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1. Introduction

The comparison of two vectors often leads to interesting inequalities that can be
concisely expressed as majorization relations. Let x = (x1, . . . , xn), y = (y1, . . . ,

yn) ∈ Rn have the entries arranged in non-increasing order x1 � · · · � xn, y1 �
· · · � yn. The vector x is said to be majorized by y, in symbols x ≺ y, if

k∑
j=1

xj �
k∑

j=1

yj ,

for all k = 1, . . . , n with equality for k = n. The first example of majorization in the
history of matrix analysis is the famous Theorem of Schur (1923) [5, p. 193], which
asserts that the vector of diagonal entries of a Hermitian matrix A is majorized by
the vector of the eigenvalues of A.

Let Mn be the algebra of n × n complex matrices, and let Hn be the real space of
n × n Hermitian matrices. It is well-known that the solutions of several optimization
and variational problems are given in terms of the eigenvalues of Hermitian matrices.
For A ∈ Hn, the physicists Rayleigh and Ritz [5, p. 176] proved that

α1 = max
x∗x=1

(x∗Ax), αn = min
x∗x=1

(x∗Ax), x ∈ Cn,

where α1 and αn are the largest and the smallest eigenvalue of A, respectively.
Another famous variational result for Hermitian matrices is Ky Fan’s Maximum
Principle (1950) [6, p. 511], which establishes that

max
�

k∑
j=1

x∗
j Axj =

k∑
j=1

αj , k = 1, . . . , n,

where α1 � · · · � αn are the eigenvalues of A and � is the set of the first k columns
x1, . . . , xk of an n × n unitary matrix. Ky Fan’s Maximum Principle is a source
of inspiration, often used as a fundamental tool for obtaining several results. For
instance, Schur’s Theorem can be easily derived from it.

Given a Hermitian involutive matrix J , that is, J ∗ = J , J 2 = In, let us consider
Cn endowed with the indefinite inner product induced by J :

[x, y] = y∗Jx, x, y ∈ Cn.

For a matrix A ∈ Mn, its J -adjoint A# is defined by

[Ax, y] = [x, A#y], x, y ∈ Cn,

or equivalently, A# = JA∗J . A matrix A ∈ Mn is said to be J - Hermitian if A = A#.
A matrix U ∈ Mn is said to be J -unitary if UU# = U#U = In. For a Hermitian
involutive matrix J with signature (r, n − r), 0 < r < n (that is, with r positive
and n − r negative eigenvalues), the J -unitary matrices form a non-compact group
denoted by Ur,n−r and called the J -unitary group.
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Our aim is the investigation of spectral inequalities for J -Hermitian matrices. We
recall that the spectrum of a J -Hermitian matrix A ∈ Mn is symmetric relatively to
the real axis. In this vein, Ando [1] recently obtained a Löwner inequality of indefi-
nite type. In this paper, indefinite type versions of Ky Fan’s Maximum Principle,
Rayleigh-Ritz Theorem, and Schur’s Theorem are presented in Theorem 3.1, Corol-
lary 3.2 and Theorem 3.3, respectively. These results will be derived from Theorem
1.1, whose Corollary 1.2 may be thought as an indefinite version of the following
spectral tracial inequalities obtained by Richter [9]. For Hermitian matrices A and
C with prescribed spectra α1 � · · · � αn and c1 � · · · � cn, respectively, Richter
proved that (cfr. the alternative proofs of Mirsky [7] and Theobald [10]):

n∑
i=1

ciαn−i+1 � Tr(CA) �
n∑

i=1

ciαi . (1)

Given an n × n Hermitian involutive matrix J and A, C ∈ Mn consider the set of
complex numbers denoted and defined by

WJ
C (A) = {Tr(CU−1AU) : U ∈ Mn, U∗JU = J } (2)

called the J, C-numerical range of A.
From (2), it follows that WJ

C (A) = WJ
A(C), that is, the roles of A and C are sym-

metric. Without loss of generality, in (2) we may consider J = Ir ⊕ −In−r , r being
the number of positive eigenvalues of J . Since Ur,n−r is connected and WJ

C (A) is
the range of the continuous map from Ur,n−r to C defined by U �→ Tr(CU−1AU),
WJ

C (A) is a connected set in the complex plane, for all A, C ∈ Mn. For any U ∈
Ur,n−r , WJ

C (A) = WJ
C (U−1AU).

