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Abstract

The definition of first countable space is standard and its meaning is very clear. But is that the case in the absence of the Axiom of
Choice? The answer is negative because there are at least three choice-free versions of first countability. And, most likely, the usual
definition does not correspond to what we want to be a first countable space. The three definitions as well as other characterizations
of first countability are presented and it is discussed under which set-theoretic conditions they remain equivalent.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A topological space is first countable if there is a countable neighborhood base (or local base) at each of its
points. In general, that is in the presence of the Axiom of Choice, this definition is clear and there is no room for two
different interpretations. But what happens when the Axiom of Choice does not hold? The first consequence is that the
definition does not say how to choose, simultaneously, a countable neighborhood base at each point of a first countable
space. The existence of a solution for this kind of problem is one of the reasons for the use of the Axiom of Choice.
Although, there are many first countable spaces where such a choice can be done without using the Axiom of Choice.
Furthermore, in some cases one can built, at the same time, surjections from the natural numbers to a local base at
each point. For instance, in a metric space such a construction is done using the open balls of radius 1/n. These three
different situations induce three possible definitions of first countability in ZF, Zermelo–Fraenkel set theory without
the Axiom of Choice.

In the literature may be found discussions about the equivalence, in ZF, of alternative ways of defining same topo-
logical concepts such as compact space [14,4,10] or complete metric space [1,8]. Naturally, different definitions of the
same concept arise to different versions of several theorems. The splitting of the concepts of compactness and com-
pleteness originated the study of the relations between the Axiom of Choice and “new” versions of the Tychonoff’s
Compactness Theorem [10,3,14] or the Baire Category Theorem [1,11]. Following these ideas, we introduce three def-
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initions of first countable space and their relations in ZF are investigated. After doing that, we search for ZF-alternatives
to a well-known result (Theorem 3.1).

We introduce next some definitions of set-theoretic axioms which will be used throughout the paper. All results
take place in the setting of ZF.

Definitions 1.1.

(a) The Axiom of Choice (AC) states that every family of non-empty sets has a choice function.
(b) The Axiom of Multiple Choice (MC) states that for every family (Xi)i∈I of non-empty sets, there is a family

(Ai)i∈I of non-empty finite sets with Ai ⊆ Xi for each i ∈ I .
(c) The Axiom of Countable Choice (CC) states that every countable family of non-empty sets has a choice function.
(d) MCω states that for every family (Xi)i∈I of non-empty sets, there is a family (Ai)i∈I of non-empty countable

sets with Ai ⊆ Xi for each i ∈ I .
(e) The Countable Union Condition (CUC) states that the countable union of countable sets is countable.

We denote by AC(α) the Axiom of Choice restricted to families of sets each of which has cardinality at most equal
to α and by AC(R) the axiom of choice for families of subsets of R. Similar notation is used with MC, CC and MCω.

One should remark that in ZF the Axiom of Choice is equivalent to the Axiom of Multiple Choice [15]. Although
their restrictions are not equivalent in general.

Proposition 1.2. ([6, p. 76], [12]) The following conditions are equivalent to CC (respectively CC(R)):

(i) every countable family of non-empty sets (respectively subsets of R) has an infinite subfamily with a choice
function;

(ii) for every countable family (Xn)n∈N of non-empty sets (respectively subsets of R), there is a sequence which take
values in an infinite number of the sets Xn.

Lemma 1.3. Let (X,T ) be a topological space.

(a) If (X,T ) is second countable, then |T | � |R| = 2ℵ0 .
(b) If (X,T ) is a T0-space, then |X| � |T |.

2. Definitions

We start this section with three versions of the First Axiom of Countability, which are equivalent in the presence
of the Axiom of Choice. They will be denoted by A, B and C, A being the usual definition. Later, other conditions
choice-equivalent to these ones will be introduced and they will also be denoted in alphabetic order. To make the new
definitions easier to understand and to compare, they are presented in symbolic language.

