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Abstract

The aim of this work is to study a nonstandard piecewise linear finite element method for elliptic systems of
partial differential equations. This nonstandard method was considered by the authors for scalar elliptic equations
and for a planar elasticity problem. The method enables us to compute a superconvergent numerical approximation
to the solution of the system of partial differential equations.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Most physical applications quantities are governed by systems of partial differential equations. An
example is given by the deformations and stresses of elastic and inelastic bodies subject to load, studied
in solid mechanics.

For the computation of a numerical approximation of the solution of a system of partial differential
equations, finite element methods—FEMs—and finite difference methods—FDMs—are the numerical
methods usually used.

In this paper, we study the numerical approximation for the solution of a system of partial differential
equations obtained using a nonstandard piecewise linear FEM. The method was studied in[8–10] for
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scalar elliptic equations and considered by the authors in[1] for a planar elasticity problem. In[1] the
estimates for theH1-norm of the error were obtained using the results proved in[8]. As a consequence of
the approach followed in[8], the estimates were proved under very restrictive assumptions for the solution
of the continuous problem (it was assumed that the‖.‖∞-norms of the fourth-order partial derivatives of
the solution are bounded). In[9,10], an alternative approach was introduced which allowed the authors
to prove the same estimates under weaker assumptions. In the present paper, our aim is to generalize the
results obtained in[1] to elliptic systems of partial differential equations defined on polygonal domains
of R2.

We observe that our method allows a family of triangulations of the domain, which does not need to be
quasi-uniform and regular and enables us to compute the numerical approximation of the displacement
with an improved accuracy when compared with standard linear FEMs described in the literature, e.g.
[2–5,16,27,28].

About more than 25 years ago, Zlámal[30] found superconvergence of the gradient for certain quadra-
ture FE solutions on nearly rectangular grids. Furthermore, the superconvergence of the gradient of
piecewise linear FE approximations was studied for instance in[6,14,17,20,22,25]but assuming that the
triangulations are regular and quasi-uniform.

Assuming that the nonstandard FEM studied in this work is equivalent to a carefully defined FDM, we
conclude that this last method is supraconvergent. Supraconvergent finite difference schemes have been
largely studied in the literature and without being exhaustive, we mention[7–15,18,19,21,23,24,29–31].

The paper is organized as follows. In Section 2, we present the problem that we intend to solve. The
nonstandard piecewise linear FEM is described in Section 3. In Section 4, we study the stability of the
bilinear form that defines the nonstandard method. The study of theH1-norm of the error is dealt with in
Section 5. In Section 6, we present a FDM equivalent to the piecewise linear FEM described in Section 3,
which enables an easy computation of the finite element solution. Examples illustrating the performance
of the method are considered in Section 7.

2. A second-order elliptic system of partial differential equations

Let us consider the system of partial differential equations

n∑
j=1

�ijuj = gi in �, i = 1, . . . , n, (1)

subject to Dirichlet boundary conditions

ui = 0 on ��, i = 1, . . . , n, (2)

where� is a bounded polygonal domain ofR2 with boundary��. In (1), �ij denotes the second-order
differential operator defined by

�ijuj = − �
�x

(
aij

�uj
�x

)
− �

�y

(
bij

�uj
�x

)
− �

�x

(
bij

�uj
�y

)
− �

�y

(
cij

�uj
�y

)

+ dij
�uj
�x

+ eij
�uj
�y

+ fijuj . (3)
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In this paper, we deal with uniformly strongly elliptic systems of partial differential equations. Follow-
ing [26], the system (1) is uniformly strongly elliptic in� if there exists a positive constantC0 such that,
for each� = (�1, �2) ∈ R2 and� = (�1, . . . , �n) ∈ Rn, the inequality

n∑
i,j=1

(aij (x, y)�
2
1 + 2bij (x, y)�1�2 + cij (x, y)�

2
2)�i�j �C0

(
n∑

i=1

�2
i

)
(�2

1 + �2
2) (4)

holds for all(x, y) ∈ �.
We assume in the sequel that the coefficient functions are smooth enough(aij , bij , cij ∈ W3,∞(�),

dij , eij , fij ∈ W2,∞(�) is sufficient) andgi ∈ H 1(�).
For s ∈ N, we defineHs(�) by Hs(�) = Hs(�) × · · · × Hs(�) (n-times) endowed with the inner

product

(v,w)Hs (�) =
n∑

i=1

(vi, wi)Hs(�)

for v,w ∈ Hs(�). The norm induced by the inner product(., .)Hs (�) is represented by‖.‖s .
The spacesHs

0(�) andL2(�) are defined analogously replacing in the definition ofHs(�)Hs(�) by
Hs

0(�) andL2(�), respectively, and their inner products are defined using the same modifications as
before.

