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Abstract

The concepts of upper and lower semicontinuity in pointfree topology were introduced and first studied by Li and Wang [Y.-M.
Li, G.-J. Wang, Localic Katětov–Tong insertion theorem and localic Tietze extension theorem, Comment. Math. Univ. Carolin. 38
(1997) 801–814]. However Li and Wang’s treatment does not faithfully reflect the original classical notion. In this note, we present
algebraic descriptions of upper and lower semicontinuous real functions, in terms of frame homomorphisms, that suggest the right
alternative to the definitions of Li and Wang. This fixes the discrepancy between the classical and the pointfree notions and turns
out to be the appropriate notion that makes the Katětov–Tong theorem provable in the pointfree context without any restrictions.
c© 2006 Elsevier B.V. All rights reserved.

MSC: 06D22; 54C08; 54C30; 54E55

1. Introduction

Since the usual space R of real numbers is sober, continuous real functions X → R on a space X are completely
described by frame homomorphisms L(R) → OX , defined on the frame L(R) of reals. Upper semicontinuous real
functions (that is, continuous maps X → Rl , where Rl denotes the space (R, Tl) of real numbers with the lower
topology) and lower semicontinuous real functions (that is, continuous maps X → Ru , where Ru denotes the space
(R, Tu) of real numbers with the upper topology) are also important classes of continuous maps.

In the category of locales, the concepts of upper and lower semicontinuous real functions were introduced and first
studied by Li and Wang [8]. However, Li and Wang’s treatment does not faithfully reflect the original classical notion:
an upper (resp. lower) semicontinuous real function on the frame OX of open sets of a space X does not necessarily
describe an upper (resp. lower) semicontinuous real function on X . This explains the need to insert some assumption
in the statements of the pointfree generalizations of some classical results dealing with semicontinuous real functions
(cf. [10,3]).

Indeed, since the spaces Rl and Ru are not sober, upper and lower semicontinuous real functions on X are not
represented by, respectively, frame homomorphisms Ll(R) → OX and Lu(R) → OX , defined on the lower frame
Ll(R) and the upper frame Lu(R) of reals.
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This raises the question whether there are nice algebraic descriptions of upper and lower semicontinuity, in terms
of frame homomorphisms. In these notes we show that such descriptions do indeed exist. These descriptions lead us
to the appropriate pointfree notions of semicontinuous real functions.

The crucial idea behind our approach is to take the bitopological point of view: spaces Rl and Ru are not sober but
the bispace (R, Tl , Tu) of reals is sober.

2. Background

Pointfree topology regards the points of a space as subsidiary to its open sets and deals with “lattices of open sets”
abstractly defined as follows:

A frame (also locale) is a complete lattice L satisfying the infinite distributive law

x ∧

∨
S =

∨
{x ∧ s | s ∈ S}

for every x ∈ L and every S ⊆ L , and a frame homomorphism is a map h : L → M between frames which preserves
the respective operations ∧ (including the top element 1) and

∨
(including the bottom element 0). Frm is then the

corresponding category of frames and their homomorphisms. For general information on frames and locales we refer
to [5] and [9].

By the algebraic nature of frames, there is the notion of a congruence on a frame L , as an equivalence relation θ

on L which is a subframe of L × L in the obvious sense, and the corresponding quotient frame L/θ is then defined
just as quotients are always defined for algebraic systems, making the map L → L/θ taking each x ∈ L to its θ -block
a frame homomorphism. The lattice of frame congruences on L under set inclusion is a frame, denoted by CL . This
is the analogue, in the pointfree context, of the Skula modification of a topological space. A good presentation of the
congruence frame is given by Frith [4]. Here, we shall need the following properties:

(1) For any x ∈ L , ∇x and 1x are, respectively, the congruences defined by {(a, b) ∈ L × L | a ∨ x = b ∨ x} and
{(a, b) ∈ L × L | a ∧ x = b ∧ x}. The ∇x are called closed and the 1x open. Each ∇x is complemented in CL
with complement 1x . We use the symbol ¬ to denote complementation in CL .