Let A ∈ Mn and let C be a J -Hermitian and J -unitarily diagonalizable matrix
with eigenvalues c1, . . . , cn. For J = Ir ⊕ −In−r = diag(ε1, . . . , εn), it can be seen
that (2) may be written as

WJ
C (A) =

{
r∑

i=1

ci[Axi, xi] −
n∑

i=r+1

ci[Axi, xi], xi ∈ Cn,

[xi, xl] = δilεi , i, l = 1, . . . , n

}
. (3)

If A is a J -Hermitian matrix, then WJ
C (A) is a connected subset of the real line

(cf. [2]).
We denote by σ±

J (A) the sets of the eigenvalues of A with eigenvectors x such that
x∗Jx = ±1. We recall that a J -Hermitian matrix A is J -unitarily diagonalizable if
and only if every eigenvalue of A belongs either to σ+

J (A) or to σ−
J (A). In this case,

σ+
J (A) (respectively, σ−

J (A)) consists of r (respectively, n − r) eigenvalues.
Let A be a J -Hermitian matrix whose eigenvalues α1 � · · · � αr belong to σ+

J (A)

and αr+1 � · · · � αn belong to σ−
J (A). The eigenvalues of A are said to not interlace

if either αr > αr+1 or αn > α1. Otherwise, they are said to interlace.
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Before the statement of Theorem 1.1, some observations are in order. If the eigen-
values of A and the eigenvalues of C do not interlace, then the following four
possibilities may occur: (i) αr > αr+1 and cr > cr+1, (ii) αr > αr+1 and cn > c1,
(iii) αn > α1 and cr > cr+1, (iv) αn > α1 and cn > c1. Then (αk − αl)(ck′ − cl′) <

0 for all 1 � k, k′ � r , r + 1 � l, l′ � n if and only if (ii) or (iii) occurs. In the same
way, (αk − αl)(ck′ − cl′) > 0 for all 1 � k, k′ � r , r + 1 � l, l′ � n if and only if
(i) or (iv) occurs.

Our main result is the following theorem.

Theorem 1.1. Let J = Ir ⊕ −In−r , 0 < r < n, and let A, C be non-scalar J -Her-
mitian and J -unitarily diagonalizable matrices with eigenvalues αi, ci, i = 1, . . . , n,

respectively. Let α1 � · · · � αr (c1 � · · · � cr) belong to σ+
J (A) (σ+

J (C)) and let
αr+1 � · · · � αn (cr+1 � · · · � cn) belong to σ−

J (A) (σ−
J (C)). If the eigenvalues of

A and the eigenvalues of C do not interlace, the statements (i) and (ii) hold:

(i) WJ
C (A) = (−∞,

∑n
i=1 ciαi

]
if and only if (αk − αl)(ck′ − cl′) < 0, for all

1 � k, k′ � r, r + 1 � l, l′ � n.

(ii) WJ
C (A) = [∑r

i=1 ciαr−i+1 +∑n
i=r+1 ciαn+r−i+1, +∞)

if and only if (αk −
αl)(ck′ − cl′) > 0, for all 1 � k, k′ � r, r + 1 � l, l′ � n.

(iii) If either the eigenvalues of A interlace and αr /= αr+1, α1 /= αn or the eigen-
values of C interlace and cr /= cr+1, c1 /= cn, then WJ

C (A) is the whole real
line.

As will be shown in Theorem 2.1, the converse of (iii) in Theorem 1.1 does not
hold.

Corollary 1.2. Under the same assumptions of Theorem 1.1 on J, A, C and assum-
ing that the eigenvalues of A and C do not interlace, the statements (i) and (ii)
hold:

(i) If (αk − αl)(ck′ − cl′) < 0 for all 1 � k, k′ � r, r + 1 � l, l′ � n, then

Tr(CA) �
n∑

i=1

ciαi .

(ii) If (αk − αl)(ck′ − cl′) > 0 for all 1 � k, k′ � r, r + 1 � l, l′ � n, then
r∑

i=1

ciαr−i+1 +
n∑

i=r+1

ciαn+r−i+1 � Tr(CA).

2. Proof of Theorem 1.1

We present some lemmas needed for the proof of Theorem 1.1.
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Lemma 2.1 [2]. Let A ∈ Mn and J = Ir ⊕ −In−r , 0 < r < n. Suppose that C =
c1In1 ⊕ · · · ⊕ cpInp ∈ Mn, n1 + · · · + np = n, and that c1, . . . , cp are distinct. If
z = Tr(CU−1AU), U ∈ Ur,n−r , is a corner of WJ

C (A), that is, if z is a boundary
point of WJ

C (A) and there exists a sufficiently small ε > 0 such that the intersection
of WJ

C (A) and the circular disc D = {υ ∈ C : |υ − z| < ε} is contained in a sec-
tor of D of degree less than π, then U−1AU = A1 ⊕ · · · ⊕ Ap, where Ai ∈ Mni

,

i = 1, . . . , p, and z = ∑p

i=1 ciTr(Ai).