For the bilinear form

a(v,w) =
n∑

i,j=1

[aij (vj )x(wi)x + bij ((vj )x(wi)y + (vj )y(wi)x) + cij (vj )y(wi)y

+ dij (vj )xwi + eij (vj )ywi + fij vjwi] (5)

defined inH1(�) × H1(�), we introduce the variational problem:

find u ∈ H1
0(�) such thata(u, v) = (g, v)L2(�), for all v ∈ H1

0(�). (6)

The bilinear forma(., .) satisfies the following result:

Theorem 1. Suppose that the system of partial differential equations(1) is uniformly strongly elliptic,
i.e.,� verifies(4).Then the bilinear forma(., .) defined in(5) isH1

0(�)-coercive, i.e., there existsCK ∈ R

andCE >0 such that

a(u, u)�CE‖u‖2
1 − CK‖u‖2

0, ∀u ∈ H1
0(�). (7)

Details of the proof can be seen in[26].
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3. The finite element method

Let us introduce the full discretization of the variational problem (6). Firstly, we define two special
triangulations of the domain� associated with a nonuniform rectangular grid.

Leth=(hj )Z andk=(k�)Z be two sequences of positive numbers.We define the nonuniform rectangular
grid RH by RH = R1 × R2 ⊂ R2, whereR1 = {x� ∈ R : x�+1 = x� + h�, � ∈ Z} andR2 = {y� ∈ R :
y�+1 = y� + k�, � ∈ Z} with x0 andy0 given, The gridRH induces the following sets of grid points:
�H = � ∩ RH , ��H = �� ∩ RH and�̄H = �̄ ∩ RH .

We assume that the grid̄�H satisfies the following regularity condition with respect to the domain�:
(Reg) The intersection of any sub-rectangle(xk, xk+1) × (y�, y�+1) with �� is either empty or is the

diagonal of the rectangle.
As mentioned before, we consider two special triangulations related to the set�̄H , which we callT(1)

H

andT(2)
H . They are obtained from the disjoint decompositionRH = R

(1)
H ∪ R

(2)
H , whereR

(1)
H ={(x�, y�) ∈

RH : � + � is odd} andR
(2)
H = {(x�, y�) ∈ RH : � + � is even}. To simplify the following definition,

we setR(3)
H = R

(1)
H . For each point(x�, y�) ∈ RH , we associate the triangles�(i)

�� , i ∈ {1,2,3,4}, which
have a right angle at(x�, y�) and two of the closest neighbour grid points of(x�, y�) as further vertices.
Then, fors ∈ {1,2}, we define the triangulations of�̄, T(s)

H = T
(s)
H,1 ∪ T

(s)
H,2, where

T
(s)
H,1 = {�(i)

�,� ⊂ �̄, (x�, y�) ∈ R
(s)
H , i ∈ {1,2,3,4}},

T
(s)
H,2 =


�(i)

�,� ⊂

�̄

∖ ⋃
�∈T(s)

H,1

◦
�


 , (x�, y�) ∈ R

(s+1)
H , i ∈ {1,2,3,4}




and�◦ denotes the interior of�. Fig. 1shows an example of a triangulationT(s)
H .

We denote by
◦
WH the set of grid scalar functions zero at the boundary points��H and

◦
WH stands for

the space
◦
WH × · · · × ◦

WH (n-times).

The continuous piecewise linear interpolations ofvH ∈ ◦
WH , P (s)

H vH = (P
(s)
H vH ,1, . . . , P (s)

H vH,n),

s = 1,2, are well defined for the triangulationsT(s)
H .