Definitions 2.1. Let X be a topological space. One says that X satisfies:

A if (∀x ∈ X)(∃B(x))|B(x)| � ℵ0 and B(x) is a local base at x;
B if (∃(B(x))x∈X)(∀x ∈ X)|B(x)| � ℵ0 and B(x) is a local base at x;
C if (∃(B(n, x))n∈N,x∈X)(∀x ∈ X){B(n,x): n ∈ N} is a local base at x.

In the definitions of A, B and C, one can take only the open neighborhoods without changing the logic value of
them. This fact is pointed out because it will be seen later situations where that is not the case.

Lemma 2.2.

(a) If a topological space satisfies B, then satisfies A.
(b) If a topological space satisfies C, then satisfies B.
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Proposition 2.3. Every metric or second countable space satisfies C, and then also B and A.

The first intuitive idea which one might have is that the Axiom of Choice is necessary to proof the equivalence
between A and B, because the implication A ⇒ B has some formal similarity to the Axiom of Choice. Although, it is
possible to prove that A is equivalent to B from a choice principle weaker then AC.

Theorem 2.4. [9] If MCω holds, then a topological space satisfies A if and only if satisfies B.

There are several models of ZF where AC does not hold, but MCω does, for instance the Cohen/Pincus Model
(M1(〈ω1〉) in [13]).

Unfortunately, it is not known if the equivalence between A and B is provable in ZF.

Proposition 2.5. If MC(2ℵ0) holds, then a topological space satisfies B if and only if satisfies C.

Proof. Since C always implies B, it is only necessary to prove the other direction.
Let X be a topological space which satisfies B. The definition of B says that there is (B(x))x∈X such that B(x) is

a countable local base at x. Define the sets

L(x) := {(
f : N → B(x)

)
: f is a surjection

}
.

Each of the sets L(x) is non-empty and it has cardinality at most 2ℵ0 , since |L(x)| � |B(x)N| � ℵ0
ℵ0 = 2ℵ0 . By

MC(2ℵ0), there is a family (M(x))x∈X such that, for every x, M(x) is finite, non-empty and it is contained in L(x).
It is clear that for B(n,x) := ⋂

f ∈M(x) f (n), {B(n,x): n ∈ N} is a local base at x, which finishes the proof. �
Lemma 2.6. [7] The following conditions are equivalent:

(i) AC(ℵ0);
(ii) for every family of countable sets (Xi)i∈I , there is a family of functions (fi)i∈I such that fi is a bijection between

an ordinal αi and Xi .

Corollary 2.7. If AC(ℵ0) and AC(R) hold, then for every family of countable sets (Xi)i∈I , there is a family of
functions (fi)i∈I such that fi is an injection from Xi to N.

A. Church [2] proved that the set of all well-ordered rearrangements of N has the cardinality of R. This is sufficient
to prove this corollary from the previous lemma.

Corollary 2.8. If AC(ℵ0) and AC(R) hold, then a topological space satisfies B if and only satisfies C.

If for any family of countable sets there is a family of injections from each of them to N, then B implies C. So, this
corollary is straightforward after Corollary 2.7.

Remark 2.9. If it is possible to choose injective functions from B(x) to N, for every family (B(x))x∈X of local
bases (�), then B implies C. The reverse implication is not necessarily true, because one not needs to consider the
same local base in both definitions. The condition (�) is, in fact, equivalent to the thesis of Corollary 2.7.

Proposition 2.10. If a topological space satisfies B if and only if satisfies C, then MC(ℵ0) holds.

Proof. Let (Xi)i∈I be a family of non-empty countable sets. Consider each Xi with the discrete topology, Xi ∪̇ {i}
its Alexandroff compactification and the disjoint union X := ⋃

(Xi ∪ {i}) with the sum topology. We know that
|Xi | � ℵ0, and then |Pfin(Xi)| � ℵ0. This implies that each of the points i ∈ I has a countable local base. The space
X satisfies B and then also C. This means that there is a local base {B(n, i): n ∈ N} for each i. Without lost of
generality, one consider that B(1, i) does not contain Xi ∪ {i} and consequently (Xi \ B(1, i))i∈I is a multiple choice
on (Xi)i∈I . �
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Remark 2.11. With an iteration of this process it is possible to write the sets Xi as well ordered unions of finite sets,
which can be regarded as a special case of Lévy’s characterization of the Axiom of Multiple Choice [15].