Let Sn be the symmetric group of degree n, and let

Sr
n = {σ ∈ Sn : σ(j) = j, j = r + 1, . . . , n},

Ŝn−r
n = {σ ∈ Sn : σ(j) = j, j = 1, . . . , r}.

Lemma 2.2. Let J = Ir ⊕ −In−r , 0 < r < n. Let C be a diagonal matrix with prin-
cipal entries c1 � · · · � cr > cr+1 � · · · � cn and let A be a J -Hermitian matrix.
If z ∈ WJ

C (A) is a corner of WJ
C (A), then all eigenvalues α1, . . . , αn of A are real

and there is a permutation σ1 ∈ Sr
n and σ2 ∈ Ŝn−r

n such that

z = zσ1σ2 =
r∑

i=1

ciασ1(i) +
n∑

i=r+1

ciασ2(i). (4)

Proof. Write

c1 = · · · = ck1 > ck1+1 = · · · = ck2 > · · · > ckp−1+1 = · · · = cn.

Then

C =
p⊕

j=1

ckj
Inj

, nj = kj − kj−1 (k0 = 0, kp = n).

By Lemma 2.1, U−1AU = A1 ⊕ · · · ⊕ Ap with Ai ∈ Mni
, i = 1 . . . , p, and n1 +

· · · + np = n. Since n1 + · · · + nk = r , for some k, each Ai is Hermitian. There are
unitary matrices Si such that S−1

i AiSi is a diagonal Hermitian matrix. Therefore, all
the eigenvalues α1, . . . , αn of A are real. Let V = S1 ⊕ · · · ⊕ Sp. Then V is unitary
as well as J -unitary and

V −1U−1AUV = P T
σ diag(α1, . . . , αn)Pσ ,

for Pσ the permutation matrix associated with σ = σ1σ2, σ1 ∈ Sr
n and σ2 ∈ Ŝn−r

n .

By Lemma 2.1, we obtain (4). �

Lemma 2.3. Let J = I1 ⊕ −I1, and let C, A ∈ M2 be non-scalar and J -Hermitian
with eigenvalues c1, c2 and α1, α2, respectively. Suppose that C, A are J -unitarily
diagonalizable. Then:
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(i) WJ
C (A) = (−∞, α1c1 + α2c2] if and only if (α1 − α2)(c1 − c2) < 0;

(ii) WJ
C (A) = [α1c1 + α2c2, +∞) if and only if (α1 − α2)(c1 − c2) > 0.

Proof. The matrix C is J -unitarily diagonalizable, therefore we may assume, with-
out loss of generality, C = diag(c1, c2). Since C = (c1 − c2)E11 + c2I2, we clearly
have

WJ
C (A) = (c1 − c2)W

J
E11

(A) + c2Tr(A),

where E11 = diag(1, 0). The result follows from the Hyperbolical Range Theorem
[2]. �

In the sequel, A[kl] denotes the submatrix of A lying in rows and columns k, l.

Lemma 2.4. Let J = Ir ⊕ −In−r , 0 < r < n, and let C ∈ Mn be a non-scalar dia-
gonal matrix. Given a J -unitarily diagonalizable matrix A ∈ Mn, WJ

C (A) is a sin-
gleton if and only if A is a scalar matrix.

Proof. The implication (⇐) is obvious.
(⇒) (By contradiction.) Since A ∈ Mn is J -unitarily diagonalizable, we may con-

sider A = diag(α1, . . . , αn). If A, C are non-scalar matrices, it is possible to find
integers k and l, 1 � k < l � n, such that A′ = A[kl] and C′ = C[kl] are non-scalar
matrices. If J ′ = J [kl] = I1 ⊕ −I1, then k � r < r + 1 � l. Obviously, WJ

C (A) con-

tains the subset � = WJ ′
C′ (A′) + ∑

i /=k,l ciαi . By Lemma 2.3, � does not reduce to
a point, contradicting the hypothesis. If J ′ = I2, then k < l � r . By the Elliptical
Range Theorem [4], the subset � of WJ

C (A) is an elliptical disc possibly degen-
erate but, under our assumptions, never a point, a contradiction. If J ′ = −I2, then
r + 1 � k < l, and this case can be analogously treated. �

The proof of Lemma 2.5 is an adaptation of the proof of Proposition 3.1 in [8].
We start by fixing some notation.

Consider the affine space

A(n−1)2 =
A = (aij ) ∈ Mn(R) :

n∑
i=1

aiq =
n∑

j=1

apj = 1, 1 � p, q � n

 .

