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Abstract

Given finite dimensional real or complex Banach spaces, E and F, with norms ν : E → R and μ : F → R,
we denote by Nμν the least upper bound norm induced on L(E, F ). Some results are given on the extremal
structures of B, the unit ball of Nμν , of its polar B◦, and of B′, which is the polar of the unit ball of the
least upper bound norm Nμ◦ν◦ .

The exposed faces, the extreme points, and a large family of other faces of B◦ and B′ are presented.
It turns out that B′ is a subset of B; the set of tangency points of the surfaces of B and B′ is completely
determined and represented as the union of the exposed faces of B′ which are normal to rank-one mappings.
We determine sharp bounds on the ranks of mappings in these exposed faces.
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1. Introduction

We let E be an n-dimensional vector space over K (where K denotes R or C) endowed with an
inner product 〈·|·〉, and a norm ν (we assume norms are strictly homogeneous, i.e., ν(λx) = |λ|ν(x)

for all λ ∈ K). In the complex case, E has an underlying real vector space structure, of dimension
2n, and the functional (x, y) 	→ 
〈x|y〉 (
 means real part) endows E with the structure of a
real inner product space; as a consequence we have two kinds of orthogonality: if 〈x|y〉 = 0 we
say x and y are C-orthogonal; if 
〈x|y〉 = 0 we say x and y are R-orthogonal. The concepts of
“polar” and “subdifferential” to be given below refer, in the complex case, to the underlying real
inner product space structure.

The symbols B(ν) and S(ν) [often shortened to Bν and Sν] denote, respectively, the closed
unit ball and the unit sphere of ν (so S(ν) is the boundary of B(ν)). The mapping ν◦ : E → R,
given by ν◦(y) := sup{
〈x|y〉 : x ∈ Bν}, is called the polar of ν. It is well known that ν◦ is a
norm, ν◦◦ = ν and


〈a|u〉 � ν(a)ν◦(u). (1)

A second vector space F is given, of dimension m over K, endowed with a norm μ and an inner
product also denoted 〈·|·〉. Given A in L(E, F ), the space of K-linear mappings of E into F ,
A∗ ∈ L(F, E) denotes the adjoint of A, uniquely determined by the condition 〈x|A∗y〉 = 〈Ax|y〉,
for all x ∈ E and y ∈ F .

We have chosen to workout the whole paper in a coordinate free context, to stress the fact that
our results are of a geometrical nature, i.e., they do not depend on the choice of bases in E and
F . Of course the whole thing may be done in a matrix setting; so the reader may well think of x

and y as column vectors and of A as an m × n matrix; then A∗ is the conjugate transpose of A.
In case E = F , the trace, the determinant, as well as any other similarity invariant of A are well
defined. The composition of linear mappings, A and B (in appropriate spaces), is denoted by AB.

For nonzero u ∈ E and w ∈ F , the rank-one tensor u ⊗ w is the element of L(E, F ) given
by (u ⊗ w)x :=〈x|u〉w. Any A ∈ L(E, F ) may be expressed as a sum of rank-one tensors; the
minimum number of terms in such a sum is the rank of A. For any U ⊆ E and W ⊆ F , the set
{u ⊗ w : u ∈ U, w ∈ W } is denoted by U ⊗ W .

In L(E, F ) we consider the standard inner product 〈A|B〉 := tr(B∗A). For any norm N on
L(E, F ), the polar of N is given by

N◦(A) = sup{
(tr(A∗θ)) : θ ∈ BN }.
We define N∗(B) :=N(B∗), for any B in L(F, E). N∗ is clearly a norm in L(F, E). In the
sequel, we shall be concerned with the least upper bound norm Nμν on L(E, F ), given by

Nμν(A) := sup{μ(Ax) : x ∈ Bν}.
A face of a convex subset K ⊆ E is a convex subset � of K such that, for any x, y ∈ K , the
condition ]x, y[∩� /= ∅ implies x, y ∈ �; exposed faces of K are the special faces obtained by
intersecting K with its supporting hyperplanes (for these and other concepts of convex analysis,
see [14]).

