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Abstract

Let G be a finite group and RG be its group algebra defined over R. If we define in G a 2-cochain F , then
we can consider the algebra RF G which is obtained from RG deforming the product, x.F y = F(x, y)xy,
∀x, y ∈ G. Examples of RF (Z2)n algebras are Clifford algebras and Cayley algebras like octonions. In this
paper we consider generalizations of lattices with complex multiplication in the context of these twisted
group algebras. We explain how these induce the natural algebraic structure to endow any arbitrary finite-
dimensional lattice whose real components stem from any finite algebraic field extension over Q with a
multiplicative closed structure. Furthermore, we develop some fully explicit characterizations in terms of
generalized trace and norm functions.
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1. Introduction

As is well known, an n-dimensional lattice in Rn is a set of points of the form Ω = Zω1 +
· · · + Zωn. Here ω1, . . . ,ωn are some R-linear independent vectors from Rn. A priori, such a
lattice is only endowed with the algebraic structure of a Z-module. That means, if ω,η ∈ Ω , then
ω ± η ∈ Ω and αΩ ⊆ Ω for any α ∈ Z.

However, if one defines a further multiplication operation on the underlying vector space Rn,
then special classes of lattices have the additional property, that there are also elements a ∈ Rn\Z

such that a ·Ω ⊂ Ω . Such special lattices are then called lattices with multiplication. In the partic-
ular case where ω ·η ⊂ Ω for all ω,η ∈ Ω , the whole lattice has a closed multiplicative structure.
In fact, these lattices are exactly the Z-orders in an associated n-dimensional R-algebra.

The simplest non-trivial explicit examples are lattices with complex multiplication. The two-
dimensional vector space R2 can be endowed with the multiplicative structure of the complex
numbers. This is done by identifying a vector (x0, x1)

T ∈ R2 with x0 + x1i ∈ C where i2 = −1.
Then a two-dimensional lattice of the normalized form Z+Zτ (�(τ ) > 0) has complex multipli-
cation, if and only if τ ∈ Q[√−D ]. Here D is supposed to be any positive square-free integer.
Square-free means that no prime number appears more than once in the prime factorization. In
the case where τ ∈ Z[√−D ], one even has ω · η ∈ Ω for all ω,η ∈ Ω when · is the complex
multiplication operator. Conversely, Z + Zτ with τ ∈ Q[√−D ] are the only two-dimensional
lattices with complex multiplication. Lattices with complex multiplication are extremely well
studied by numerous authors. For their basic properties, we refer the reader for example to the
textbooks [8,16,18] in which their important role in analytic number theory is described. The
division values of the modular function j associated to these particular lattices lie in finite Ga-
lois field extensions of an imaginary quadratic number field Q[√−D ] and play a key role for
Hilbert’s twelfth problem [12].

In view of getting explicit analogous constructions for more general algebraic number fields,
we are motivated to revisit the problem of complex lattice multiplication within a more general
context. The simplest canonical non-trivial higher-dimensional associative examples of lattices
with multiplication in dimension 2n are lattices with Clifford algebra multiplication. These were
first considered in [9,10] in the quaternionic setting. Later, these were more extensively studied
in [6,14] and in [15, Chapter 2.7] in the context of the general Clifford algebras Cl0,n.

Just for convenience we recall that the real Clifford algebra Cl0,n is the free algebra generated
over the vector space Rn with basis ei , i = 1, . . . , n in which the multiplication rules e2

i = −1,
i = 1,2, . . . , n, and eiej = −ej ei for i 	= j are valid. Each element a of the Clifford algebra Cl0,n

can be written as a = ∑
A∈P(1,2,...,n) aAeA. In this representation the expressions aA are uniquely

defined real numbers and the elements eA are products of the basis vectors from the vector space
Rn of the form eA = el1 . . . elr where 1 � l1 < · · · < lr < n and where e∅ := 1. P(1,2, . . . , n)

denotes the set of all possible subsets of {1,2, . . . , n}.
As a vector space, Cl0,n is isomorphic to R2n

. In the case n = 1 the associated Clifford algebra
is isomorphic to the complex number field. The Clifford algebra Cl0,2 is isomorphic to the skew
field of Hamilton’s quaternions. Now one can identify R2n

with the Clifford algebra Cl0,n. Let
Ω = Zω1 + · · · + Zω2n be a lattice where the generators wi (i = 1, . . . ,2n) have the form

ωi = ω
(i)
0 +

n∑
j=1

ω
(i)
j

√
Dj ej +

∑
j,k∈1,...,n, j<k

ω
(i)
jk

√
DjDk ej ek + · · ·

+ ω
(i)

√
D1D2 · · ·Dn e12...n.
12...n
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If each ω
(i)
A (A ⊂ P(1,2, . . . , n)) is an integer and D1, . . . ,Dn are mutually distinct positive

square-free integers, then Ω has a non-trivial Cl0,n multiplication. Here again one can show
that the class of 2n-dimensional lattices that have Clifford multiplication are those whose real
components of the generators stem up to conjugation from the multiquadratic number fields
Q[√D1, . . . ,

√
Dn ]. See [15] for details.