3. Characterizations

The motivation for the work presented in this section is the attempt to find out the set theoretic status in ZF of
Theorem 3.1. This work has already been started in [9] and originated the idea to find the “best” definition of first
countable space.

We try to see in what conditions we can take a countable local base from any local base in a first countable space.
Following what was done in the previous section, there are three ways to do it: one local and two global, in

accordance with each of the definitions A, B and C.

Theorem 3.1. (ZF + AC) Every neighborhood base at a point of a first countable space contains a countable neigh-
borhood base.

A proof of this theorem can be seen, for instance, in [5, 2.4.12].
This is the usual version of the theorem. However, it is not necessary to consider a first countable space, it suffices

to consider that a specific point has a countable neighborhood base. For that reason, perhaps it is more appropriate to
consider a global version of the theorem.

We introduce now several characterization of first countability in ZFC, which are not equivalent in general. They
are introduced in order to help a better understanding of the possible choice free versions of the previous theorem.

Definitions 3.2. Let X be a topological space. We say that X satisfies:

D if (∀x)(∀V(x) open local base at x)(∃B(x) ⊆ V(x))|B(x)| � ℵ0
and B(x) is a local base at x;

E if (∀(V(x))x∈X with V(x) open local base at x)(∃(B(x))x∈X)

(∀x)B(x) ⊆ V(x), |B(x)| � ℵ0 and B(x) is a local base at x;
F if (∀(V(x))x∈X with V(x) open local base at x)(∃(B(n, x))n∈N,x∈X)

(∀x)[(∀n)B(n, x) ∈ V(x) and {B(n,x): n ∈ N} is a local base at x];
G if (∀x)(∀V(x) local base at x)(∃B(x) ⊆ V(x))|B(x)| � ℵ0

and B(x) is a local base at x;
H if (∀(V(x))x∈X with V(x) local base at x)(∃(B(x))x∈X)

(∀x)B(x) ⊆ V(x), |B(x)| � ℵ0 and B(x) local base at x;
I if (∀(V(x))x∈X with V(x) local base at x)(∃(B(n, x))n∈N,x∈X)

(∀x)[(∀n)B(n, x) ∈ V(x) and {B(n,x): n ∈ N} is a local base at x].

Together with the definitions G–I which try to transfer to ZF the characterization of Theorem 3.1, one includes
three other definitions where the given local bases are open.

Proposition 3.3. For the classes A–I, the following inclusions hold:

(a) C ⊆ B ⊆ A;
(b) F ⊆ E ⊆ D;
(c) I ⊆ H ⊆ G;
(d) G ⊆ D ⊆ A;
(e) H ⊆ E ⊆ B;
(f) I ⊆ F ⊆ C.

G H I

D E F

A B C

Lemma 3.4. Every topological space with a countable topology satisfies F, and then E and D.

The next two theorems enlarge Theorems 3.1 and 3.5 of [9], respectively.
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Theorem 3.5. The following conditions are equivalent to CC:

(i) if, in a topological space, x has a countable local base, then every local base at x contains a countable local
base;

(ii) a topological space satisfies A if and only if satisfies G;
(iii) a topological space satisfies A if and only if satisfies D;
(iv) a topological space satisfies D if and only if satisfies G.

Note that condition (ii) is Theorem 3.1.

Proof. The proof that CC implies (i) is the usual one and it can be seen in [5, 2.4.12]. The implications (i) ⇒ (ii) ⇒
(iii) and (ii) ⇒ (iv) are clear.