For J = Ir ⊕ −In−r = diag(ε1, ε2, . . . , εn), define the set of all J -doubly stochastic
matrices

DJ (r, n − r) = {
A = (ai�) ∈ A(n−1)2 : ai�εiε� � 0, 1 � i, � � n

}
.

This convex set is a subset of the closed convex cone

D̃J (r, n − r) = {A = (ai�) ∈ Mn(R) : ai�εiε� � 0, 1 � i, � � n} .

Denote by �J (r, n − r) the set of all J -orthostochastic matrices of size n × n, that
is, the set of matrices T = (tik) ∈ DJ (r, n − r) defined by
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tik = εiεk|uik|2 = εiεkuikuik, 1 � i, k � n,

for U = (uik) ∈ Ur,n−r .

Lemma 2.5. Let J = Ir ⊕ −In−r = diag(ε1, ε2, . . . , εn), n � 2, 0 < r < n, and
consider C = diag(c1, c2, . . . , cn), A = diag(a1, a2, . . . , an) ∈ Mn(R). If there
exists β > 0 for which

cka�εkε� � β, 1 � k, � � n, (5)

that is, if the convex hull of the n2 points cka�εkε� (k, � = 1, 2, . . . , n) is contained
in the open positive half-axis, then WJ

C (A) is a closed half-line in R.

Proof. Let n � 2 and 0 < r < n. Consider the affine functional � : A(n−1)2 → C

defined by

�(bij ) =
n∑

i,j=1

ciaj bij .

If B = (bkl) ∈ DJ (r, n − r) and (5) is satisfied, then

β

n∑
k,�=1

bk�εkε� � �(B) � max
1�p,q�n

cqapεpεq

n∑
k,�=1

bk�εkε�.

For every constant M > 0, the setB = (bk�) ∈ DJ (r, n − r) :
n∑

k,�=1

bk�εkε� � M

 ,

as well as its subset of J -orthostochastic matricesB = (bk�) ∈ �J (r, n − r) :
n∑

k,�=1

bk�εkε� � M

 , (6)

are compact. We have

WJ
C (A) ⊂ {

�(B) : B ∈ D̃J (n − r, r)
} ⊂ [0, +∞),

because if U = (uij ) is J -unitary, then U−1 = JU∗J = (εkεl ūlk)k,l so that

Tr(CU−1AU) =
n∑

k,l=1

ckalεkεl |ukl |2.

Let (zn)
∞
n=1 be an arbitrary sequence of points of WJ

C (A) satisfying zn → z∞ ∈ R

as n → ∞. Then, there exists M0 > 0 such that

{zn : n = 1, 2, 3, . . .} ⊂ [0, M0].
We set M = M0/β. Hence, there exist J -orthostochastic matrices B(n) = (b

(n)
k� ) for

which



132 N. Bebiano et al. / Linear Algebra and its Applications 407 (2005) 125–139

zn = �(B(n)),

n−1∑
k,�=1

b
(n)
k� εkε� � M.

By the compactness of (6), we can choose a subsequence nk (k = 1, 2, 3, . . .) for
which

B(nk) → B(∞)

as k → ∞, for some J -orthostochastic matrix B(∞), and so

z∞ = �(B(∞)).

Thus, WJ
C (A) is a closed subset of [0, +∞). As a consequence of (5), A, C are non-

scalar matrices and so, by Lemma 2.4, WJ
C (A) does not reduce to a point. Since

WJ
C (A) is connected and unbounded, it must be a closed half-line and the proof is

complete. �

Remark. If there exists β < 0 such that

cka�εkε� � β, 1 � k, � � n, (7)

Lemma 2.5 is also valid.

Proof of Theorem 1.1. (i) (⇐) The J -Hermitian and J -unitarily diagonalizable
matrices A, C may be assumed in diagonal form, say A = diag(α1, . . . , αr ,

αr+1, . . . , αn) and C = diag(c1, . . . , cr , cr+1, . . . , cn). Since A and C are non-scalar
matrices, Lemma 2.4 guarantees that WJ

C (A), which is a connected subset of the real
line, is not a singleton. Since the eigenvalues of A and the eigenvalues of C do not
interlace, there exist α, c ∈ C such that α′

p = αp + α, c′
p = cp + c, p = 1, . . . , n,

satisfy (5) or (7). For instance, choose α such that αr > −α > αr+1 if αr > αr+1
and αn > −α > α1. Therefore, Lemma 2.5 ensures that WJ

C+cI (A + αI) is a closed
half-line in R. Having in mind that

WJ
C+cI (A + αI) = WJ

C (A) + αTr(C) + cTr(A) + nαc,

WJ
C (A) is also a closed half-line contained in R.
Let C̃ = C[1n], Ã = A[1n] and J̃ = J [1n]. Then

WJ̃

C̃
(Ã) +

n−1∑
j=2

cjαj ⊂ WJ
C (A).