In this paper we now deal with a class of twisted group algebras that contains the complex
number field, Hamilton’s quaternionic skew field and all Clifford algebras as very particular
cases. Furthermore, we give some explicit algebraic characterizations in terms of generalized
norm and trace functions.

2. Graded RRRF G algebras

Let us consider a finite group G and its group algebra defined over R. To get started we recall

Definition 1. Let G be a finite group. A 2-cochain F in G is a map F : G × G → R∗ satisfying
F(e, x) = F(x, e) = 1 for all x ∈ G, where e is the neutral element in G.

After having defined a 2-cochain in G we can consider the algebra RF G that is obtained from
RG by deforming the product,

x.F y = F(x, y)xy, ∀x, y ∈ G.

Examples of RF (Z2)
n algebras are Clifford algebras [2] and Cayley algebras like octonions [1].

See also [17]. Here it was proved that if we write the cochain F in the form F(x, y) = (−1)f (x,y),
then we obtain:

1. The ‘complex number’ algebra by considering

G = Z2, f (x, y) = xy, x, y ∈ Z2.

Here we identify G as the additive group Z2 but also make use of its product.
2. The quaternionic algebra by taking

G = Z2 × Z2, f (x, y) = x1y1 + (x1 + x2)y2

where x = (x1, x2) ∈ G is a vector notation.
3. The octonionic algebra by considering

G = Z2 × Z2 × Z2, f (x, y) =
∑

1�i�j�3

xiyj + y1x2x3 + x1y2x3 + x1x2y3.

Within a similar context we have studied in [2] Clifford algebras as RF (Z2)
n algebras, where

the cochain F is defined by the expression

F(x, y) = (−1)
∑

j<i xiyj

n∏
q

xiyi

i

i=1
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where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) are elements from (Z2)
n and qi = e2

i where ei

are the canonical elements of Zn
2.

If we consider a group G with n elements, say G = {g1, . . . , gn}, then we can identify each
element a1g1 + · · · + angn, ai ∈ R, of the algebra RF G with the element (a1, . . . , an) ∈ Rn.

With this identification the multiplication defined in RF G will introduce a special multiplication
on Rn. This is called the multiplication of Rn induced by the group G using the cochain F . In
this case we say that Rn is embedded in RF G.

As a consequence we can multiply the points of an n-dimensional lattice in Rn with each
other and we obtain another element from Rn. In the general case the resulting vector does not
always belong again to the lattice. Nevertheless, this will happen in some interesting cases. We
introduce:

Definition 2. Let G be a group with n elements and F be a cochain in G. Further, let ω1, . . . ,ωn

be linearly independent vectors from Rn. Let

Ω = Zω1 + · · · + Zωn

be the associated n-dimensional lattice embedded in the algebra RF G. Then we say that Ω has
an RF G multiplication from the left (respectively from the right) if there exists an a ∈ Rn \ Z

such that a · ω ∈ Ω (respectively ω · a ∈ Ω) for all ω ∈ Ω . Furthermore, we say that the lattice
Ω is closed under the multiplication of RF G if for all ω,η ∈ Ω holds ω · η ∈ Ω . Here · is the
multiplication induced by G using the cochain F .

For simplicity we will write aω for a · ω when no ambiguity can occur in all that follows.
In the simplest case G = Z2 we have only two possibilities for the algebras RF Z2: The com-

plex numbers C and the group algebra of Z2 which is denoted by RZ2. As mentioned at the
beginning, lattices in R2 with multiplication in the context of the complex numbers are known
and completely classified. To study lattices with Clifford and Cayley algebra multiplication, let
us briefly say a few words on the other case where we have a lattice in R2 endowed with a
multiplication operation that is defined by the group algebra of Z2.

Let Ω = Zτ + Z (τ = x0 + e1x1 ∈ RZ2, x1 > 0) be a lattice in R2 with RZ2 multiplication.
Let R(τ) be the set of multiplicators of Ω . This is the set of RZ2-elements a that satisfy aΩ ⊆ Ω .
In close analogy to the complex case, see [13, pp. 84–87], we can establish:

Proposition 1. Let τ = x0 + x1e1 ∈ RZ2 with x1 > 0. For an element λ ∈ RZ2 the following
assertions are equivalent:

1. λ ∈ R(τ).
2. There exist a, b, c, d ∈ Z such that λτ = aτ + b and λ = cτ + d .
3. w := (

τ
1

)
satisfies λw = Mw with M = (

a b
c d

) ∈ Mat(2,Z).

Proof. (1) ⇔ (2): λ ∈ R(τ) is equivalent to λ · 1 ∈ Zτ + Z and λ · τ ∈ Zτ + Z, so λ · 1 = cτ + d

and λ · τ = aτ + b.
(2) ⇔ (3): Evident:

λ · w = λ

(
τ

1

)
=

(
a b

c d

)(
τ

1

)
,

(
λτ

λ

)
=

(
aτ + b

cτ + d

)
. �



1120 H. Albuquerque, R.S. Kraußhar / Journal of Algebra 319 (2008) 1116–1131
Proposition 2. Let Ω = Zτ + Z be a lattice with RZ2-multiplication, i.e. R(τ) 	= Z. Then
τ ∈ Q[e1

√
D ] for some square-free D ∈ N and R(τ) is a subring of the integral elements of

Q[e1
√

D ].