It remains to show only that (iii) ⇒ CC and (iv) ⇒ CC.
Assume that CC does not hold. From Proposition 1.2, there is a family (Xn)n∈N of non-empty sets such that every

sequence intersects only a finite number of the sets Xn. One can suppose that each two sets are disjoint.
Define now the sets X := (

⋃
Xn) ∪̇ {∞} and Yn := (

⋃
k�n+1 Xk) ∪̇ {∞}. One consider in X the topologies T1, T2,

and a base B1 for T1:

B1 := {{x}: x ∈ X \ {∞}} ∪ {Yn: n ∈ N};
T2 := {Yn: n ∈ N}.

The topological space (X,T1) satisfies A and (X,T2) satisfies D.
One also has that V := {Yn ∪ {x}: x ∈ Xn, n ∈ N} is a local base at ∞ which does not contain any countable

base, because otherwise there would be a sequence converging to ∞. That is not possible from the hypothesis. In
conclusion, (X,T2) does not satisfies G and (X,T1) does not satisfies D, since V ⊆ T1. �

It is easy to see that |T2| = ℵ0 and that (X,T1) is metrizable by the metric

d(x, y) :=
⎧⎨
⎩

0 if x = y,
1
n

if (x ∈ Xn and y = ∞) or (y ∈ Xn and x = ∞),
1
n

+ 1
m

if x = y, x ∈ Xn and y ∈ Xm,

which gives us the next corollary.

Corollary 3.6. The following conditions are equivalent to CC:

(i) every metric space satisfies G (respectively D);
(ii) every second countable space satisfies G;

(iii) every space with a countable topology satisfies G.

In this point, we will see how Theorem 3.1 can be generalized in a more global way. As it was said before there are
two options for that. One is in the next theorem and the other in Theorem 3.10.

Theorem 3.7. The following conditions are equivalent:

(i) MCω and CC;
(ii) MCω and CUC;

(iii) MCω and CC(ℵ0);
(iv) a topological space satisfies B if and only if satisfies H;
(v) a topological space satisfies B if and only if satisfies E;

(vi) a topological space satisfies E if and only if satisfies H.

Proof. We know that CC ⇒ CUC ⇒ CC(ℵ0) (see [13]). If MCω holds, then CC is equivalent to CC(ℵ0), and finally
(i) ⇔ (ii) ⇔ (iii).
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The implications (iv) ⇒ (v) and (iv) ⇒ (vi) are obvious. It is enough to prove that (ii) ⇒ (iv), (v) ⇒ (i) and
(vi) ⇒ (i).

(ii) ⇒ (iv) See [9, 3.5].
(v) ⇒ (i) and (vi) ⇒ (i). From Theorem 3.5 it is (almost) straightforward that each of the conditions (v) and (vi)

implies CC.
To prove that (v) or (vi) imply MCω, let (Xi)i∈I be a family of non-empty sets. Without lost of generality, one

consider each two sets disjoint and its union disjoint from I . Define the sets X := ⋃
i[(Xi × N) ∪ {(i,∞)}] and

Yn := {(x, k): x ∈ Xi for some i ∈ I, k > n} ∪ (I × {∞}).
One consider the topologies T1 and T2 in X, and also a base B1 for the topology T1:

B1 := {{
(x,n)

}
: x /∈ I, n ∈ N

} ∪ {Yn: n ∈ N};
T2 := {Yn: n ∈ N}.

From the definitions of the topologies, it is clear that T1 satisfies B and T2 satisfies E. In both cases, each of the
elements (x,n) /∈ I × {∞} has a local base with only one element, and then we do not need to consider local bases
for those points. The set V(i) := {Yn ∪ {(x,n)}: x ∈ Xi, n ∈ N} is a local base at (i,∞) for both topologies, and
V(i) ⊆ T1. By hypothesis, one of the conditions (v) or (vi) hold. This means that there is (B(i))i∈I such that B(i) is
a countable base at (i,∞) and it is contained V(i).

