On the eigenvalues of some tridiagonal matrices ${ }^{\tau}$

C.M. da Fonseca*
Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal

Received 13 December 2004

Abstract

A solution is given for a problem on eigenvalues of some symmetric tridiagonal matrices suggested by William Trench. The method presented can be generalizable to other problems. © 2006 Elsevier B.V. All rights reserved.

MSC: 15A18; 65F15; 15A09; 15A47; 65F10
Keywords: Tridiagonal matrices; Eigenvalues; Recurrence relations; Chebyshev polynomials

1. Inverse of a tridiagonal matrix

In [4], Trench proposed and solved the problem of finding eigenvalues and eigenvectors of the classes of symmetric matrices:

$$
A=[\min \{i, j\}]_{i, j=1, \ldots, n}
$$

and

$$
B=[\min \{2 i-1,2 j-1\}]_{i, j=1, \ldots, n} .
$$

Later Kovačec presented a different proof of this problem [2]. Here a new proof is given. We show that solving this problem is equivalent to solving the eigenvalue problem for tridiagonal matrices with -1 on the 2 on the diagonal except for the (1,1)-entry.

First note that these two matrices are in fact particular cases of a more general matrix:

$$
C=[\min \{a i-b, a j-b\}]_{i, j=1, \ldots, n},
$$

with $a>0$ and $a \neq b$. It is very interesting that, under the above conditions, C is always invertible and its inverse is a tridiagonal matrix.

[^0]Given an n-by- n nonsingular tridiagonal matrix T

$$
T=\left(\begin{array}{ccccc}
a_{1} & b_{1} & & & \\
c_{1} & a_{2} & b_{2} & & \\
& c_{2} & \ddots & \ddots & \\
& & \ddots & \ddots & b_{n-1} \\
& & & c_{n-1} & a_{n}
\end{array}\right)
$$

Usmani [1,5,6] gave an elegant and concise formula for the inverse:

$$
\left(T^{-1}\right)_{i j}= \begin{cases}(-1)^{i+j} b_{i} \cdots b_{j-1} \theta_{i-1} \phi_{j+1} / \theta_{n} & \text { if } i \leqslant j \\ (-1)^{i+j} c_{j} \cdots c_{i-1} \theta_{j-1} \phi_{i+1} / \theta_{n} & \text { if } i>j\end{cases}
$$

where θ_{i} 's verify the recurrence relation $\theta_{i}=a_{i} \theta_{i-1}-b_{i-1} c_{i-1} \theta_{i-2}$, for $i=2, \ldots, n$, with initial conditions $\theta_{0}=1$ and $\theta_{1}=a_{1}$, and ϕ_{i} 's verify the recurrence relation $\phi_{i}=a_{i} \phi_{i+1}-b_{i} c_{i} \phi_{i+2}$, for $i=n-1, \ldots, 1$, with initial conditions $\phi_{n+1}=1$ and $\phi_{n}=a_{n}$. Observe that $\theta_{n}=\operatorname{det} T$. See also [3].

Proposition 1.1. For $a>0$ and $a \neq b$, the tridiagonal matrix of order n

$$
T_{n}=\left[\begin{array}{ccccc}
1+\frac{a}{a-b} & -1 & & & \tag{1.1}\\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right]
$$

is the inverse of $(1 / a) C$.
Proof. We only have to observe that θ_{i} 's verify the recurrence relation $\theta_{i}=2 \theta_{i-1}-\theta_{i-2}$, for $i=2, \ldots, n-1$, and $\theta_{n}=\theta_{n-1}-\theta_{n-2}$, with initial conditions $\theta_{0}=1$ and $\theta_{1}=((2 a-b) /(a-b))$, and ϕ_{i} 's verify the recurrence relation $\phi_{i}=2 \phi_{i+1}-\phi_{i+2}$, for $i=n-1, \ldots, 2$, with initial conditions $\phi_{n+1}=1$ and $\phi_{n}=1$.

2. Eigenpairs of a particular tridiagonal matrix

According to the previous section, the problem of finding the eigenvalues of C is equivalent to describing the spectra of a tridiagonal matrix. Here, we give a general procedure to locate the eigenvalues of the matrix T_{n} (1.1).

Let us consider the set of polynomials $\left\{Q_{k}(x)\right\}$ defined by the recurrence relation given by $Q_{0}(x)=1$ and $Q_{1}(x)=$ $(a x+1) Q_{0}(x)$,

$$
Q_{k}(x)=(a x+2) Q_{k-1}(x)-Q_{k-2}(x) \text { for } k=2, \ldots, n-1
$$

and

$$
Q_{n}(x)=\left(a x+\frac{2 a-b}{a-b}\right) Q_{n-1}(x)-Q_{n-2}(x) .
$$

Note that each polynomial $Q_{k}(x)$, for $k=0, \ldots, n$, is of degree k. The last recurrence relation has the following matricial form:

$$
x\left[\begin{array}{c}
Q_{n-1}(x) \\
Q_{n-2}(x) \\
\vdots \\
Q_{1}(x) \\
Q_{0}(x)
\end{array}\right]=-\frac{1}{a}\left[\begin{array}{ccccc}
\frac{2 a-b}{a-b} & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right]\left[\begin{array}{c}
Q_{n-1}(x) \\
Q_{n-2}(x) \\
\vdots \\
Q_{1}(x) \\
Q_{0}(x)
\end{array}\right]+Q_{n}(x)\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