Assume that (αk − αl)(ck′ − cl′) < 0, 1 � k, k′ � r, r + 1 � l, l′ � n. This implies
that (α1 − αn)(c1 − cn) < 0 and, by Lemma 2.3, WJ̃

C̃
(Ã) contains the half-line un-

bounded below generated by the J̃ -unitary subgroup{[
cosh θ sinh θ

sinh θ cosh θ

]
: θ ∈ R

}
.
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Thus, WJ
C (A) = (−∞, z] for a certain real number z. Obviously, the extremum z of

the half-line is a corner of WJ
C (A). By the hypothesis, cr /= cr+1. If cr < cr+1, the

condition (αr − αr+1)(cr − cr+1) < 0 implies αr > αr+1. Since WJ
C (A) = WJ

A(C),
we can exchange the roles of C and A, and so we can assume c1 � · · · � cr >

cr+1 � · · · � cn. Now, from Lemma 2.2, it follows that z is a σ -point, zσ , of type
(4). The case cr > cr+1 may be treated similarly.

Suppose that σ1(i) = i, i = 1, . . . , l − 1, σ1(l) /= l and consider l < k � r such
that σ1(k) = l. We have

r∑
i=1
i /=k,l

ciασ1(i) + clαl + ckασ1(l) +
n∑

i=r+1

ciασ2(i) − zσ

= (cl − ck)(αl − ασ1(l)) � 0, (8)

because k > l and σ1(l) > l. Let ξ ∈ Sn be such that ξ(l) = l, ξ(k) = σ1(l), ξ(j) =
σ1(j), for 1 � j � r , j /= k, j /= l, and ξ(j) = σ2(j), j = r + 1, . . . , n. If the equal-
ity does not hold in (8), then zξ > zσ , a contradiction, since zσ is the maximum of
WJ

C (A). Therefore, the equality in (8) holds and the point zξ is also the maximum.
Hence, we can take ξ as new σ1 in (8). Repeating this argument, we conclude
that σ1(i) = i, i = 1, . . . , r − 1. Since σ1 ∈ Sr

n, then σ1(r) = r . Thus, σ1 can be
assumed the identity. Similarly, it can be shown that σ2 ∈ Ŝn−r

n is the identity, and
so z = ∑n

i=1 ciαi .
We prove (by contradiction) the direct implication in (i). Indeed, assume that there

exist 1 � k, k′ � r, r + 1 � l, l′ � n, such that (αk − αl)(ck′ − cl′) > 0 and

WJ
C (A) =

(
−∞,

n∑
i=1

αici

]
.

Obviously, the points zσ = ∑n
i=1 ciασ(i), σ = σ1σ2 ∈ Sn, σ1 ∈ Sr

n, σ2 ∈ Ŝn−r
n , be-

long to WJ
C (A). Consider any σ1 ∈ Sr

n and σ2 ∈ Ŝn−r
n such that σ1(k) = k′ and

σ2(l) = l′. Consider the matrices A′
kl = diag(ασ(k), ασ(l)), Ckl = diag(ck, cl) and

Jkl = J [kl]. We have

zσ −
∑
i /=k,l

ciασ(i) = ckασ(k) + clασ(l) = Tr(CklA
′
kl) ∈ W

Jkl

Ckl
(A′

kl).

The set W
Jkl

Ckl
(A′

kl) + ∑
i /=k,l ciασ(i) is contained in WJ

C (A). Since (αk − αl)(ck′ −
cl′) > 0, by Lemma 2.3 (ii), we have[

n∑
i=1

ciασ(i), +∞
)

= W
Jkl

Ckl
(A′

kl) +
∑
i /=k,l

ciασ(i) ⊂ WJ
C (A),

a contradiction.
(ii) (⇐) Analogously to the proof of (i) (⇐), it can be proved that WJ