Remark. For the sake of clarity: By Q[e1
√

D ] we mean the set of RZ2 elements that can be
written in the form r + s

√
De1 where r, s ∈ Q. Here D > 0 is a positive square-free integer.

The proof of Proposition 2 can be done in complete analogy to the calculations of [13,
pp. 84–87]. The main difference is that one has to apply in this context the particular multi-
plication rules in RZ2, i.e. e2

1 = 1 instead of applying e2
1 = −1 when adapting the calculations to

the context of RZ2. Hence, we omit it.

Remark. Since R(τ) is a submodule of the free Z-module of the integral numbers from
Q[e1

√
D ], R(τ) is also free. Since R(τ) 	= Z one can readily conclude that R(τ) has rank 2,

i.e. R(τ) is a lattice in RZ2.

3. Lattices in RRRn closed under Clifford and Cayley algebra multiplication

In this section we present a class of lattices in Rn that are closed under the multiplication
induced by Clifford algebras Clp,q or by Cayley algebras. Here we will call Cayley algebras, the
algebras obtained by the Cayley–Dickson process.

Let A be a real finite-dimensional algebra with identity 1 and σ be an involutive automorphism
of A. First we introduce

Definition 3. Let G be a group with n elements and F be a cochain in G. Further, let ω1, . . . ,ωn

be some R-linearly independent vectors from Rn. Let

Ω = Zω1 + · · · + Zωn

be the associated lattice embedded in RF G. Then we say that Ω is stable under the involutive
automorphism σ defined in RF G if σ(Ω) = Ω .

In the vector space Ã = A⊕Av, where v is a symbol notation that represents the second copy
of A, a new multiplication is defined by

(a + bv) · (c + dv) = a · c + αbσ(d) + (
a · d + bσ(c)

) · v
for a fixed α ∈ R∗. Furthermore, a new involutive automorphism is introduced by

σ̃ (a + bv) = σ(a) − σ(b)v.

We say that Ã is obtained from A by the Clifford process. In the paper [2] we have shown that if
A is an RF G algebra then Ã is an R

F̃
G̃ algebra with G̃ = G × Z2. The cochain F̃ is obtained

from the cochain F .
Suppose now that Ω = Zω1 + · · ·+ Zωn is again an n-dimensional lattice in Rn embedded in

RF G, where G is a group with n elements. Further, let us consider the lattice Ω̃ = Ω + Ωv =
Z(ω1,0) + · · · + Z(ωn,0) + Z(0,ω1) + · · · + Z(0,ωn) embedded in R

F̃
G̃.

Then we can establish
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Theorem 1. The lattice Ω is closed under multiplication induced by RF G and stable under the
involutive automorphism σ if and only if the lattice Ω̃ is closed under multiplication induced by
R

F̃
G̃ and stable under the involutive automorphism σ̃ .

Proof. If we consider the lattice Ω̃ = Ω + Ωv embedded in R
F̃
G̃, then we can introduce the

product of two elements of Ω̃ in the following way

(a + bv) · (c + dv) = (
a · c + αbσ(d)

) + (
a · d + bσ(c)

) · v for a, b, c, d ∈ Ω.

If σ(x) ∈ Ω , ∀x ∈ Ω and x · y ∈ Ω , ∀x, y ∈ Ω then (a + bv) · (c + dv) ∈ Ω̃ and σ̃ (a + bv) =
σ(a) − σ(b)v ∈ Ω̃ . The converse statement is obvious. �
Corollary 1. For any n ∈ N we can define a lattice in R2n

that is closed under the multiplication
and the involutive automorphism of the Clifford algebra Clp,q for any p,q ∈ N0 with p + q = n.

Proof. Lattices in R2 closed under multiplication and conjugation induced by complex numbers
or by the group algebra of Z2 are known. Proposition 2 completes the classification of lattices
in R2 that are closed under multiplication and conjugation by both possible RF Z2 algebras.

As shown in [2], every Clifford algebra Clp,q can be obtained by the Clifford process from
these algebras. Therefore, the statement follows. �

It is therefore not surprising that the lattices in Clp,q which have Clifford multiplication are
those whose components stem from multiquadratic number fields or conjugated ones. This is
due to the fact that all the lattices in R2 which are closed under multiplication and conjugation
endowed with the two multiplicative structures C or RZ2, respectively, are those of the form
Z + Zτ , with τ ∈ Z[e1

√
D ] only.

Remark. The preceding theorem has an analogue if we consider the Cayley–Dickson process.
This allow us to obtain, for example, closed lattices under the multiplication induced by the
octonions in R8. The most popular example is the E8-lattice considered for example in [4]. This
is the densest (non-associative) integral domain in the octonions which contains all the eight
octonionic units, cf. [5].

