — Ckllullf, Yu € H3(Q). )

Details of the proof can be seen[RB].
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3. The finite element method

Let us introduce the full discretization of the variational problem (6). Firstly, we define two special
triangulations of the domaif associated with a nonuniform rectangular grid.

Leth=(h ), andk=(k,), be two sequences of positive numbers. We define the nonuniform rectangular
grid Ry by Ry = R x Ro C R?, whereRy = {x, € R: X1 =X+ hye, k € Z} andRo = {y; € R :
ve+1 = ye + k¢, £ € 7} with xg and yg given, The gridRy induces the following sets of grid points:
Qp=0QN Ry, 2y =02 N Ry ands_?H =QnN Rpy.

We assume that the gridly satisfies the following regularity condition with respect to the dongain

(Reg) The intersection of any sub-rectan@tg, xx+1) X (ve, ve+1) With 0Q is either empty or is the
diagonal of the rectangle.

As mentioned before, we consider two special triangulations related to theg sathich we calI”(l)
ands 7 . They are obtained from the disjoint decompositity = R(l) U R(z) WhereR(l) {(xi, yo) €
DK + ¢ is odd and [RR(Z) {(x«, y¢) € Ry : k + £ is even. To S|mpI|fy the following definition,

we seth(S) [Ra(l) For each pointx,, y¢) € Ry, we associate the trlangla , 1 €{1,2, 3,4}, which
have a rlght angle atc,., ye) and two of the closest neighbour grid pomts(m,t ye) as further vertices.
Then, fors € {1, 2}, we define the triangulations &, 7 ”(S) ”2)1 U 0‘2)2, where

T30 =140, C 2, (v yo) € RY), i€ {1,234},

‘ s+1)
3*2?2= A(leC Q U ,(xx,ye)€R2+ Lie(l23.4)

A7,
and° denotes the interior of. Fig. 1shows an example of a triangulati@ﬁgj).

We denote bw?/H the set of grid scalar functions zero at the boundary péiQis andv(§/H stands for
the spaca)cf/H X e X V(‘)/H (n-times).

The continuous piecewise linear interpolationsvgf € WH, P,(j)vH = (P,(j)vH, 1,..., PS)vH,,,),

s = 1,2, are well defined for the triangulatiors.; .
The final part of this section deals with the discrete version of (6):

find uygy € \X/H such thataH(uH, vy) = (gH, UH)Hy for all VH € Vc(/H. (8)

Let O, ¢ be the rectangl@x,_1/2, x,t1/2] X [ye—1/2, Yey1/2], Wherex,_1/2 = xc — hy—1/2, Xy 12 =
X + hi/2; ye—1/2, ye41/2 are defined analogously. Lgt; be the following grid function:

gH (X, yo) = /D g(x,y)dxdy, 9

|DK,£|

where|O, (| stands for the area af, ;.
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Fig. 1. Triangulationﬁfjfl').

In (8), (., .)g denotes the inner product\'RIH defined by

n
(VH, WH) g = Z Z IO elva,i (Xie, yOwm i (Xie, Ye) (10)
i=1 (x.,y0)€Qn

for eachvy, wy € vc§/H.
Let us now define the bilinear formry (., .). For each triangulatioﬁ(s), s=1,2, Ietag)(., .) be the
bilinear form

n
ay) (v wp) =Y [afj)(vH, wry) + b,-(j)(vH, wgy) + CS-)(UH, wgy) + d,-(;)(vy, wgy)
i j=1

- ei(;-)(UH, wy) + fi(;)(UHa wh)]. (11)

foreachvy, wy € WH The bilinear forms on the right-hand side of (11) are all constructed in a similar
way by summing particular approximations of the “energy” related to each corresponding differential

term over the triangles off,). For eacht ¢ J’S), leta;; 4, be the value of the coefficient functiam;
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at the midpoint of the side of parallel to thex-axis and Ietzl.(;)(., .) be defined by

ai(;)(vH,wH)= Z aij,A/A(P;;)UH,j)x(Pg)wH,i)dedy (12)

AeT )
for eachvy, wy € WH. Similarly, Ietc,-_,-,Ay be the value of the coefficient functieyy at the midpoint
of the side of4 parallel to they-axis and Ietfl.(‘;)(., .) be the bilinear form