C (A) =
[w, +∞), for a certain real number w. Thus, w is a corner of WJ

C (A), and so
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w = zσ , for σ = σ1σ2 ∈ Sn, σ1 ∈ Sr
n and σ2 ∈ Ŝn−r

n . Suppose that σ1(i) = r + 1 −
i, i = 1, . . . , l − 1, σ1(l) /= r + 1 − l, and consider l < k � r such that σ1(k) =
r + 1 − l. Then

r∑
i=1
i /=k,l

ciασ1(i) + clαr+1−l + ckασ1(l) +
n∑

i=r+1

ciασ2(i) − zσ

= (cl − ck)(αr+1−l − ασ1(l)) � 0, (9)

because k > l and σ1(l) < r + 1 − l. Let τ ∈ Sn be such that τ(i) = r + 1 − i, i =
1, . . . , l, τ(k) = σ1(l) and τ(i) = σ2(i), i = r + 1, . . . , n. Only the equality can
occur in (9), otherwise we would have zτ < zσ , a contradiction. That is, zτ is also
the minimum. Repeating this argument, we get σ1(i) = r + 1 − i, i = 1, . . . , r − 1.

Since σ1 ∈ Sr
n, then σ1(r) = 1. Analogously, we find that σ2(i) = n + r + 1 − i, i =

r + 1, . . . , n, and so w = ∑r
i=1 ciασ1(i) + ∑n

i=r+1 ciασ2(i), σ1 ∈ Sr
n, σ2 ∈ Ŝn−r

n .
(ii) (⇒) The proof is analogous to the proof of (i) (⇒).
(iii) We take the matrices A, C in diagonal form. By the hypothesis, either the

eigenvalues of A interlace and αr /= αr+1, α1 /= αn or the eigenvalues of C inter-
lace and cr /= cr+1, c1 /= cn. Suppose that the eigenvalues of A interlace and αr /=
αr+1, α1 /= αn. Then αr − αr+1 < 0, α1 − αn > 0.

Since C is non-scalar, c1 /= cn or cr /= cr+1. We assume that c1 > cn. Hence we
have

(αr − αr+1)(c1 − cn) < 0, (α1 − αn)(c1 − cn) > 0.

Consider the permutation matrix P ′ associated with the product of the transposition
(1r) and the transposition (r + 1n) and let A′ = P ′AP ′T = diag(α′

1, . . . , α
′
n).

Let A′
1n = diag(α′

1, α
′
n), A1n = diag(α1, αn), C1n = diag(c1, cn), and J1n = I1 ⊕

−I1. By Lemma 2.3 (i), the set

W
J1n

C1n
(A′

1n) +
∑

q /=1,n

cqα′
q

is a half-line (−∞, z′
1]. This half-line is contained in WJ

C (A). By Lemma 2.3 (ii),
the set

W
J1n

C1n
(A1n) +

∑
g /=1,n

cgαg

is a half-line [z′
2, ∞). This set is contained in WJ

C (A). By the connectedness of
WJ

C (A), we conclude that WJ
C (A) = (−∞, +∞). �

The study of WJ
C (A), for J -Hermitian matrices A and C, such that A has a non-

real spectrum and C is J -unitarily diagonalizable (and so C has a real spectrum), is
treated in Theorem 2.1. This theorem uses the following lemma, an easy consequence
of the Hyperbolical Range Theorem [2].
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Lemma 2.6. Let J = I1 ⊕ −I1, and let C ∈ M2 be a J -unitarily diagonalizable
J -Hermitian matrix with distinct eigenvalues c1, c2. Suppose that A ∈ M2 is a J -
Hermitian matrix with eigenvalues α1, α2 ∈ C\R. Then WJ

C (A) = R.

Theorem 2.1. Let J = Ir ⊕ −In−r , 0 < r < n, and let C be a non-scalar J -Her-
mitian and J -unitarily diagonalizable matrix. Let A ∈ Mn be a J -Hermitian matrix
with eigenvalues which are not all real. Then WJ

C (A) is the whole real line.

Proof. We use the fact that WJ
C (A) may be defined by (3). Suppose that X is a non-

degenerate linear subspace of Cn and Y is the orthogonal complement of X with
respect to the inner product [·, ·]. If X and Y are of the type (r1, s1) and (r2, s2),
respectively, then we have r = r1 + r2 and n − r = s1 + s2. This is a consequence
of Sylvester’s Inertia Theorem and [3, Theorem 10.10, p. 23]. We consider the
projection P defined by P(x + y) = x, for x ∈ X, y ∈ Y . Suppose that σ+

J (C) =
{c1, . . . , cr } and σ−

J (C) = {cr+1, . . . , cn}. Then we have the inclusion

WJ
(c1,...,cr1 ,cr+1,...,cr+s1 )((JP ∗JAP )|X)

+W(cr1+1,...,cr ,cr+s1+1,...,cn)((J [I − P ]∗JA[I − P ])|Y ) ⊂ WJ
C (A).