4. Lattices with RRRFZZZm
n multiplication

In this section we now discuss lattices in Rnm
(n,m � 1 arbitrarily) with RF Zm

n multiplication.
Lattices with complex, quaternionic, Clifford and Cayley multiplication fit within this general
framework as special cases of lattices in R2m

(for m = 1, m = 2, m arbitrary, respectively).
The simplest first essentially different case to those considered before, is the case where

G = Z3. In contrast to the Cl0,2-multiplication, the three-dimensional vector space R3 is closed
under the RF Z3 multiplication. Let us first consider the simplest case where F = 1. In this case
the multiplication is commutative and associative. The canonical examples of three-dimensional
lattices Ω = Zω1 + Zω2 + Zω3 which have an RZ3-multiplication turn out to be lattices with
generators whose real components stem from cubic number fields.

We prove
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Proposition 3. Suppose that ωi (i = 1,2,3) are R-linearly independent vectors in R3 of the form

ωi = a
(i)
0 e0 + a

(i)
1

3
√

D e1 + a
(i)
2

3
√

D2 e2 (1)

where the elements a
(i)
0 , a

(i)
1 , a

(i)
2 are some integers and where D is a cubic-free positive integer.

Then the associated lattice Ω = Zω1 + Zω2 + Zω3 has an RZ3-multiplication.

Proof. If we multiply two generators ωi and ωj with each other then we again get a number of
the same structure:

ωi · ωj = (
a

(i)
0 a

(j)

0 + a
(i)
1 a

(j)

2 D + a
(i)
2 a

(j)

1 D
)
e0 + (

a
(i)
0 a

(j)

1 + a
(i)
1 a

(j)

0 + a
(i)
2 a

(j)

2 D
) 3
√

D e1

+ (
a

(i)
0 a

(j)

2 + a
(i)
1 a

(j)

1 + a
(i)
2 a

(j)

0

) 3
√

D2 e2, (2)

after having applied the multiplication rules in RZ3. This element can belong to Ω or not.
In fact, the equations

ω1 = a
(1)
0 e0 + a

(1)
1

3
√

D e1 + a
(1)
2

3
√

D2 e2,

ω2 = a
(2)
0 e0 + a

(2)
1

3
√

D e1 + a
(2)
2

3
√

D2 e2,

ω3 = a
(3)
0 e0 + a

(3)
1

3
√

D e1 + a
(3)
2

3
√

D2 e2

can be re-written in matrix form as follows⎛
⎝ ω1

ω2
ω3

⎞
⎠ = A

⎛
⎝ e1

e2
e3

⎞
⎠

with

A =

⎛
⎜⎜⎝

a
(1)
0 a

(1)
1

3
√

D a
(1)
2

3√
D2

a
(2)
0 a

(2)
1

3
√

D a
(2)
2

3√
D2

a
(3)
0 a

(3)
1

3
√

D a
(3)
2

3√
D2

⎞
⎟⎟⎠ .

Since the generators ω1, ω2, ω3 are supposed to be linearly independent, the matrix A is invert-
ible. As a consequence the basis elements e0, e1, e2 of RZ3 can uniquely be expressed as a linear
combination in terms of ω1, ω2, ω3 of the following form:

e0 = 1

detA

(
b

(0)
1 ω1 + b

(0)
2 ω2 + b

(0)
3 ω3

)
,

e1 =
3√
D2

detA

(
b

(1)
1 ω1 + b

(1)
2 ω2 + b

(1)
3 ω3

)
,

e2 =
3
√

D

detA

(
b

(2)
1 ω1 + b

(2)
2 ω2 + b

(2)
3 ω3

)
where the elements b

(i) (j = 1,2,3, i = 0,1,2) are uniquely defined integers.
j
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Consider the subset A of Ω formed by the elements of the form

detAαω1 + detAβω2 + detAγω3, α,β, γ ∈ Z.

Then aΩ ⊂ Ω for all a ∈A. This proves that a lattice of the form (1) has RZ3 multiplication. �
As a direct consequence of these observations we readily obtain

Corollary 2. Let Ω = Zω1 + Zω2 + Zω3 be a lattice with generators of the form

ωi = a
(i)
0 e0 + a

(i)
1

3
√

D e1 + a
(i)
2

3
√

D2 e3, i = 1,2,3,

where a
(i)
j ∈ Z for all i = 1,2,3 and j = 0,1,2 and where D is a cubic-free integer. Let

A =

⎛
⎜⎜⎝

a
(1)
0 a

(1)
1

3
√

D a
(1)
2

3√
D2

a
(2)
0 a

(2)
1

3
√

D a
(2)
2

3√
D2

a
(3)
0 a

(3)
1

3
√

D a
(3)
2

3√
D2

⎞
⎟⎟⎠ .

If detA = ±1, then Ω is closed under the RZ3 multiplication.

Remark. In the other cases where detA 	= ±1, the lattice Ω contains non-trivial subrings A ⊂ Ω

such that aΩ ⊂ Ω for all a ∈A.

These lattices can be regarded as the natural analogues of lattices with complex multiplication
(whose generators stem from imaginary quadratic number fields) within the framework of cubic
number fields over Q.

More generally, we obtain

Proposition 4. Let n be an arbitrary positive integer and F be an arbitrary integer valued
cochain in Zn.