The problem of the determination of the extreme structure of the unit ball of an arbitrary least
upper bound norm and of its polar is an interesting and important one, and it is still far from being
solved. Contributions to this matter appeared in the papers [21,22,20,24,23]; the present paper
gives some steps further.
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The central problem we are dealing here is the characterization of the faces and exposed faces
of the convex bodies B(Nμν) and B(Nμν

◦), and, in particular, their extreme and exposed points.
These concepts naturally occur in approximation theory (e.g., [18,8]): for example, if H is a real
hyperplane of E and d is the distance (with respect to ν) of a point u ∈ E to H, then the best
approximation subset of H is of the form u + d�, where � is an exposed face of Bν , and all
exposed faces of Bν occur as best approximation subsets of hyperplanes. This is a special case of
a well-known result of Singer [18, Theorems 1.1 and 1.2] often used in the literature to describe
best approximation sets in concrete cases (e.g., [18,7,23,25,27]).

Complete characterizations of the exposed faces of the unit balls of unitarily invariant norms
and of dual least upper bound norms appeared in the literature in various degrees of generality (see
[21,4,5,19,23,26,15,16,17]). The papers [9,10] contain far-reaching developments of this kind of
results.

We may get information on the group of isometries of two normed spaces, say E and F , using
the extremal structure of their unit balls. As a matter of fact, an isometry f : E → F maps each
(exposed) face of Bν onto an (exposed) face of Bμ, it preserves the faces dimensions, and induces
an isomorphism between the lattice of (exposed) faces of Bν into the lattice of (exposed) faces
of Bμ. In one way or another, this kind of property is frequently used to study isometries of
Banach spaces (see [1] and references therein). The closely related problem of characterizing the
linear mappings between normed matrix spaces that preserve given norms has extensively been
considered in the literature; in many cases, the main techniques involve the determination of the
extreme matrices with respect to the norms given (see, e.g., [3,2,6,11–13]).

We define the dual of Nμν as the functional ND
μν : L(F, E) → R, given by ND

μν(B) :=
Nμν

◦(B∗). The papers [20,24] consider dual matrix norms in the case E = F and ν = μ.
In Section 2 we extend some results of [20] to the norms Nμν and ND

νμ. In Section 3, the facial
structure of B(Nμν

◦) is considered in detail: as in [21,23], the exposed faces are easy to describe;
we characterize the extreme points, and give a large family of (in general non exposed) faces of
B(Nμν

◦), but a complete description of such faces is left open. The unit ball of ND
νμ is contained

in the unit ball of Nμν , and the rank one tensors, suitably normalized, are tangency points of the
surfaces of those two unit balls. In Section 4 we determine the set of all other tangency points,
which is represented as the union of the exposed faces of B(ND

νμ) which are normal to rank-one
tensors. In Section 5 we determine sharp bounds on the ranks of mappings in these exposed
faces.

2. Preliminary results

Given K ⊆ L(E, F ), we define the sets K∗ :={A∗ : A ∈ K},KD :={B ∈ L(F, E) :

(tr(Bκ)) � 1 ∀κ ∈ K}, and K◦ :={A ∈ L(E, F ) : 
〈A|κ〉 � 1 ∀κ ∈ K}. Each element κ ∈
K determines a real half-space of L(E, F ), namely

Hκ :={A : 
〈A|κ〉 � 1}. (2)

This half-space is bounded by a real hyperplane, and κ is R-orthogonal to this hyperplane. Of
courseK◦ is the intersection of all half-spacesHκ , with κ ∈ K. ClearlyKD = (K◦)∗ = (K∗)◦
andKDD = K◦◦ = conv(K ∪ {0}). Moreover B(ND

μν) = B(Nμν)
D . In the sequelRμν denotes

the following compact subset of L(E, F ):

Rμν :={x ⊗ y : x ∈ E, y ∈ F, Nμν(x ⊗ y) = 1}
= {x ⊗ y : ν◦(x) = μ(y) = 1}.
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Theorem 2.1. For any a ∈ E, b ∈ F and A ∈ L(E, F ), the following hold:

(a) Nμν(a ⊗ b) = ND
νμ(a ⊗ b) = ν◦(a)μ(b).