Since $Q_{k}(x)=U_{k}(a x / 2+2)-U_{k-1}(a x / 2+2)$, for $k=0, \ldots, n-1$, and

$$
\begin{aligned}
Q_{n}(x)= & U_{n}\left(\frac{a x}{2}+1\right)-U_{n-1}\left(\frac{a x}{2}+1\right) \\
& -\left(1-\frac{a}{a-b}\right)\left(U_{n-1}\left(\frac{a x}{2}+1\right)-U_{n-2}\left(\frac{a x}{2}+1\right)\right),
\end{aligned}
$$

where $U_{k}(x)$, for $k=0, \ldots, n$, are the Chebyshev polynomials of second kind of degree k, the zeros of $Q_{n}(x)$ are exactly the eigenvalues of $-(1 / a) C$, i.e., the (real) values which satisfy the equality

$$
\begin{equation*}
p_{n}(x):=\frac{U_{n}(a x / 2+1)-U_{n-1}(a x / 2+1)}{U_{n-1}(a x / 2+1)-U_{n-2}(a x / 2+1)}=1-\frac{a}{a-b} . \tag{2.1}
\end{equation*}
$$

In general, (2.1) means that the eigenvalues of $-(1 / a) C$ are the intersections of the graph of $p_{n}(x)$ with the line $y=1-a /(a-b)$.

As a first consequence, consider the case when $a=1$ and $b=0$. The eigenvalues of $-A$ are the solutions of the equation $U_{n}(x / 2+1)-U_{n-1}(x / 2+1)=0$, which are, for $k=0, \ldots, n-1$,

$$
\lambda_{k}=2 \cos \left(\frac{2 k+1}{2 n+1} \pi\right)-2 .
$$

The value of an eigenvector associated to λ_{k} follows immediately:

$$
\left[\begin{array}{llll}
Q_{n-1}\left(\lambda_{k}\right) & \cdots & Q_{1}\left(\lambda_{k}\right) & Q_{0}\left(\lambda_{k}\right)
\end{array}\right]^{\mathrm{t}}
$$

Hence we proved the following:
Theorem 2.1 (Kovačec [2], Trench [4]). The matrix A of order $n, n \geqslant 3$, has the eigenpairs (λ_{k}, v_{k}) given by

$$
\lambda_{k}=\frac{1}{2}\left(1-\cos \left(r_{k}\right)\right)^{-1} \quad \text { and } \quad v_{k}=\left[\sin \left(j r_{k}\right)\right]_{j=1, \ldots, n}^{t},
$$

where

$$
r_{k}=\frac{2 k+1}{2 n+1} \pi,
$$

for $k=0, \ldots, n-1$.
If $a=2$ and $b=1$, then the eigenvalues of $-(1 / 2) B$ are solutions of the equation $U_{n}(x+1)-U_{n-2}(x+1)=0$, which are, for $k=0, \ldots, n-1$,

$$
\cos \left(\frac{2 k+1}{2 n} \pi\right)-1 .
$$

Remark 2.1. Analogously, for a positive integer n, the tridiagonal matrix of order n

$$
M=\left[\begin{array}{cccccc}
-1 & 1 & & & & \\
1 & -2 & 1 & & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 & \\
& & & 1 & -1+\frac{1}{n}
\end{array}\right]
$$

is invertible and its inverse is $M^{-1}=[\max \{i, j\}]_{i, j=1, \ldots, n}$. Details are left to the reader.

Acknowledgments

We thank the referees and Renato Alvarez-Nodarse for the suggestions which improved the final presentation.

References

[1] C.F. Fischer, R. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal. 6 (1969) 127-142.
[2] A. Kovačec, WMY 2000 and PARIS, August 8,1900 (A Celebration and A Dedication), Pre-Print 00-21, Department of Mathematics, University of Coimbra, 2000.
[3] J.W. Lewis, Inversion of tridiagonal matrices, Numer. Math. 38 (1982) 333-345.
[4] W.F. Trench, Eigenvalues and eigenvectors of two symmetric matrices, IMAGE Bull. Internat. Linear Algebra Soc. 22 (1999) $28-29$.
[5] R. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear Algebra Appl. 212/213 (1994) 413-414.
[6] R. Usmani, Inversion of Jacobi’s tridiagonal matrix, Comput. Math. Appl. 27 (1994) 59-66.

[^0]: This work was supported by CMUC-Centro de Matemática da Universidade Coimbra.

 * Tel.: +351 239791172 ; fax: +351 239832568.

 E-mail address: cmf@mat.uc.pt.