The sets Ai := {x ∈ Xi : (∃B ∈ B(i))B \ Yn = {(x,n)} for some n} are countable, which finish the proof. �
Corollary 3.8. Every first countable space (i.e. satisfies A) satisfies H if and only if MCω and CC hold.

This is a possible alternative, in ZF, to Theorem 3.1.

Corollary 3.9. The following conditions are equivalent to MCω and CC:

(i) every metric space satisfies H (respectively E);
(ii) every second countable space satisfies H;

(iii) every space with a countable topology satisfies H.

Proof. It follows that MCω + CC ⇔ (ii) ⇔ (iii), because the topology T2 defined in the proof of Theorem 3.7 is
countable.

By Corollary 3.6, (i) ⇒ CC.
To show that (i) ⇒ MCω , one takes a family (Xi)i∈I as in the proof of (v) ⇒ (i) in Theorem 3.7. Define the metric

space (X,d) with X := ⋃
i (Xi × N × {i} ∪ {(i,∞, i)}) and

d
(
(x,n, i), (y,m, j)

) :=
⎧⎨
⎩

0 if (x,n, i) = (y,m, j),

2 if i = j,
1
n

+ 1
m

if i = j and (x,n) = (y,m),

and the sets Y(i, n) := {(i,∞, i)} ∪ ⋃
k�n+1(Xi × {k} × {i}).

For each i ∈ I , V(i) := {Y(i, n)∪ {(x,n)}: x ∈ Xi, n ∈ N} is a local base at (i,∞, i). From here, the proof follows
as the proof of Theorem 3.7. �
Theorem 3.10. The following conditions are equivalent to the Axiom of Choice:

(i) every first countable space (≡ A) satisfies I;
(ii) a topological space satisfies C if and only if satisfies I;

(iii) a topological space satisfies C if and only if satisfies F;
(iv) a topological space satisfies F if and only if satisfies I.

Proof. Since A, C, F and I are equivalent in ZF + AC, each of the conditions (i)–(iv) follow from AC.
It is clear that (i) ⇒ (ii) ⇒ (iii) and that (ii) ⇒ (iv).
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The proofs for (iii) ⇒ AC and (iv) ⇒ AC are similar to the correspondent proofs of Theorem 3.7. By hypothesis,
there is a surjection between N and each B(i). This surjection allows us to choose an element in each of the sets Ai

of that proof. �
The condition (i) of this theorem is another alternative to Theorem 3.1.

Corollary 3.11. The following conditions are equivalent to AC:

(i) every metric space satisfies I (respectively F);
(ii) every second countable space satisfies I;

(iii) every space with a countable base satisfies I.

The proof is done from Corollary 3.9 as the proof of Theorem 3.10 was done from Theorem 3.7.
It is somehow surprising that an apparently so weak condition, such as condition (iii), is equivalent to the Axiom

of Choice itself.

Proposition 3.12. If MCω holds, then:

(a) a topological space satisfies D if and only satisfies E;
(b) a topological space satisfies G if and only satisfies H.

The proof of this proposition is similar to the proof of Theorem 2.4.

Corollary 3.13. If the Axiom of Countable Choice holds, then the following conditions are equivalent:

(i) MCω;
(ii) a topological space satisfies D if and only satisfies E;

(iii) a topological space satisfies G if and only satisfies H.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) Proposition 3.12.
(ii) ⇒ (i) If D is equivalent to E and CC holds, then A is equivalent to E by Theorem 3.5. Since B implies A,

then B implies E and follows that MCω holds by Theorem 3.7.
(iii) ⇒ (i) Similar to (ii) ⇒ (i). �

Proposition 3.14. If E is equivalent to F or H is equivalent to I, then MC(ℵ0) holds.

If MC(ℵ0) does not hold, then the topological space constructed in the proof of Proposition 2.10 satisfies E and H,
but not F and I.

4. The real numbers

We have seen under which conditions some classes of topological spaces satisfy each of the characterizations of
first countability. Now, we will study the special case of the topological space R with the Euclidean topology.