(2) ∇L := {∇x | x ∈ L} is a subframe of CL . Let 1L denote the subframe of CL generated by {1x | x ∈ L}.
The triple (CL , ∇L , 1L) is a biframe. This is the analogue, for frames, of the Salbany bitopological space
(X,OX, CX), defined for every topological space (X,OX) (where CX denotes the topology on X generated
by the closed sets of (X,OX)).

(3) The correspondence x 7→ ∇x defines an isomorphism L → ∇L , whereas the map x 7→ 1x is a dual poset
embedding L → 1L taking finitary meets to finitary joins and arbitrary joins to arbitrary meets.

The fact that Frm is an algebraic category (in particular, one has free frames and quotient frames) also permits a
procedure familiar from traditional algebra, namely, the definition of a frame by generators and relations: take the
quotient of the free frame on the given set of generators modulo the congruence generated by the pairs (u, v) for the
given relations u = v. So, in the context of pointfree topology the reals may be introduced independent of any notion
of real number, by defining the following suitable frame [6] (cf. [1]):

The frame of reals is the frame L(R) generated by all ordered pairs (α, β) where α, β ∈ Q, subject to the relations

(R1) (α, β) ∧ (γ, δ) = (α ∨ γ, β ∧ δ),
(R2) (α, β) ∨ (γ, δ) = (α, δ) whenever α ≤ γ < β ≤ δ,
(R3) (α, β) =

∨
{(γ, δ) | α < γ < δ < β},

(R4) 1 =
∨

{(α, β) | α, β ∈ Q}.

By the familiar adjoint situation between frames and topological spaces

Top
O // Frm
Σ

oo (2.1)

we have a natural isomorphism

Frm(L ,OX)
∼
→ Top(X,Σ L). (2.2)



J. Gutiérrez Garcı́a, J. Picado / Journal of Pure and Applied Algebra 210 (2007) 299–306 301

For L = L(R), since the spectrum ΣL(R) is homeomorphic to the usual space R of reals ([1], Proposition 3.3), one
obtains

Frm(L(R),OX)
∼
→ Top(X, R).

This shows that continuous real functions on a space X may be represented as frame homomorphisms h : L(R) →

OX , and hence regarding the frame homomorphisms L(R) → L , for a general frame L , as the continuous real
functions on L provides a natural extension of the classical notion (see [1] for a detailed account).

3. Semicontinuous real functions

Let Ll(R) and Lu(R) denote the subframes of L(R) generated by, respectively, elements (−, α) :=
∨

β∈Q(β, α)

and (α, −) :=
∨

β∈Q(α, β) (α ∈ Q). Note that Ll(R) ∼= Tl and Lu(R) ∼= Tu . It should be also pointed out that, in [8],
Ll(R) and Lu(R) are denoted by Lu(R) and Ll(R), respectively. Here we interchange, with respect to the notation
used by Li and Wang (and also by the second author in [10]) the upper frame and the lower frame of reals, in order to
be in accordance with the usual terminology for spaces. Li and Wang [8] defined upper (resp. lower) semicontinuous
real functions on a frame L as frame homomorphisms h : Ll(R) → L (resp. h : Lu(R) → L).

Recall that a space is sober if for each meet-irreducible U ⊆ X there is exactly one x ∈ X such that U = X \ {x}.
Since Rl is not sober, ΣLl(R) � Rl . Indeed, besides the points ξx : Ll(R) → 2 (x ∈ R), there is the point
ξ−∞ : Ll(R) → 2 given by ξ−∞(−, α) = 1 for every α ∈ Q. (Recall that a point of a frame L is a frame
homomorphism ξ : L → 2 where 2 denotes the two-element frame {0 < 1}.) So, the spectrum ΣLl(R) of Ll(R)

is homeomorphic to the space R−∞ = R ∪ {−∞} with opens [−∞, α) (α ∈ R). Of course, Rl being not sober,
there is no frame L such that Σ L ∼= Rl ; the frame Ll(R), defined by Li and Wang, is the frame whose spectrum best
approximates the space Rl .