The final part of this section deals with the discrete version of (6):

find uH ∈ ◦
WH such thataH (uH , vH ) = (gH , vH )H , for all vH ∈ ◦

WH . (8)

Let ��,� be the rectangle[x�−1/2, x�+1/2] × [y�−1/2, y�+1/2], wherex�−1/2 = x� − h�−1/2, x�+1/2 =
x� + h�/2; y�−1/2, y�+1/2 are defined analogously. LetgH be the following grid function:

gH (x�, y�) = 1

|��,�|
∫

��,�

g(x, y)dx dy, (9)

where|��,�| stands for the area of��,�.
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Fig. 1. TriangulationT(s)
H

.

In (8), (., .)H denotes the inner product in
◦
WH defined by

(vH ,wH )H =
n∑

i=1

∑
(x�,y�)∈�H

|��,�|vH,i(x�, y�)wH,i(x�, y�) (10)

for eachvH , wH ∈ ◦
WH .

Let us now define the bilinear formaH (., .). For each triangulationT(s)
H , s = 1,2, leta(s)H (., .) be the

bilinear form

a
(s)
H (vH ,wH ) =

n∑
i,j=1

[a(s)ij (vH ,wH ) + b
(s)
ij (vH ,wH ) + c

(s)
ij (vH ,wH ) + d

(s)
ij (vH ,wH )

+ e
(s)
ij (vH ,wH ) + f

(s)
ij (vH ,wH )]. (11)

for eachvH , wH ∈ ◦
WH . The bilinear forms on the right-hand side of (11) are all constructed in a similar

way by summing particular approximations of the “energy” related to each corresponding differential
term over the triangles ofT(s)

H . For each� ∈ T
(s)
H , let aij,�x be the value of the coefficient functionaij
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at the midpoint of the side of� parallel to thex-axis and leta(s)ij (., .) be defined by

a
(s)
ij (vH ,wH ) =

∑
�∈T(s)

H

aij,�

∫
�
(P

(s)
H vH,j )x(P

(s)
H �H,i)x dx dy (12)

for eachvH , wH ∈ ◦
WH . Similarly, letcij,�y be the value of the coefficient functioncij at the midpoint

of the side of� parallel to they-axis and letc(s)ij (., .) be the bilinear form

c
(s)
ij (vH ,wH ) =

∑
�∈T(s)

H

cij,�

∫
�
(P

(s)
H wH,i)y(P

(s)
H wH,i)y dx dy (13)

for eachvH , wH ∈ ◦
WH .

We are now going to present the bilinear form associated with mixed derivative terms. Letbij,� be the
value of the coefficient functionbij at the vertex of� associated with the right angle of�. The bilinear

form b
(s)
ij (., .) is defined by

b
(s)
ij (vH ,wH ) =

∑
�∈T(s)

H

bij,�

∫
�
[(P (s)

H vH,j )x(P
(s)
H wH,i)y

+ (P
(s)
H vH,j )y(P

(s)
H wH,i)x] dx dy (14)

for eachvH , wH ∈ ◦
WH .

In order to approximate the first-order terms, let[P (s)
H (dijwH,i)]�x

be the value ofP (s)
H (dijwH,i) at

the midpoint of the side of� parallel to thex-axis. Analogously,[P (s)
H (eijwH,i)]�y

denotes the value

[P (s)
H (eijwH,i)] at the midpoint of� parallel to they-axis. Then

d
(s)
ij (vH ,wH ) =

∑
�∈T(s)

H

[P (s)
H (dijwH,i)]�x

∫
�
(P

(s)
H vH,j )x dx dy, (15)

e
(s)
ij (vH ,wH ) =

∑
�∈T(s)

H

[P (s)
H (eijwH,i)]�y

∫
�
(P

(s)
H vH,j )y dx dy (16)

for eachvH , wH ∈ ◦
WH .

The bilinear formf
(s)
ij (., .) is defined by

f
(s)
ij (vH ,wH ) =

∑
(x�,y�)∈�H

|��,�|fij (x�, y�)vH,j (x�, y�)wH,i(x�, y�) (17)

for eachvH , wH ∈ ◦
WH .
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Finally, in (8), the bilinear formaH (., .) is defined by the arithmetical mean

aH (vH ,wH ) = 1
2(a

(1)
H (vH ,wH ) + a

(2)
H (vH ,wH )) (18)

for eachvH , wH ∈ ◦
WH .

Remark. If, in (1), there are no mixed derivatives, then it is not necessary to defineaH as the arithmetic
mean (18).

4. Stability

We consider a sequence of gridsRH , H = (h, k) ∈ �, such that the maximal mesh-sizeHmax tends to
zero.