We recall that R satisfies each of the three definitions A–C.

Theorem 4.1. The following conditions are equivalent to CC(R):

(i) every second countable space satisfies D;
(ii) R satisfies D.

Proof. CC(R) ⇒ (i) We follow the usual proof, taking into consideration that the cardinal of the topology of a second
countable space has at most the cardinal of R (Lemma 1.3).
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(ii) ⇒ CC(R) Let (Xn)n be a countable family of non-empty subsets of R. One can consider that Xn ⊆ ( 1
n+1 , 1

n
),

for all n ∈ N. Consider also the local base V := {(− 1
n
, x): n ∈ N, x ∈ Xn} at 0. By hypothesis, there is a local base

B := {Bk: k ∈ N} at 0 contained in V . Define s(k) := supBk , which belongs to Xn for some n, from the definition
of V . Since B is a local base, {s(k): k ∈ N} has non-empty intersection with an infinite number of the sets Xn.
Proposition 1.2 says that this fact suffices to prove CC(R). �
Proposition 4.2. The following conditions are equivalent to the Axiom of Countable Choice for families of subsets of
P(R) (CC(PR)):

(i) every second countable T0-space satisfies G;
(ii) R satisfies G.

Proof. CC(PR) ⇒ (i) If X is a second countable T0-space, then |X| � |R|, and to prove (i) it is enough to use
countable choice in a family of subsets of P(X).

(ii) ⇒ CC(PR) Let (Xn)n be a family of non-empty subsets of P(R). Consider Xn ⊆ P(( 1
n+1 , 1

n
)) and define

a local base V := {(− 1
n
, 1

n+1 ) ∪ A: n ∈ N, A ∈ Xn} at 0. If R satisfies G, then there is B := {Bk: k ∈ N} such that
B ⊆ V and B is a local base at 0. The existence of B implies the existence of a sequence which take values in Xn for
an infinite number of the sets Xn. This fact completes the proof. �
Proposition 4.3. Every second countable space satisfies F if and only if the Axiom of Choice holds in R (AC(R)).

Proof. (⇐) Let (X,T ) be a second countable space and {Bn: n ∈ N} one of its bases. By Lemma 1.3, |T | � |R| and,
using (AC(R)), we know that R is well ordered and then also T is well ordered.

Consider a family (V(x))x∈X such that V(x) is an open local base at x. For (x,n) ∈ X × N, one defines C(n, x) :=
{V ∈ V(x): V ⊆ Bn}. If x ∈ Bn, then C(n, x) = ∅. Since T has a well order, the sets B(n,x) := minC(n, x) are well
defined. The set B(x) = {B(n,x): n ∈ N, x ∈ Bn} is a local base at x.

(⇒) Let (Xi)i∈I be a family of non-empty subsets of R. We define the topological space Y := R \ {0} ∪ I , with
I ∩ R = ∅ and having the initial (or induced) topology with respect to the function

f :Y → R,

y �→
{

0 if y ∈ I,

y if y /∈ I.

The topological space R is second countable, then Y is also second countable.
There are constructive bijections fn : R → ( 1

n+1 , 1
n
). One defines Xin := fn(Xi). For each i ∈ I ,

V(i) := {I ∪ (− 1
n
,0) ∪ (0, x): x ∈ Xin, n ∈ N} ⊆ TY is a local base at i. By hypothesis, there is a local base at i

{B(k, i): k ∈ N} ⊆ V(i).
For each i ∈ I , supB(1, i) is an element of Xin for some n and Xin is in bijection with Xi , which provides the

desired choice. �
Corollary 4.4. The topological space R satisfies F if and only if the Axiom of Choice holds for families (Xi)i∈R of
non-empty subsets of R.