The following examples show that semicontinuous real functions on spatial frames do not necessarily represent
semicontinuous real functions on the corresponding space:

Examples 3.1. (1) For any space X , the upper semicontinuous real function h : Ll(R) → OX , defined by
h(−, α) = X for every α ∈ Q, corresponds to the continuous mapping f : X → R−∞ given by f (x) = −∞

(x ∈ X ).
(2) For X being the usual space of reals R, the upper semicontinuous real function h : Ll(R) → OX , defined

by h(−, α) = (−eα, eα) for every α ∈ Q, corresponds to the continuous mapping f : X → R−∞ given by
f (x) = log |x | if x 6= 0, f (0) = −∞.

The soberness condition is a conjunction of two requirements, namely the T0 condition and the weak soberness
condition [11] “for each meet-irreducible U ⊆ X there exists an x ∈ X such that U = X \ {x}”.

It is well known that sober spaces Y are characterized by the fact that continuous mappings X → Y are in a natural
bijection with the frame homomorphisms OY → OX . More precisely [11]:

A space Y is T0 if and only if for each frame homomorphism h : OY → OX there is at most one continuous map
f : X → Y such that h = O( f ).

A space Y is weakly sober if and only if for each frame homomorphism h : OY → OX there is at least one
continuous map f : X → Y such that h = O( f ).

Therefore, since Ru and Rl are both T0 but not sober, the correspondences

X
f

−→ Ru ∈ Top O
 ORu

O( f )
−→ OX ∈ Frm (3.1)

and

X
g

−→ Rl ∈ Top O
 ORl

O(g)
−→ OX ∈ Frm (3.2)

are one-to-one but not onto.

Remark 3.2. For each x ∈ X , let px : OX → 2 be given by px (U ) = 1 if and only if x ∈ U . It is obvious that,
for each upper semicontinuous f : X → R and for each x ∈ X , the set {α ∈ Q | px (O( f )(−, α)) = 1} is bounded
below.
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Conversely, for each map h : Ll(R) → OX let h̃ : X → R−∞ be defined by

h̃(x) = inf{α ∈ Q | px (h(−, α)) = 1}, (3.3)

where the inf means the infimum in R ∪ {−∞}.

Proposition 3.3. If h preserves arbitrary joins then:

(1) h̃−1([−∞, α)) = h(−, α).
(2) If {α ∈ Q | px (h(−, α)) = 1} is bounded below for every x ∈ X, then h̃ : X → R and it is upper semicontinuous.

Proof. (1) The inclusion h̃−1([−∞, α)) ⊆ h(−, α) is obvious. The reverse inclusion is also obvious since, by
hypothesis, h(−, α) = h(

∨
β<α(−, β)) =

⋃
β<α h(−, β).

(2) By (1), it remains to show that h̃ is bounded. Let x ∈ X . Of course h̃(x) > −∞, because {α ∈ Q |

px (h(−, α)) = 1} is bounded below. On the other hand, since X = h(1) = h(
∨

α∈Q(−, α)) =
⋃

α∈Q h(−, α),
the set {α ∈ Q | x ∈ h(−, α)} is non-empty, that is, h̃(x) < +∞, for every x ∈ X . �

As an immediate consequence of Proposition 3.3 and Remark 3.2 we then have the following:

Corollary 3.4. Upper semicontinuous mappings f : X → R are in a bijective correspondence (viaO) with the frame
homomorphisms h : Ll(R) → OX such that {α ∈ Q | px (h(−, α)) = 1} is bounded below for every x ∈ X. �

Remark 3.5. If X is sober then the points of OX are precisely {px | x ∈ X}. In this case, the condition, in
Corollary 3.4, that {α ∈ Q | px (h(−, α)) = 1} is bounded below for every x ∈ X , means that {α ∈ Q | p(h(−, α)) =

1} is bounded below for every point p of OX .

Putting L = Ll(R) in (2.2), we get Frm(Ll(R),OX)
∼
→ Top(X, R−∞). Since any upper semicontinuous mapping

f : X → R may be seen as a continuous map f : X → R−∞, we may embed Top(X, Rl) in Top(X, R−∞).
In conclusion, we have

Frm(Ll(R),OX) oo ' // Top(X, R−∞)

Frm(Ll(R),OX)b oo ' //

⊂

OO

Top(X, Rl)

⊂

OO

where Frm(Ll(R),OX)b denotes the family of all frame homomorphisms h : Ll(R) → OX for which {α ∈ Q |

px (h(−, α)) = 1} is bounded below for every x ∈ X . This shows why the definitions introduced by Li and Wang are
more general than the classical ones.