Let Ω = Zω1 +· · ·+Zωn be an n-dimensional lattice embedded in the twisted group algebra
RF Zn, where the generators are each of the form

ωi = a
(i)
0 e0 + a

(i)
1

n
√

D e1 + · · · + a
(i)
n−1

n
√

Dn−1 en−1

where a
(i)
0 , . . . , a

(i)
n−1 are integers and D is an n-power free integer, that means each prime ap-

pears at most n − 1 times in the prime factorization. Then Ω has an RF Zn-multiplication. Let

A :=

⎛
⎜⎜⎜⎜⎜⎝

a
(1)
0 a

(1)
1

n
√

D a
(1)
n−1

n
√

Dn−1

a
(2)
0 a

(2)
1

n
√

D a
(2)
n−1

n
√

Dn−1

...
...

. . .
...

a
(n)
0 a

(n)
1

n
√

D a
(n)
n−1

n
√

Dn−1

⎞
⎟⎟⎟⎟⎟⎠ .

If detA = ± 1
n√ , where S := ∑n−1

i=1 i, then Ω is closed under the RF Zn-multiplication.

DS
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Proof. Suppose that the generators of Ω are of the form

ωi = a
(i)
0 e0 + a

(i)
1

n
√

D e1 + · · · + a
(i)
n−1

n
√

Dn−1 en−1 (3)

for i = 1, . . . , n. Applying the product definition of RF Zn, forming the product of ωi with an-
other element of the same form, say with

ωj = a
(j)

0 e0 + a
(j)

1
n
√

D e1 + · · · + a
(j)

n−1
n
√

Dn−1 en−1,

turns out to be again

ωi · ωj =
[
a

(i)
0 a

(j)

0 +
∑

p,q>0,p+q=n

F (ep, eq)a(i)
p a

(j)
q D

]
e0

+
[ ∑

p+q=1

F(ep, eq)a(i)
p a

(j)
q +

∑
p,q>1,p+q=n+1

F(ep, eq)a(i)
p a

(j)
q D

]
n
√

D e1

+
[ ∑

p+q=2

F(ep, eq)a(i)
p a

(j)
q +

∑
p,q>2,p+q=n+2

F(ep, eq)a(i)
p a

(j)
q D

]
n
√

D2 e2

...

+
[ ∑

p+q=n−1

F(ep, eq)a(i)
p a

(j)
q

]
n
√

Dn−1 en−1.

Under the assumption that F is integer-valued, the element ωi · ωj again has the form as in (3).
With the same reasoning as in the three-dimensional case, we can again conclude that the ele-
ments of the subset A formed by the elements

detA
n
√

DS α1ω1 + detA
n
√

DS α2ω2 + · · · + detA
n
√

DS αnωn, α1, . . . , αn ∈ Z,

where S := ∑n−1
i=1 i, satisfy aΩ ⊂ Ω . Hence, lattices of the above stated form have an RF Zn

multiplication. The second statement also now follows immediately. �
These are the simplest n-dimensional analogues of the class of lattices with complex multi-

plication within the context of the number fields Q[ n
√

D ] for arbitrary n ∈ N. We see that the
structure of the RF Zn algebras is indeed a very natural one to endow a lattice with components
from the number fields Q[ n

√
D ] with a closed multiplication structure.

As mentioned previously one can endow lattices with components from multiquadratic num-
ber fields with a multiplicative structure when applying the Clifford or the Cayley–Dickson
process. One considers G = Zn

2 . Similarly, we can endow lattices with generators whose com-
ponents stem from multi-n-power fields of the form Q[ n

√
D1, . . . ,

n
√

Dm ] with a multiplicative
structure, when we take more generally G = Zm

n . This again can easily be verified by a similar
direct calculation.

Combining this observation with the statement of Proposition 4, one obtains:
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Theorem 2. Let k ∈ N and n1, . . . , nk,m1, . . . ,mk be some positive integers. Let D
(nj )

1 , . . . ,D
(nj )
mj

be nj -power free positive integers for all j = 1, . . . , k. Suppose that F1, . . . ,Fk are integer val-
ued cochains. Lattices with generators whose components stem from the algebraic field

Q
[ n1

√
D

(n1)
1 , . . . ,

n1

√
D

(n1)
m1 , . . . ,

nk

√
D

(nk)
1 , . . . ,

nk

√
D

(nk)
mk

]
have an RF1Z

m1
n1 × · · · × RFk

Z
mk
nk

multiplication.

5. Generalized Brandt-algebras

Directly related to the problem of lattice multiplication is the problem of the explicit de-
scription of integral domains in so-called Brandt-algebras. Quaternionic Brandt-algebras first
appeared in an early work of Brandt (1920), see [3]. Their study was intensively continued by
Fueter in the 1930s and 1940s, cf. [9,11]. Generalizations to the setting of Clifford algebras
appear for instance in works of Elstrodt et al. (1987), see [6,7] (however, under a different view-
point) and more close to the spirit of Brandt and Fueter in [14,15].

For convenience, let us recall the definition and some of the fundamental properties. Following
[15, Chapter 2.7], every element

x = x0 + x1e1 + · · · + xnen

from the so-called paravector space R ⊕ Rn ∼= Rn+1 satisfies a quadratic equation of the form

x · x − S(x)x + N(x) = 0.