Proof. (⇐) We follow the previous proof. For that, we only have to notice that |R × N| = 2ℵ0 .
(⇒) Let (Xi)i∈R be a family of non-empty subsets of R. The proof is similar to the proof of Proposition 4.3, with

Y = R, Xin ⊆ (i + 1
n+1 , i + 1

n
) and V(i) := {(i − 1

n
, x): x ∈ Xin, n ∈ N}. �

Taking into consideration the proofs of Propositions 3.7, 4.2, 4.3 and of Corollary 4.4, and also that CC(R) (re-
spectively CC(PR)) implies that the countable union of countable subsets of R (respectively P(R)) is countable, one
can deduce the next results.
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Corollary 4.5. The following conditions are equivalent:

(i) MCω(R) and CC(R);
(ii) every second countable space satisfies E.

Corollary 4.6. The following conditions are equivalent:

(i) MCω holds for families (Xi)i∈R of non-empty subsets of R and CC(R) also holds;
(ii) R satisfies E.

Corollary 4.7. The topological space R satisfies I if and only if the Axiom of Choice holds for families (Xi)i∈R of
non-empty subsets of P(R).

To show that R satisfies I, one uses the usual prove and that for a given local base V(x) at x ∈ R,
|{(f : N → V(x)): f (N) is a local base at x}| � |P(R)N| = |P(R)|.

To prove the other implication, one uses a construction of the type of the ones used in the proofs of Proposition 4.2
and Corollary 4.4.

Corollary 4.8. The following conditions are equivalent:

(i) MCω holds for families (Xi)i∈R of non-empty subsets of P(R) and CC(PR) also holds;
(ii) R satisfies H.

In the third section, we have shown that the Axiom of Choice is a necessary condition to prove that every space
with a countable topology satisfies I. As we did in other situations, we will look now to the situation of T0-spaces with
a countable topology. The results are surprising, mainly because they are identical for the classes G, H and I.

Proposition 4.9. The following conditions are equivalent to CC(R):

(i) every T0-space with a countable topology satisfies I;
(ii) every T0-space with a countable topology satisfies H;

(iii) every T0-space with a countable topology satisfies G.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear (3.3).
CC(R) ⇒ (i) Let (X,T ) be a topological T0-space such that |T | � ℵ0. Since (X,T ) is T0, |X| � |T | � ℵ0 and

then |P(X)| � 2ℵ0 = |R|. Let also (V(x))x∈X be a family such that V(x) is a local base at x.
Define M := {(x,A): x ∈ A ∈ T } and, for each pair (x,A) in M, L(x,A) := {V ∈ V(x): V ⊆ A}. We have that

|M| � |X × T | � ℵ0 and that V(x) is a local base at x, then (L(x,A))(x,A)∈M is a countable family of non-empty
subsets of P(X). By hypothesis CC(R) holds and then we choose an element V (x,A) from each L(x,A). The set
B(x) := {V (x,A): x ∈ A} is a local base at x. The set M is countable, which allows us to built simultaneously an
injective function from each B(x) to N.

(iii) ⇒ CC(R) Consider the topological space (X,T ), with X := [0,ω2] and T := {(α,ω2]: α ∈ ω2}∪ {∅,X}. The
ordinal number ω2 is countable and then T is also countable. It is clear that (X,T ) is a T0-space.

Let (Xn)n∈N be a family of non-empty subsets of R. Since R is in bijection with P(N), and there is a constructive
bijection between N and ((n − 1)ω,nω), we can take Xn ⊆ P(((n − 1)ω,nω)).

The set V := {(nω,ω2] ∪ A: A ∈ Xn, n ∈ N} is a local base at ω2. By hypothesis, there is a local base {Bk: k ∈ N}
at ω2 contained in V . We define now ϕ(k) := min{n ∈ N: (nω,ω2] ⊆ Bk} and Ak := Bk \ (ϕ(k)ω,ω2] ⊆ Xϕ(k).

The sequence (ϕ(k))k∈N converges to ω because {Bk: k ∈ N} is a local base. It is now obvious that (Ak)k∈N is
a sequence which takes values in an infinite number of sets Xn, which together with Proposition 1.2 finishes the
proof. �
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