4. The bitopological approach

Recall that a bitopological space [7] (briefly, bispace) is a triple (X, T1, T2) in which X is a set and the Ti
are topologies on X . A bicontinuous map f : (X, T1, T2) → (Y,U1,U2) is a map f : X → Y such that
f : (X, Ti ) → (Y,Ui ) is continuous for i = 1, 2. The bispaces with these maps form the category BiTop.

Recall also that a biframe [2] is a triple (L0, L1, L2) where L1 and L2 are subframes of the frame L0, which
together generate L0. A biframe homomorphism, f : (L0, L1, L2) −→ (M0, M1, M2), is a frame homomorphism
f : L0 −→ M0 which maps L i into Mi (i = 1, 2) and BiFrm denotes the resulting category.

There is a contravariant functorO : BiTop → BiFrm given as follows: for a bispace (X, T1, T2),O((X, T1, T2)) =

(T1 ∨ T2, T1, T2), where T1 ∨ T2 is the coarsest topology on X finer than T1 and T2, and O acts on a map f by taking
f -preimages of open sets.

There is also the contravariant spectrum functor Σ : BiFrm → BiTop given as follows: for a biframe L =

(L0, L1, L2), Σ (L) = (Σ L0, {Σa : a ∈ L1}, {Σb : b ∈ L2}), where Σ L0 is the set of all points of the frame L0, and
Σx = {ξ ∈ Σ L0 | ξ(x) = 1}; for each biframe map h : L → M , the bicontinuous map Σ (h) : Σ (M) → Σ (L) is
defined by Σ (h)(ξ) = ξ ◦ h. The functor Σ is a right adjoint to O [2]. The fixed objects in this dual adjunction are the
sober bispaces and the spatial biframes, respectively.
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Additional information concerning bispaces and biframes may be found in [2].
The following basic result suggests we look at semicontinuity from a bitopological point of view. Recall that for a

topological space (X,O), CX denotes the topology having the closed sets of X as a base.

Proposition 4.1. For each topological space (X,OX) and each f : X → R, the following are equivalent:

(i) f is upper semicontinuous.
(ii) The map f : (X,OX, CX) → (R, Tl , Tu) is bicontinuous.

Proof. Let f : X → R be upper semicontinuous. Then, of course, f : (X,OX) → Rl is continuous. On the other
hand, f −1((α, +∞)) is equal to

f −1

(⋃
β>α

[β, +∞)

)
=

⋃
β>α

f −1([β, +∞)) =

⋃
β>α

(X \ f −1((−∞, β))) ∈ CX,

thus f : (X, CX) → Ru is also continuous.
The converse is obvious. �

Let us denote the bitopological spaces (X,OX, CX) and (R, Tl , Tu) briefly by, respectively, S(X) and R. The
proposition above asserts that

Top(X, Rl) ' BiTop(S(X), R). (4.1)

But, by the adjoint situation between biframes and bitopological spaces

BiTop
O // BiFrm
Σ

oo (4.2)

we have a natural isomorphism

BiTop((X, T1, T2),Σ (L , L1, L2))
∼
→ BiFrm((L , L1, L2),O(X, T1, T2)). (4.3)

Combining this, for

(L , L1, L2) = (L(R), Ll(R), Lu(R))

and

(X, T1, T2) = (X,OX, CX),

with the isomorphism Σ (L(R), Ll(R), Lu(R)) ' (R, Tl , Tu) (now the bispace (R, Tl , Tu) is sober), we obtain

BiTop(S(X), R)
∼
→ BiFrm((L(R), Ll(R), Lu(R)),OS(X)). (4.4)

On the other hand, OS(X) = (OX ∨ CX,OX, CX) is isomorphic to the congruence biframe
(C(OX), ∇(OX), 1(OX)) of the frame OX [4]. Hence

Top(X, Rl) ' BiFrm((L(R), Ll(R), Lu(R)), (C(OX), ∇(OX), 1(OX))). (4.5)