The next theorem, which can be found for instance in[16], has a central rule in the proof of the stability
of the bilinear formaH (., .).

Theorem 2. Assume that the homogeneous variational problem(6) has only the solutionu = 0. Let the
grids �̄H , for eachH ∈ �, satisfy condition(Reg). For eachH ∈ �, letTH be a triangulation of̄� such
that the nodes ofTH coincide with�̄H and letPH be the corresponding piecewise linear interpolation
operator. Then there exists a constantC for all H ∈ � withHmax small enough, such that the inequality

‖PHvH‖1�C sup
0�=wH∈ ◦

WH

|a(PHvH , PHwH)|
‖PHvH‖1

(19)

holds for allvH ∈ ◦
WH .

The behaviour of the difference between the bilinear formsa
(s)
H (., .) anda(., .) is established in the

next result.

Theorem 3. Let s ∈ {1,2} andvH , wH ∈ ◦
WH withH ∈ � be two sequences satisfying

‖P (s)
H vH‖1�1, ‖P (s)

H wH‖1�1, H ∈ �.

Then

|a(s)H (vH ,wH ) − a(P
(s)
H vH , P

(s)
H wH)| → 0 (H ∈ �). (20)

Proof. It has been proved in[8] that

a
(s)
ij (vH,j , wH,i) − (aij (P

(s)
H vH,j )x, (P

(s)
H wH,i)x)0 → 0 (H ∈ �)
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for vH,j , wH,i ∈ ◦
WH , i, j = 1, . . . , n, and also that the corresponding relations for the bilinear forms

b
(s)
ij , c(s)ij , d(s)

ij , e(s)ij , f (s)
ij hold. Summing overi andj yields (20). �

The main result of this section is now established.

Theorem 4. Suppose that the assumptions of Theorem2 hold. Then exists a constantC for all H ∈ �
withHmax small enough, such that the inequality

‖PHvH‖1�C sup
0�=wH∈ ◦

WH

|aH (vH ,wH )|
‖PHwH‖1

(21)

holds for allvH ∈ ◦
WH .

Proof. Following the proof of Theorem 2 of[8], from (19) and (20) we conclude (21).�

5. Convergence

Let u be the solution of (6) and letuH be the solution of (8). In order to estimate the error‖PHRHu−
PHuH‖1, whereRHu is the pointwise restriction ofu to the grid�̄H , we replacePHvH in (21) by
PHRHu − PHuH and estimate the difference|aH (RHu, vH ) − (gH , vH )H |. Following the proof of
Theorem 3 of[1] and the procedure followed in[10] for the scalar case, the next result can be proved.

Theorem 5. Let the grids�̄H , for H ∈ �, satisfy condition(Reg). If the variational problem(6) is
uniquely solvable, then forHmax small enough, the nonstandard finite element method(8) has a unique
solution satisfying the error estimate

‖PHuH − PHRHu‖1�C


 ∑

�∈TH

(diam�)4‖u‖2
H3(�) +

∑
�∈TH,2

|�|(diam�)2‖u‖2
W2,∞(�)




1/2

,

whereTH,2 = T
(1)
H,2 ∪ T

(2)
H,2 and|�| is the area of the triangle�.

Remarks. (1) If TH,2 = ∅, i.e.,� is a rectangle or a union of rectangles, then the convergence order is
O(H 2

max), provided thatu ∈ H3
0(�);

(2) If
∑

�∈TH,2
|�| = O(Hmax), then the convergence order is O(H 3/2

max), provided that‖u‖W2,∞(�) is
bounded for� ∈ TH,2.

6. On the computation of the finite element solution

In order to compute easily the solution of the discrete variational problem (8), we introduce in what
follows an equivalent finite difference scheme.
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For each grid point(x�, y�) ∈ RH we define the central finite difference quotients with respect to the
variablex,

�(1/2)
x wH (x�, y�) = wH(x�+1/2, y�) − wH(x�−1/2, y�)

x�+1/2 − x�−1/2
,

�(1/2)
x wH (x�+1/2, y�) = wH(x�+1, y�) − wH(x�, y�)

x�+1 − x�
,

�xwH (x�, y�) = wH(x�+1, y�) − wH(x�−1, y�)

x�+1 − x�−1
.