Here · is the Cl0,n multiplication operation as defined in the introductory section. Furthermore,
S(x) = 2x0 and N(x) = ∑n

i=0 x2
i denote the trace and the norm of x, respectively. Using the

Clifford algebra conjugation anti-automorphism which is defined for each a, b ∈ Cl0,n by (ab) =
ba and ei = −ei for i = 1,2, . . . , n, one can also write S(x) = x + x and N(x) = x · x = xx.
Now we introduce

Definition 4. A subset BQ of Rn is called a rational Cl0,n Brandt-algebra if

S(a + b),N(a + b), S(a · b),N(a · b) ∈ Q, ∀a, b ∈ BQ.

A subset BZ of Rn is called an integral Cl0,n Brandt-algebra if S(a + b),N(a + b), S(a · b),

N(a · b) ∈ Z for all a, b ∈ BZ.

In the case Cl0,2 we are dealing with the classical quaternionic rational and integral Brandt-
algebras, respectively.

As shown in [15], the latter conditions are satisfied if and only if

S(a), S(b),N(a),N(b),2〈a, b〉 ∈ Z.

Here 〈a, b〉 := ∑n
i=0 aibi denotes the Euclidean scalar product on the paravector space R ⊕ Rn.
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In the quaternionic case, the integral Brandt-algebras coincide precisely with the four-
dimensional lattices which have quaternionic multiplication. In the more general case, they
coincide with the lattices in Rn+1 that have paravector multiplication. This is proved in [14,15].

An interesting question is to analyze how one can extend the theory of Brandt-algebras to the
more general context of RF G algebras and how these generalizations are related to lattices with
RF G multiplication that we introduced in the previous section.

In this paper we focus on the simplest case G = Z3 exclusively. The more general cases will
be discussed in our follow-up work.

For simplicity let us denote in all that follows the integer F(ei, ej ) by Fij . We start by noting

Lemma 1. Each element x = x0e0 + x1e1 + x2e2 ∈ RF Z3 satisfies the cubic equation

x3 − T (x)x2 + S(x)x − N(x)e0 = 0

where for x3 we mean x2 · x. Here, T is a linear form called the trace, S is a quadratic form and
N is a cubic form called the norm. These expressions are uniquely defined by T (x) = 3x0, S(x) =
3x2

0 − δx1x2 and N(x) = x3
0 + x3

1F11F21 + x3
2F22F12 − x0x1x2δ where δ = F12 +F21 +F11F22.

Proof. Consider two elements of RF Z3, say

x = x0e0 + x1e1 + x2e2,

y = y0e0 + y1e1 + y2e2.

Multiplying them with each other in terms of the RF Z3 multiplication one obtains

x · y = (x0y0 + F12x1y2 + F21x2y1)e0 + (x0y1 + x1y0 + F22x2y2)e1

+ (x0y2 + x2y0 + F11x1y1)e2.

In particular we get

x2 = (
x2

0 + (F12 + F21)x1x2
)
e0 + (

2x0x1 + F22x
2
2

)
e1 + (

2x0x2 + F11x
2
1

)
e2.

Furthermore,

x3 = x2 · x = [
x3

0 + 3(F12 + F21)x0x1x2 + F12F22x
3
2 + F11F21x

3
1

]
e0

+ [
3x2

0x1 + (F12 + F21)x
2
1x2 + 3F22x0x

2
2 + F11F22x

2
1x2

]
e1

+ [
3x2

0x2 + (F12 + F21)x1x
2
2 + 3F11x0x

2
1 + F22F11x1x

2
2

]
e2

for all x ∈ RF Z3. After applying direct calculations we obtain

x3 − T (x)x2 + S(x)x − N(x)e0 = 0

with the uniquely determined expressions T (x) = 3x0, S(x) = 3x2
0 − δx1x2 and N(x) = x3

0 +
x3F11F21 + x3F22F12 − x0x1x2δ where δ = F12 + F21 + F11F22. �
1 2
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The expression T (x) evidently provides a generalization of the trace expression. The expres-
sion N(x) generalizes the norm to the context of RF Z3 algebras. Notice that N(e0) = 1,N(e1) =
F11F21 and N(e2) = F22F12. Cubic algebras with N(x) = 0 were studied by S. Walcher in [19].
As we will show next, this expression serves as invertibility indicator, similarly as the classical
norm expression does for the case of Clifford algebras:

Lemma 2. An element x = x0e0 + x1e1 + x2e2 ∈ RF Z3 has a left inverse in RF Z3 if and only
if N(x) 	= 0. In this case, the RF Z3-left inverse element has the form x−1 = x

N(x)
where the

RF Z3-conjugate of x is

x = x2 − T (x)x + S(x) = (
x2

0 − F11F22x1x2
)
e0 + (

F22x
2
2 − x0x1

)
e1 + (

F11x
2
1 − x0x2

)
e2.

Proof. It is enough to note that (x2 − T (x)x + S(x))x = N(x)e0 and we can illustrate the al-
gebraic meaning of N(x) as a determinant of a matrix. Indeed, an element x ∈ RF Z3 has a left
inverse if and only if there exists an element y ∈ RF Z3 such that y ·x = 1. This can be determined
as solution to the linear system of equations

{
x0y0 + F12y1y2 + F21y2x1 = 1,

y0x1 + y1x0 + F22y2x2 = 0,

y0x2 + x0y2 + F11y1x1 = 0.