But, for a general frame L , we have:

Proposition 4.2. For any frame L, there is a bijection from

A := BiFrm ((L(R), Ll(R), Lu(R)), (CL , ∇L , 1L))

into

B :=

 f : Ll(R) → ∇L ∈ Frm |

∨
α∈Q

¬ f (−, α) = 1

 ,

given by Φ : h 7−→ h|Ll (R).
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Proof. Let h ∈ A. Then Φ(h) = h|Ll (R) ∈ B. Indeed,

1 = h

∨
α∈Q

(α, −)

 =

∨
α∈Q

h(α, −) ≤

∨
α∈Q

¬Φ(h)(−, α),

since h(α, −) ∧ Φ(h)(−, α) = h(α, −) ∧ h(−, α) = h(0) = 0.
Conversely, consider f ∈ B and let Ψ( f ) : L(R) → CL be defined by

Ψ( f )(α, β) = f (−, β) ∧

∨
γ>α

¬ f (−, γ ).

This is a frame homomorphism from L(R) into CL , since it transforms the relations (R1)–(R4) into identities in CL:
(R1)

Ψ( f )(α, β) ∧ Ψ( f )(γ, δ) = f (−, β) ∧

(∨
α′>α

¬ f (−, α′)

)
∧ f (−, δ) ∧

∨
γ ′>γ

¬ f (−, γ ′)


= f (−, β ∧ δ) ∧

∨
α′>α,γ ′>γ

(¬ f (−, α′) ∧ ¬ f (−, γ ′))

= f (−, β ∧ δ) ∧

∨
α′>α,γ ′>γ

¬ f (−, α′
∨ γ ′)

= f (−, β ∧ δ) ∧

∨
α′>α∨γ

¬ f (−, α′) = Ψ( f )(α ∨ γ, β ∧ δ).

(R2) Let α ≤ γ < β ≤ δ. Then

Ψ( f )(α, β) ∨ Ψ( f )(γ, δ) =

(
f (−, β) ∧

∨
α′>α

¬ f (−, α′)

)
∨

 f (−, δ) ∧

∨
γ ′>γ

¬ f (−, γ ′)


= f (−, δ) ∧

(
f (−, δ) ∨

∨
α′>α

¬ f (−, α′)

)

∧

 f (−, β) ∨

∨
γ ′>γ

¬ f (−, γ ′)

 ∧

(∨
α′>α

¬ f (−, α′)

)

= f (−, δ) ∧

(∨
α′>α

¬ f (−, α′)

)
= Ψ( f )(α, δ)

since f (−, β) ∨
∨

γ ′>γ ¬ f (−, γ ′) ≥ f (−, β) ∨ ¬ f (−, β) = 1.
(R3)

∨
α<γ<δ<β

Ψ( f )(γ, δ) =

∨
α<γ<δ<β

 f (−, δ) ∧

∨
γ ′>γ

¬ f (−, γ ′)


=

∨
α<γ ′<δ<β

( f (−, δ) ∧ ¬ f (−, γ ′))

=

∨
α<γ ′<β

∨
γ ′<δ<β

( f (−, δ) ∧ ¬ f (−, γ ′))

=

 ∨
α<γ ′<β

¬ f (−, γ ′)

 ∧

(∨
δ<β

f (−, δ)

)
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=

 ∨
α<γ ′<β

¬ f (−, γ ′)

 ∧ f (−, β) = Ψ( f )(α, β).

(R4) ∨
α,β

Ψ( f )(α, β) =

∨
α,β

(
f (−, β) ∧

∨
γ>α

¬ f (−, γ )

)

=

∨
β

(
f (−, β) ∧

∨
α

∨
γ>α

¬ f (−, γ )

)
.