The central finite difference quotients with respect to the variabley are similarly defined by the natural
change.

We now define the following finite difference problem:

find uH ∈ ◦
WH such thatAHuH = gH in �H , (22)

where

AHuH = [AH,iuH ]i=1,...,n, gH = [gH,i]i=1,...,n

and

AH,iuH =
n∑

j=1

AH,ijuH,j

with

AH,ijuH,j = − �(1/2)
x (aij�

(1/2)
x uH,j ) − �y(bij�xuH,j ) − �x(bij�yuH,j )

− �(1/2)
y (cij�

(1/2)
y uH,j ) + dij�xuH,j + eij�yuH,j + fijuH,j .

We observe that if� has an oblique side, then for points(x�, y�) ∈ �H such that two of their neighbour
grid points are on this side,AH,ijuH,j involves grid points placed outside of�. In this case auxil-
iary boundary conditions must be considered. For instance, if(x�, y�) ∈ �H is such that(x�−1, y�),
(x�, y�+1) ∈ ��H , then on the definition ofAH,ijuH,j (x�, y�) the grid point(x�−1, y�+1) is used and so
we introduce the auxiliary boundary condition

n∑
j=1

bij (x�, y�)(−�(1/2)
x uH,j (x�−1/2, y�)h�−1 + �(1/2)

y uH,j (x�, y�+1/2)k�)

=
n∑

j=1

−bij (x�, y�+1)�
(1/2)
x uH,j (x�−1/2, y�+1)h�−1

+ bij (x�−1, y�)�
(1/2)
y uH,j (x�−1, y�+1/2)k�. (23)

For other grid points the boundary conditions are defined in a similar way using in (23) the natural
modifications.
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By recalling the definition ofaH (., .) andAH , it is easy to show the next result, which allows us to
conclude the superconvergence of the finite difference operatorAH (see, for instance,[8,15,19,23]).

Theorem 6. Let the bilinear formaH (., .) be defined by(18).WithAH defined by(22), the equality

aH (vH ,wH ) = (AHvH ,wH)H

holds forvH , wH ∈ ◦
WH .

7. Numerical results

The aim of this section is to give some examples that illustrate the performance of the method defined
by (8) for planar elasticity problems.

We consider an isotropic material in the configuration space� and a body forceg. The displacement
u is the solution of the following system of partial differential equations:

−div(	(u)) = g in �, (24)

with the displacement boundary condition

u = u�� on ��. (25)

In (24),	(u) denotes the stress tensor defined by

	(u) = 2
�(u) + � tr(�(u))I2,

whereI2 is the identity two-by-two matrix,

�(u) = 1

2
(grad(u) + grad(u)t ) and grad(u) =




�u1

�x
�u1

�y
�u2

�x
�u2

�y


 .

By 
, � we represent the Lamé constants.
The system (24) is uniformly strongly elliptic in� (it satisfies the condition (4) withC0 = 
).
Let us consider the associated bilinear form

a(v,w) =
∫

�
(2
�(v) : �(w) + � div(v)div(w))dx dy

for v,w ∈ H1(�) = H 1(�) × H 1(�). The first Korn inequality enables us to conclude that the bilinear
form a(., .) isH1

0-elliptic and so the variational problem defined usinga(., .) is uniquely solvable.
In the following, we consider two examples of (24) with different domains: a union of rectangles and

a domain with an oblique side. The numerical approximation to the solutionu is computed using the
nonstandard piecewise linear finite element method (8). The rectangular case was considered in[1].

Example 1. Let us consider the boundary value problem (24) defined on the domain� = (0,1) ×
(0,1)\[1/2,1) × [1/2,1).
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Table 1

Grid Number of points Hmax ‖PHuH − PHRHu‖1

�̄H,1 N = 16,M = 20 0.075 0.0155737
�̄H,2 N = 32,M = 32 0.05 0.00765314
�̄H,3 N = 32,M = 40 0.0375 0.00497282
�̄H,4 N = 64,M = 64 0.025 0.00228567
�̄H,5 N = 64,M = 80 0.01875 0.00149731
�̄H,6 N = 128,M = 128 0.0125 0.000680543

We consider�=1,
=0.5,u��=0 andg such that the problem (24) has the solutionuwith components
u1(x, y) = 0.1 sin(2
x) sin(2
y) andu2(x, y) = − sin(2
x)y(y − 1)(y − 0.5).