C,'(;)(UH,WH): Z Cij,A/A(Pg)wH,i)y(PS)wH,i)y dx dy (13)

Ae.”/'(f,)

for eachvy, wy € Vi/;;.
We are now going to present the bilinear form associated with mixed derivative ternis; L dte the
value of the coefficient functiob;; at the vertex ot associated with the right angle af The bilinear

form bl.(‘;.)(., .) is defined by

bi(;)(vHawH)= Z bij,A/L‘[(PIE;)UH,j)x(PS)wH,i)y
NeT
< H

+ (Pg)vﬂ,j)y(Pl(;)wH,i)x]dX dy (14)

for eachvy, wy € VC(/H.
In order to approximate the first-order terms,[leﬁf)(dijwy,i)]m be the value oﬂf’g) (dijwpg,;) at

the midpoint of the side ofi parallel to thex-axis. Analogously[Pf(}')(e,-ij,,-)]Ay denotes the value
[Pg)(e,-j wp ;)] at the midpoint o4 parallel to they-axis. Then

dz'(;)(vH,wH)Z Z [Pg)(diij,i)]Ax/(P;;)UH,]')X dx dy, (15)
AeT) 4
ei(JS-)(UH,wH)= Z [PI(;)(eiij,i)]Avf (P,(;)vH,j)y dx dy (16)
“Ja
Aeﬁ'g)

for eachvy, wy € WH.
The bilinear formfl.(;)(., .) is defined by

f0m wa) =Y (Ol fij G yOVH, (s YOWH i (s e) (17)
(xl(7y£)eQH

o)
for eachvy, wy € Wy
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Finally, in (8), the bilinear formag (., .) is defined by the arithmetical mean
ap (o, wy) = 3@ i, wy) + a2 v, wi)) (18)

o)
for eachvy, wy € Wy.

Remark. If, in (1), there are no mixed derivatives, then it is not necessary to defirees the arithmetic
mean (18).

4. Stability

We consider a sequence of gridg, H = (h, k) € A, such that the maximal mesh-si#k,ax tends to
Zero.

The next theorem, which can be found for instandd 6}, has a central rule in the proof of the stability
of the bilinear formag (., .).

Theorem 2. Assume that the homogeneous variational probl@nmas only the solution = 0. Let the
grids Qy, for eachH € 4, satisfy conditior{Reg. For eachH € 4, let 7 i be a triangulation of2 such
that the nodes of i coincide withQy and let Py be the corresponding piecewise linear interpolation
operator. Then there exists a constafitfor all H € A with Hnax Small enoughsuch that the inequality

la(Prvy, PHwh)|
| Prvglli<C  sup (19)

0 Phvgll1
I [ I

holds for allvy € W .

The behaviour of the difference between the bilinear fomﬁj)s(., ) anda(.,.) is established in the
next result.

Theorem 3. Lets € {1, 2} andvy, wy € V(i/H with H € A be two sequences satisfying
1P v 1 <L 1P wh <1, H € A,
Then
1a (v, wir) — a(PS vy, PP wi)| — 0 (H € A). (20)

Proof. It has been proved if8] that

a) y j wa.i) — (@i (P vm e (PP wa )0 — 0 (H € A)
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forvy j,wy,; € V(E/H, i,j=1,...,n,and also that the corresponding relations for the bilinear forms
bl.(j.), CS‘)' a’l.(;), efj), fé” hold. Summing ovei and; yields (20). O
The main result of this section is now established.

Theorem 4. Suppose that the assumptions of TheoPgmold. Then exists a constaldt for all H € 4
with Hnax small enoughsuch that the inequality

\PrvnlicC  sup arvmwml (21)

0 Prwpyl1
Ot W [ l

holds for allvy € W .

Proof. Following the proof of Theorem 2 ¢8], from (19) and (20) we conclude (21)

5. Convergence

Letu be the solution of (6) and lety be the solution of (8). In order to estimate the ety Ryu —
Prupyll1, where Ryu is the pointwise restriction of to the gridQy, we replacePyvy in (21) by
Py Rpyu — Pyup and estimate the differendey (Ryu, vy) — (gu, vy) yl. Following the proof of
Theorem 3 of1] and the procedure followed [d0] for the scalar case, the next result can be proved.