We show that there exists a 2-dimensional non-degenerate subspace X of Cn of type
(1, 1) for which (JP ∗JAP )|X is J -Hermitian and its eigenvalues are imaginary. If
we take such a space X, then we may suppose that c1 ∈ σ+

J (C) and cr+1 ∈ σ−
J (C)

satisfy the condition c1 /= cr+1. Hence, the theorem follows from Lemma 2.6.
Suppose that α ∈ C is an eigenvalue of A with �(α) > 0. Let ξ be a non-zero

eigenvector of A corresponding to the eigenvalue α. Then ξ satisfies [ξ, ξ ] = 0. Set

X = {x : x = αξ + βJξ, α, β ∈ C}.
Since [Jξ, ξ ] = (ξ, ξ) > 0, the vectors ξ and Jξ are linearly independent. Taking
into account that

[aξ + bJ ξ, cξ + dJ ξ ] = ac̄[ξ, ξ ] + bd̄[Jξ, J ξ ] + bc̄[Jξ, ξ ] + ad̄[ξ, J ξ ]
= (bc̄ + ad̄)(ξ, ξ),

the space X is non-degenerate with respect to [·, ·]. The operator (JP ∗JAP )|X is J -
Hermitian and has an eigenvalue α and, hence, α. Thus, the existence of the asserted
linear subspace is proved. �

3. Consequences of Theorem 1.1

Theorem 3.1. Let r be a given integer with 0 < r < n and J = Ir ⊕ −In−r =
diag(ε1, . . . , εn). Let A ∈ Mn be J -Hermitian with non-interlacing real eigenvalues
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α1 � · · · � αr in σ+
J (A) and αr+1 � · · · � αn in σ−

J (A). Then statements (i)–(iv)

hold:

(i) If α1 < αn and 1 � k � r, then

k∑
j=1

x∗
j JAxj �

k∑
j=1

αj (10)

for all xj ∈ Cn such that x∗
j J xl = δjl , and conversely.

(ii) If α1 < αn and r + 1 � k � n, then

r∑
j=1

x∗
j JAxj −

k∑
j=r+1

x∗
j JAxj �

k∑
j=1

αj (11)

for all xj ∈ Cn such that x∗
j J xl = δjlεl , and conversely.

(iii) If αr > αr+1 and 1 � k � r, then

r∑
j=r−k+1

αj �
k∑

j=1

x∗
j JAxj (12)

for all xj ∈ Cn such that x∗
j J xl = δjl , and conversely.

(iv) If αr > αr+1 and r + 1 � k � n, then

r∑
j=1

αj +
n∑

j=n−k+r+1

αj �
r∑

j=1

x∗
j JAxj −

k∑
j=r+1

x∗
j JAxj (13)

for all xj ∈ Cn such that x∗
j J xl = δjlεl , and conversely.

(v) If A ∈ Mn is J -Hermitian with interlacing real eigenvalues, αr /= αr+1, αn /=
α1, then
k∑

j=1

x∗
j JAxj , 1 � k � r

and
r∑

j=1

x∗
j JAxj −

k∑
j=r+1

x∗
j JAxj , r + 1 � k � n

with xj ∈ Cn such that x∗
j J xl = δjlεl , may assume any real value.

Proof. Let C = diag(c1, . . . , cn) and let U = [x1 x2 · · · xn] be a J -unitary matrix.
Then
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Tr(CU−1AU) =
n∑

j=1

e∗
jCU−1AUej =

r∑
j=1

cj [Axj , xj ] −
n∑

j=r+1

cj [Axj , xj ],

since U−1 = JU∗J and Cej = εj cj ej (j = 1, . . . , n), where ej denote the vectors
of the standard basis in Cn. When C = Ik ⊕ 0n−k , this becomes

Tr(CU−1AU) =
{∑k

j=1[Axj , xj ], if 1 � k � r,∑r
j=1[Axj , xj ] − ∑k

j=r+1[Axj , xj ], if r + 1 � k � n.

Conversely, any sequence x1, . . . , xk such that [xj , xl] = εlδjl (j, l = 1, . . . , k) can
be completed to a sequence x1, . . . , xk, xk+1, . . . , xn such that [xj , xl] = εlδjl (j, l =
1, . . . , n). To prove the direct implications in (i) and (iii), we consider Cε = Ik ⊕
εIr−k ⊕ 0n−r , 1 � k < r , 0 < ε < 1, and take the limit as ε → 0. The result easily
follows from Theorem 1.1.

To prove the converse implication in (i), we observe that by Theorem 1.1 (i) the
inequality (9) implies αk − αl < 0 for all 1 � k � r and r + 1 � l � n. Therefore,
for k = 1 and l = n we get α1 < αn.