But
∨

α

∨
γ>α ¬ f (−, γ ) =

∨
γ ¬ f (−, γ ) = 1, hence

∨
α,β Ψ( f )(α, β) =

∨
β f (−, β) = f (

∨
β(−, β)) = f (1) =

1.
Further, ΦΨ( f ) = f . Finally, ΨΦ(h) = h. In fact, for any α ∈ Q, ΨΦ(h)(−, α) is clearly equal to h(−, α) and

ΨΦ(h)(α, −) =
∨

β>α ¬h(−, β) is equal to h(α, −):

• h(−, β) is complemented in CL and h(−, β) ∨ h(α, −) = 1, thus h(α, −) ≥ ¬h(−, β);
• h(α, −) = h(

∨
β>α(β, −)) =

∨
β>a h(β, −); since h(−, β) ∧ h(β, −) = 0, then h(β, −) ≤ ¬h(−, β) and,

consequently,
∨

β>a h(β, −) ≤
∨

β>α ¬h(−, β). �

Since the correspondence ∇a 7→ a gives an isomorphism ∇L ∼= L , we may rewrite B as f : Ll(R) → L ∈ Frm |

∨
α∈Q

1 f (−,α) = 1

 . (4.6)

From (4.1), (4.4) and (4.6) and Proposition 4.2, it follows immediately that:

Corollary 4.3. Top(X, Rl) ' { f : Ll(R) → OX ∈ Frm |
∨

α∈Q1 f (−,α) = 1}. �

Similarly,

Top(X, Ru) ' BiFrm((L(R), Lu(R), Ll(R)), (C(OX), ∇(OX), 1(OX)))

'

g : Lu(R) → OX ∈ Frm |

∨
α∈Q

1g(α,−) = 1

 .

Hence, the following are the right generalizations of the classical semicontinuous real functions, making them the
natural substitute for the latter in the context of pointfree topology:

Definition 4.4. (1) An upper semicontinuous real function on a frame L is a frame homomorphism f : Ll(R) → L
satisfying

∨
α∈Q1 f (−,α)

= 1.
(2) A lower semicontinuous real function on a frame L is a frame homomorphism g : Lu(R) → L satisfying∨

α∈Q1g(α,−)
= 1.

Remarks 4.5. (1) In particular, f : Ll(R) → 2 is upper (resp. lower) semicontinuous if and only if f is a point of
Ll(R) (resp. Lu(R)) different from ξ−∞.

(2) For any upper semicontinuous f and any lower semicontinuous g, let f ≤ g if f (−, α)∨g(β, −) = 1 whenever
β < α, and let g ≤ f if f (−, α) ∧ g(α, −) = 0 for every α ∈ Q. By Proposition 2.2 of [10], any continuous real
function h : L(R) → L gives rise to an upper semicontinuous real function f := h|Ll (R) and a lower semicontinuous
real function g := h|Lu(R), satisfying f ≤ g and g ≤ f . It is easy to see that continuous real functions on L are
completely represented by these pairs ( f, g), with f upper semicontinuous and g lower semicontinuous, such that
f ≤ g and g ≤ f .
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Under these definitions, the localic Katětov–Tong theorem (Theorem 4.6 of [10]), as well as the results concerning
the semicontinuous quasi-uniformity of a frame (cf. [3]), has now precisely the same formulation as in the classical
context (for this recall that a normal frame is one in which x ∨ y = 1 implies the existence of a, b ∈ L such that
x ∨ a = 1 = y ∨ b and a ∧ b = 0):

A frame L is normal if and only if for every upper semicontinuous real function f : Ll(R) → L and every lower
semicontinuous real function g : Lu(R) → L with f ≤ g, there exists a continuous real function h : L(R) → L
such that f ≤ h ≤ g.

This shows that the classical Katětov–Tong theorem for normal spaces, which is known to be the most important
result concerning semicontinuous real functions, is ultimately a result about normal frames, from which the classical
version readily follows.

Acknowledgements

The authors would like to thank the anonymous referee for some valuable comments and suggestions. The
research of the first author was supported by the University of the Basque Country under grant UPV05/101 and the
Ministry of Science and Technology of Spain under grant MTM2006-14925-C02-02/ and FEDER. The second author
gratefully acknowledges financial support by CMUC/FCT and the hospitality of the Department of Mathematics of
the University of the Basque Country (Bilbao) during a visit in October 2005.

References

[1] B. Banaschewski, The real numbers in pointfree topology, in: Textos de Matemática, Série B, vol. 12, Universidade de Coimbra, 1997.
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