This system has a solution if and only if the expression

det

⎛
⎝ x0 F12x2 F21x1

x1 x0 F22x2
x2 F22x1 x0

⎞
⎠ = N(x)

differs from zero. �
Remark. Notice that for elements x ∈ RF Z3 satisfying the equality x2 · x = x · x2 we have that
x · x = x · x = N(x). In this case, the left inverse coincides with the right inverse.

It remains to analyze the role of the other expression S(x). It turns out to be a dual counterpart
of the generalized trace function whenever the algebra RF Z3 is associative.

More precisely, we obtain

Proposition 5. If RF Z3 is an associative algebra then for each x ∈ RF Z3 we have S(x) = T (x).

Proof. If the algebra RF Z3 is associative then F(x, y)F (xy, z) = F(y, z)F (x, yz),
∀x, y, z ∈ Z3. Therefore, F11F21 = F11F12 and F12 = F21. On the other hand, F12F02 = F22F11
and F12 = F22F11. As a consequence we obtain δ = 3F12 and S(x) = T (x). �

Using this approach we want to give criterions for the closure under conjugation and multi-
plication of a given lattice in RF Z3. To proceed in this direction let us consider two elements
z = x0e0 +x1e1 +x2e2 and w = y0e0 +y1e1 +y2e2 from RF Z3. Next we introduce the following
bilinear forms:
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〈z,w〉0 = x0y0 + F12x1y2 + F21x2y1;
〈z,w〉δ0 = x0y0 + (δ/3)(x1y2 + x2y1);
〈z,w〉1 = x0y1 + x1y0 + F22x2y2;
〈z,w〉2 = x0y2 + x2y0 + F11x1y1.

Now we can write the product of the two elements z and w in the form

zw = 〈z,w〉0e0 + 〈z,w〉1e1 + 〈z,w〉2e2.

If RF Z3 is associative, then as mentioned in the proof of Proposition 5, it follows that F21 =
F12 = F11F22. In this case we thus obtain 〈z,w〉δ0 = 〈z,w〉0.

Lemma 3. Suppose that Ω = Zω1 + Zω2 + Zω3 is a three-dimensional lattice embedded in the
algebra RF Z3. Assume that T (ωi), S(ωi) ∈ Z for all i = 1,2,3 and that 3〈ωi,ωj 〉δ0 ∈ Z for all
i, j = 1,2,3; i 	= j . Then z2 ∈ Ω if and only if z̄ ∈ Ω.

Proof. Let us consider an element from Ω , say z = aω1 + bω2 + cω3 with a, b, c ∈ Z. Then

T (z) = aT (ω1) + bT (ω2) + cT (ω3);
S(z) = a2S(ω1) + b2S(ω2) + c2S(ω3) + ab

(
T (ω1)T (ω2) − 3〈ω1,ω2〉δ0

)
+ ac

(
T (ω1)T (ω3) − 3 < ω1,ω3 >δ

0

) + cb
(
T (ω3)T (ω2) − 3 < ω3,ω2 >δ

0

)
.

In view of the relation z = z2 + T (z)z − S(z) we obtain the desired result. �
Now we give a necessary and sufficient condition for a class of lattices in RF Z3 to be closed

under multiplication and under the conjugation. To do so let us suppose that ω1,ω2,ω3 ∈ R3 are
R-linearly independent vectors with integral coordinates with respect to the canonical basis, i.e.

wi = w
(i)
0 e0 + w

(i)
1 e1 + w

(i)
2 e2 (i = 1,2,3).

Let Ω = Zω1 + Zω2 + Zω3 be the associated lattice in RF Z3. Further, let M = (mkj ) be the

3 × 3 matrix where the kj -entry is defined by mkj = w
(j)

k−1 for all k, j = 1,2,3. Let x, z be two
arbitrary points of the lattice. Further, we denote by X = (x1, x2, x3)

T ∈ R3 the vector with the
coordinates xk = 〈z, x〉k−1 (k = 1,2,3) in the standard basis. Finally Y = (y1, y2, y3)

T ∈ R3

denotes the vector with the coordinates yk = 〈z, z〉k−1 in the standard basis.
Using these notations we formate the following

Lemma 4. Let Ω = Zω1 + Zω2 + Zω3 be a lattice in R3 embedded in RF Z3 generated by
elements with integral coefficients in the standard basis. Let x, z be two arbitrary lattice points.

Then z · x ∈ Ω if and only if M−1X is an integral vector. Moreover, if

T (ωi), S(ωi),3〈ωi,ωj 〉δ0 ∈ Z, ∀i, j = 1,2,3, i 	= j,

then z ∈ Ω if and only if M−1Y is an integral vector.
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Proof. Since w1, w2, w3 are three linearly independent vectors from R3, we can consider the
matrix M that represents the change of the basis (wi)i=1,2,3 to the standard basis (ei)i=1,2,3. The
vector M−1X expresses the components of z · x with respect to the basis (wi)i=1,2,3. Finally if
M−1Y has only integral components then z2 ∈ Ω . Applying Lemma 3 allows us to conclude that
z ∈ Ω . �

A meaningful generalization of a rational Brandt-algebra to the context of RF Z3 can be in-
troduced as follows:

Definition 5. A subset BQ of RF Z3 is called a rational RF Z3 Brandt-algebra if for all elements
a, b ∈ BQ

T (a + b), S(a + b),N(a + b), T (a · b), S(a · b),N(a · b) ∈ Q.