To prove the converse implication in (iii), we proceed analogously.
To prove the direct implications in (ii) and (iv), we consider Cε = Ir ⊕ (1 −

ε)Ik−r ⊕ 0n−k , r + 1 � k � n, 0 < ε < 1, and take the limit for ε → 0. The con-
verse implications easily follow from Theorem 1.1. �

Remarks. The equality holds in the right hand side inequality in (10) if the xj are
chosen to be J -orthonormal eigenvectors corresponding to the k greatest eigenvalues
of A. Similar choices yield equalities in the other inequalities.

The converse of Theorem 3.1 (v) does not hold, as a consequence of Theorem
2.1.

Corollary 3.2. Let J = Ir ⊕ −In−r , 0 < r < n, and let A ∈ Mn be J -Hermitian
with non-interlacing eigenvalues α1 � · · · � αr in σ+

J (A) and αr+1 � · · · � αn in
σ−

J (A). The following holds:

(i) If α1 < αn, then

x∗JAx

x∗Jx
� α1, for all x ∈ Cn such that x∗Jx > 0;

αn � x∗JAx

x∗Jx
, for all x ∈ Cn such that x∗Jx < 0;

α1 = max
x∗Jx=1

(x∗JAx); αn = min
x∗Jx=−1

(−x∗JAx);

and conversely.
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(ii) If αr > αr+1, then

x∗JAx

x∗Jx
� αr+1, for all x ∈ Cn such that x∗Jx < 0;

αr � x∗JAx

x∗Jx
, for all x ∈ Cn such that x∗Jx > 0;

αr = min
x∗Jx=1

(x∗JAx); αr+1 = max
x∗Jx=−1

(−x∗JAx);

and conversely.

Proof. (i) (⇒) The first inequality in (i) is a straightforward consequence of Theo-
rem 3.1 (i) with k = 1. For the second inequality, we consider −J instead of J . In this
case, αr+1, . . . , αn ∈ σ+

−J (A) and α1, . . . , αr ∈ σ−
−J (A). Therefore, using Theorem

3.1 (iii) with k = 1, we have that

αn � x∗(−J )Ax

x∗(−J )x
= x∗JAx

x∗Jx
.

(i) (⇐) It is an obvious consequence of the converse implication in Theorem 3.1
(i).

The proof of (ii) follows analogously. �

Theorem 3.3. Let J = Ir ⊕ −In−r , 0 < r < n, and let A = (aij ) ∈ Mn be a J -
Hermitian matrix with non-interlacing eigenvalues α1 � · · · � αr and αr+1 � · · · �
αn in σ+

J (A) and σ−
J (A), respectively. Let a′

11 � · · · � a′
rr and a′

r+1,r+1 � · · · �
a′
nn be a rearrangement of the diagonal entries a11, . . . , arr and ar+1,r+1, . . . , ann,

respectively. Then:

(i)
∑k

j=1 a′
jj �

∑k
j=1 αj , for all 1 � k � n, with equality for k = n, if and only

if α1 < αn;
(ii)

∑k
j=1 a′

jj �
∑r

j=r−k+1 αj , for all 1 � k � r, or
∑r

j=1 a′
jj + ∑n

j=n−k+r+1

a′
jj �

∑r
j=1 αj + ∑n

j=n−k+r+1 αj , for all r � k � n, with equality for k =
n, if and only if αr > αr+1.

Proof. (i) (⇐) There exists a permutation matrix Pσ associated with σ = σ1σ2 ∈ Sn,
σ1 ∈ Sr

n and σ2 ∈ Ŝn−r
n , such that the diagonal entries of A′ = JPσ JAP T

σ = (a′
ii )

are arranged in the following order: a′
11 � · · · � a′

rr and a′
r+1,r+1 � · · · � a′

nn. Con-
sider the k first vectors of the standard basis of Cn, xj = ej , j = 1, . . . , k. Since
WJ

C (A) = WJ
C (A′) and α1 < αn, by (10) and (11) we obtain

k∑
j=1

αj �
k∑

i=1

e∗
i JA′ei =

k∑
j=1

a′
jj , k = 1, . . . , r
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and
k∑

j=1

αj �
r∑

j=1

e∗
j JA′ej −

k∑
i=r+1

e∗
i JA′ei =

k∑
j=1

a′
jj , k = r + 1, . . . , n

and equality holds for k = n, because a′
11 + · · · + a′

nn = Tr(A).
(i) (⇒) It is an obvious consequence of the converse implications in Theorem 3.1

(i) and (ii).
(ii) The proof follows analogously to (i). �
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