Theorem 5. Let the gridsQy, for H e A, satisfy condition(Reg. If the variational problem(6) is
uniquely solvablgthen for Hnax small enoughthe nonstandard finite element meth8yihas a unique
solution satisfying the error estimate

1/2
IPrun — PyRpulli<C| ) (diamA)Hfullfs , + Y lAldiamA?[ulZ o, |
AeT g A€T 12

wheres p 2 = 9‘2)2 U 753)2 and|4] is the area of the trianglel.

Remarks. (1) If 752 =0, i.e.,Qis arectangle or a union of rectangles, then the convergence order is
O(anqax), provided that: € HS(Q)’

) If ZA@_HZVH = O(Hmax), then the convergence order i$H)]31/a2X), provided thaﬂ|u||Wz.ooM) is
bounded fo1 € 7y 2.
6. On the computation of the finite element solution

In order to compute easily the solution of the discrete variational problem (8), we introduce in what
follows an equivalent finite difference scheme.
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For each grid pointx,, y,) € Ry we define the central finite difference quotients with respect to the
variablex,

1/2 WH (X172, o) — WH (Xe—1/2, Ye)
5,(v / )wH(xK’ y@) = iax] el s
Xi+1/2 — Xx—1/2
1/2 WH (X11, yo) — wh (X, Ye)
s )wH(xK+1/2, ye) = - 2

X+1 — Xk
WH (X1, ye) — W (X1, ye)
X+l — X—1

Oxwh (Xi, ye) =
The central finite difference quotients with respect to the varialdee similarly defined by the natural

change.
We now define the following finite difference problem:

find ug € Wy such thatd yuy = gy in Qu, (22)
where

Apgupg =[Apgjunli=1,..n» 8o =I[8H.ili=1

and
n
Apiug = Z AH,ijUH,j
j=1
with
1/2 1/2
Anijug,j = — s )(aijé)(c / )MH,j) — 0y (bijoxup, j) — ox(bijoyup, ;)

— 5&1/2)(01']'5&1/2)1/!}]7]') +dijoxupy,j +eijoyupy i+ fijun, ;.

We observe that if2 has an oblique side, then for poirtis, y,) € Qg such that two of their neighbour
grid points are on this sidedy ;juy, ; involves grid points placed outside @ In this case auxil-
iary boundary conditions must be considered. For instanag,.ify,) € Qg is such that(x,_1, y¢),
(Xxc, ye+1) € 0Qp, then on the definition o g ;jup, j (x,, y¢) the grid point(x,_1, ye+1) is used and so
we introduce the auxiliary boundary condition

n
1/2 1/2
3" bij e 0 (=08 P up j(ve12. O -1+ 05 P up j (e, yerr/2ke)
j=1

n
1/2
= E —bjj(xx, o)t )”H,j(x;c—l/Za YerDhi—1
j=1

1/2
+ bij (1, )32

ug,j (X1, Yer1/2)ke. (23)

For other grid points the boundary conditions are defined in a similar way using in (23) the natural
modifications.
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By recalling the definition otiy (., .) and Ay, it is easy to show the next result, which allows us to
conclude the superconvergence of the finite difference opedajqisee, for instancd8,15,19,23].

Theorem 6. Let the bilinear formug (., .) be defined by18).With Ay defined by(22),the equality
ag(vy, wy) = (AHVHE, WH) g

holds forvy, wy eWH.

7. Numerical results

The aim of this section is to give some examples that illustrate the performance of the method defined
by (8) for planar elasticity problems.

We consider an isotropic material in the configuration sgaead a body forcg. The displacement
u is the solution of the following system of partial differential equations:

—div(e(u)) =g in Q, (24)
with the displacement boundary condition
Uu=uy, ONOIQ. (25)
In (24),0(u) denotes the stress tensor defined by
o(u) = 2pe(u) + Atr(e(u)) Iz,

wherel is the identity two-by-two matrix,

Juy  Ouy

8(M)=}(gfa(iu)—i—gractu)f) and gradu)=| &* O
2 Juz  Oun

ox 0Oy

By u, 4 we represent the Lamé constants.
The system (24) is uniformly strongly elliptic 2 (it satisfies the condition (4) wittig = p).
Let us consider the associated bilinear form

a(v,w) = / (2ue(v) : e(w) + Adiv(v) div(w)) dx dy
Q

forv, w € HY(Q) = HY(Q) x H(Q). The first Korn inequality enables us to conclude that the bilinear
forma(.,.) is Hcl)-elliptic and so the variational problem defined usir(g .) is uniquely solvable.