Definition 6. A subset BZ of RF Z3 is called an integral Brandt-algebra if all a, b ∈ BZ satisfy

T (a + b), S(a + b),N(a + b), T (a · b), S(a · b),N(a · b) ∈ Z.

Remark. If moreover all x ∈ BZ \ {0} satisfy N(x) 	= 0, then BZ is an integral domain in the
rational Brandt algebra BQ. This is then the division ring of BZ.

In the associative case we have S(x) = T (x). Then the conditions S(a), S(b), S(a + b),

S(a · b) ∈ Q (respectively in Z) can be re-expressed equivalently by T (a), T (b), T (a + b),
T (a · b) ∈ Q (respectively in Z). So, we may establish

Proposition 6. Two elements y = y0e0 + y1e1 + y2e2, x = x0e0 + x1e1 + x2e2 ∈ RF Z3 belong
to an integral Brandt-algebra in RF Z3, if and only if the following expressions

T (y), S(y),N(y), T (x), S(x),N(x),3〈x, y〉0,3〈x, y〉δ0,
3〈x, y〉2

0 − δ〈x, y〉1〈x, y〉2,

〈x, y〉0〈x, y〉1〈x, y〉2δ − (〈x, y〉3
0 + 〈x, y〉3

1F11F21 + 〈x, y〉3
2F22F12

)
,

3
3∑

i=1

xiyi(xi + yi)FiiFi−1i − δ

3∑
i,j,k=1,i 	=j 	=k,i 	=k

(xixj yk + yiyj xk)

are all elements in Z.

Proof. By a direct calculation we may deduce that T (x + y) = T (x) + T (y) and that indeed
T (xy) = 3〈x, y〉0. Furthermore, S(x + y) = S(x) + S(y) + T (x)T (y) − 3〈x, y〉δ0 and S(xy) =
3〈x, y〉2

0 − δ〈x, y〉1〈x, y〉2. For the norm of the sum and the product of x with y we obtain

N(x + y) = N(x) + N(y) + 3
3∑

xiyi(xi + yi)FiiFi−1i − δ

3∑
(xixj yk + yiyj xk)
i=1 i,j,k=1,	=j 	=k
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as well as

N(xy) = −〈x, y〉0〈x, y〉1〈x, y〉2δ + (〈x, y〉3
0 + 〈x, y〉3

1F11F21 + 〈x, y〉3
2F22F12

)
. �

Examples of integral domains in rational Brandt algebras of RF Z3 that are closed under mul-
tiplication and conjugation are some of the prototypes of the three-dimensional lattices that are
described in Section 4.

Theorem 3. Let Ω = Zω1 + Zω2 + Zω3 be a lattice in RF Z3. Suppose that the generators have
the form

ωi = w
(i)
1 e0 + w

(i)
2

3
√

D e1 + w
(i)
3

3
√

D2 e2 (i = 1,2,3)

with w
(i)
j ∈ Z for i, j = 1,2,3 and where D is a cubic-free positive integer. Then Ω is an integral

domain. Let ω be the matrix whose ij -entry is equal to wij . If ω or −ω lies in SL(3,Z) then the
lattice Ω is closed under multiplication and conjugation.

Proof. Let us consider an arbitrary element from Ω , say z = me0 + n
3
√

D e1 + p
3√
D2 where

m, n, p are integers. (Note that the sum and the product of two elements of this type has this
form.) Therefore, T (z) = 3m ∈ Z, S(z) = 3m2 − δDnp ∈ Z and N(z) = m3 + n3DF11F21 +
p3D2F22F12 − mnpDδ ∈ Z. As a consequence Ω is an integral Brandt-algebra in RF Z3. More-
over, one can verify by a direct computation that the norm of any non-zero element of this lattice
is different from zero. Furthermore, the product of two arbitrary lattice elements turns out to be
zero if and only if at least one of the factors is zero. Hence, this lattice has no zero divisors. It is
thus an integral domain (in the more general sense admitting non-associativity).

Consequently every element has a left inverse. This is the inverse element if the algebra RF Z3
is associative. Furthermore, in the associative case the matrix M defined before Lemma 4 is the
product of the diagonal matrix D = diag(1,

3
√

D,
3√
D2 ) with an integral matrix ω that has an

inverse which is an integral matrix if detω = +1 or detω = −1. However, for all x, y ∈ Ω ,
their product in the basis ei can be represented by a column vector that can be expressed as a
product of the same diagonal matrix D with a column vector with integer elements. Thus, x · y
has integer components with respect to the basis (wi)i=0,1,2 and Ω is closed for multiplication.
Since T (ωi), S(ωi),∀i ∈ {0,1,2} and 〈ωi,ωj 〉δ0 (i, j = 1,2,3; i 	= j) ∈ Z, we can conclude that
x ∈ Ω for all x ∈ Ω . �
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