In Table 1we give the number of points that we consider in thex andy directions on the computation
of the numerical approximation which we denote respectively byN andM, the maximum mesh-size
Hmax and the norm‖.‖1 of the error. The grids̄�H,1 and �̄H,2 were defined takingx0 = y0 = 0 and,
respectively, the following mesh-sizes:

hj = 0.05, j = 1,2,7, . . . ,10,15,16, hj = 0.075, j = 3, . . . ,6,11, . . . ,14,
k� = 0.05, � = 1,2,7, . . . ,12,17, . . . ,20, k� = 0.075, � = 3, . . .6,
k� = 0.025, � = 13, . . . ,16,

and

hj = 0.025, j = 1, . . . ,4,9, . . . ,24,29, . . . ,32, hj = 0.05, j = 5, . . . ,8,25, . . . ,28,
kj = hj , j = 1, . . . ,32.

The grids�̄H,3 and�̄H,4 were generated introducing a new grid line between each grid line of�̄H,1
and�̄H,3, respectively. From̄�H,3 and�̄H,4 we construct the grids̄�H,5 and�̄H,6, respectively, using
the procedure described below.

From the values presented inTable 1, we easily conclude that the average convergence rate is 2 which
confirm the second-order convergence of the method stated in Theorem 5.

TheH1-norm of the error against the square of the maximum mesh-size is plotted inFig. 2. The values
of Table 1were used and theH1-norm of the errors of numerical approximations computed using other
grids generated by the procedure described were also considered.

Example 2. Let � be the polygonal domain{(x, y) ∈ R2 : x, y�0, x�1, y� − 1
2 x + 1}.

We consider�=1,
=0.5,u��=0 andg such that the problem (24) has the solutionuwith components
u1(x, y) = 4xy(x − 1)(y + 0.5x − 1) andu2(x, y) = 6x2y(x − 1)(y + 0.5x − 1).

We present the results obtained for this problem inTable 2. The grids�̄H,1 and�̄H,2 were defined
takingx0 = y0 = 0 and, respectively, the following mesh-sizes:

hj = 0.1, j = 1, . . . ,10,
k� = 0.1, � = 1, . . . ,5, k� = 0.05, � = 6, . . . ,15,
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Fig. 2. The norm‖.‖1 of the error.

Table 2

Grid Number of points Hmax ‖PHuH − PHRHu‖1

�̄H,1 N = 10,M = 15 0.1 0.00868943
�̄H,2 N = 16,M = 23 0.075 0.00506237
�̄H,3 N = 20,M = 30 0.05 0.00280741
�̄H,4 N = 32,M = 46 0.0375 0.00165363
�̄H,5 N = 40,M = 60 0.025 0.000981383
�̄H,6 N = 64,M = 92 0.01875 0.000590199

and

hj = 0.075, j = 1, . . . ,4,13, . . . ,16, hj = 0.05, j = 5, . . . ,12,
k� = 0.075, � = 1, . . . ,6, k7 = 0.05, k� = 0.0375, � = 8, . . . ,11,20, . . . ,23,
k� = 0.025, � = 12, . . . ,19.

The grids�̄H,j , j = 3,4,5,6, were generated using the procedure described in Example 1 such that
condition (Reg) holds for all grids̄�H,j , j = 1, . . . ,6.

In Fig. 3, we plot theH1-norm of the error againstH 1.5
max. We took the values ofTable 2and theH1-norm

of the errors of several numerical approximations computed using grids satisfying condition (Reg) but
generated by the procedure described in Example 1.

The average convergence rate computed using the results ofTable 2is 1.5, which confirm again the
convergence order of the method stated in Theorem 5.
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Fig. 3. The norm‖.‖1 of the error.
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[17] I. Hlavac̆ek, M. Křížek, On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary conditions,

Appl. Mat. 32 (1987) 131–154.
[18] F. de Hoog, D. Jackett, On the rate of convergence of finite difference schemes on nonuniform grids, J. Austral. Math. Soc.

Sr. B (1985) 247–256.
[19] H.O. Kreiss, T.A. Manteuffel, B. Swartz, B. Wendroff, A.B. White Jr., Supraconvergent schemes on irregular grids, Math.

Comp. 47 (1986) 537–554.
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