In the following, we consider two examples of (24) with different domains: a union of rectangles and
a domain with an oblique side. The numerical approximation to the solutisncomputed using the
nonstandard piecewise linear finite element method (8). The rectangular case was considé¢red in

Example 1. Let us consider the boundary value problem (24) defined on the dofmain0, 1) x
(0, D\[1/2,1) x [1/2,1).
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Table 1

Grid Number of points Hmax |Pgug — Py Ryull1
5_211,1 N =16, M =20 0.075 0.0155737

QH.Z N=32,M =32 0.05 0.00765314

Qy.3 N =32, M =40 0.0375 0.00497282

Q.4 N =64 M =064 0.025 0.00228567

QH’5 N =64, M =80 0.01875 0.00149731

QH’G N =128 M =128 0.0125 0.000680543

We consider.=1, 1=0.5,u,;,=0 andg such that the problem (24) has the solutiomith components
u1(x,y) = 0.1 sin(2zx) sin(2ry) anduz(x, y) = —sin(2zx)y(y — 1)(y — 0.5).

In Table 1we give the number of points that we consider inthendy directions on the computation
of the numerical approximation which we denote respectivelybgnd M, the maximum mesh-size
Hmax and the normj|. |1 of the error. The grid€2y 1 andQy > were defined takingo = yo = 0 and,
respectively, the following mesh-sizes:

h;=005 j=127,...,10,1516, h;=0.075 j=3,...,6,11,...,14,
ke=005 ¢=12,7,...,1217,...,20, k,=0.075 ¢£=3,...6,
k¢ =0.025 ¢=13 ...,16,

and

' =0025 j=1,...,4,9,...,2429 ...,32, h;=005 j=5,...,825...,28
hj, j=1,...,32

The gridsQp 3 andQy 4 were generated introducing a new grid line between each grid ligg,af
andQy 3, respectively. Fron®y 3 andQp 4 we construct the grid@y s andQy 6, respectively, using
the procedure described below.

From the values presentediable 1 we easily conclude that the average convergence rate is 2 which
confirm the second-order convergence of the method stated in Theorem 5.

TheH-norm of the error against the square of the maximum mesh-size is plofégl i The values
of Table 1were used and thid1-norm of the errors of numerical approximations computed using other
grids generated by the procedure described were also considered.

Example 2. Let Q be the polygonal domaif(x, y) € R? : x, y>0,x<1,y< — %x + 1}.

We consider.=1, u=0.5,u,,=0 andg such that the problem (24) has the solutiomith components
ur(x, y) =4xy(x — 1)(y + 0.5x — 1) andus(x, y) = 6x2y(x — 1)(y + 0.5x — 1).

We present the results obtained for this problenTable 2 The gridsQy 1 andQy > were defined
takingxp = yo = 0 and, respectively, the following mesh-sizes:

hj=01, j=1,...,10,
ke=01, £=1,...,5, k=005 £=6,...,15
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H’max
Fig. 2. The normj|.||1 of the error.
Table 2
Grid Number of points Hmax |Pgug — Py Ryull1
Qu1 N=10,M =15 0.1 0.00868943
@H,z N=16M =23 0.075 0.00506237
Qp 3 N=20,M =30 0.05 0.00280741
Q. N=32M=46 0.0375 0.00165363
Qs N =40, M =60 0.025 0.000981383
Q6 N =64, M =92 0.01875 0.000590199
and

h;=0.075 j=1,...,4,13,...,16, h; =005 j=5,...,12
ke =0075 ¢=1,...,6, k7=005 k,=0.0375 ¢=8,...,1120,...,23
k¢ =0.025 ¢=12,...,109.

The gridsQy ;, j = 3,4, 5, 6, were generated using the procedure described in Example 1 such that
condition (Reg) holds for all grid®y ;, j =1, ..., 6.

In Fig. 3, we plot theH*-norm of the error againgf-3,. We took the values dfable 2and theH*-norm
of the errors of several numerical approximations computed using grids satisfying condition (Reg) but
generated by the procedure described in Example 1.

The average convergence rate computed using the resultbte 2is 1.5, which confirm again the
convergence order of the method stated in Theorem 5.
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Fig. 3. The normj|.||1 of the error.
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