(b) R∗
μν = Rν

◦
μ

◦ .

(c) ND
νμ(A) � Nμν(A).

(d) Nμν(A) = sup{
tr(Aρ) : ρ ∈ Rνμ}.
(e) B(Nμν) = RD

νμ and B(ND
νμ) = conv(Rμν).

(f) ND
νμ = Nμ

◦
ν
◦◦ and N∗

νμ = Nμ
◦
ν
◦ .

(g) ND
νμ(A) = inf{∑s

i=1 λi : s ∈ N, λi � 0, pi ∈ Rμν,
∑s

i=1 λipi = A}.

Proof. We follow the ideas of [20, Theorem 1], but there are items here with no counterpart in
[20], namely (b) and (f). Note that Rνμ plays the same role here as the role played by P in [20].
Property (b) follows easily from (a). The proof of (d), which is one of the main properties of Rμν ,
may be done in the same manner as [20, Eq. (5)]. The first identity of (e) follows from (d), and
the second one is the dual of the first. To prove the first identity of (f), use (b) and (e) to obtain:

B(ND
νμ) = RDD

μν = ((R∗
μν)

D)◦

= (Rν
◦
μ

◦D)◦ = B(Nμ
◦
ν
◦)◦ = B(Nμ

◦
ν
◦◦). (3)

The second identity of (f) is the ‘polar’ of the first one. �

Using definition (2), the first identity in (e) may be rephrased as B(Nμν) is the intersection of
the half-spaces Hκ for κ ∈ R∗

νμ. Taking (b) into account, we obtain

B(Nμν) =
⋂

{Hx⊗y : ν(x) = μ◦(y) = 1}. (4)

We may get other properties by simple formal manipulation as we did in (3). An easy one, to be
used in the sequel, is the following:

B(Nμν
◦) = conv(Rμ

◦
ν
◦). (5)

Another one is that ND
νμ, Nνμ

◦∗, Nνμ
∗◦ and Nμ

◦
ν
◦◦ are the same norm. So one may argue that the

concept of “dual” is superfluous and might have been removed. However, there are several reasons
why the operator D deserves to be considered on its own. Firstly, it shares with the polar very
interesting spectral properties, as stressed in [20,24]. Moreover, the inclusion B(ND

νμ) ⊆ B(Nμν)

is quite interesting from a geometrical viewpoint and deserves a further analysis to be developed
in Sections 4 and 5. On the other hand, the dual operator is the origin of interesting, highly
nontrivial problems, as the following one: describe the pairs (μ, ν) for which Nμν is auto-dual,
i.e., ND

μν = Nμν . The corresponding problem for the polar is more or less trivial.

3. Faces of B(Nμν
◦)

In the special case of a norm ν, the subdifferential of ν at a ∈ E is given by

�ν(a) = {u ∈ E : ν(x) − ν(a) � 
〈u|x − a〉, all x ∈ E} (6)

(For the general concept of subdifferential, we refer [14].) It is easily seen that: (i) �ν(a) is the set
of all u ∈ S(ν◦) for which equality holds in (1); in such case, 〈a|u〉 is real nonnegative; (ii) �ν(0)

is the unit ball of ν◦; (iii) for any nonzero a ∈ E, �ν(a) is the exposed face of Bν
◦ having a as
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outwards normal vector (here, in the case E is a complex space, the concept “outwards normal”
is referred to the underlying real inner product space structure); (iv) each nontrivial (i.e., proper
and nonempty) exposed face of Bν

◦ equals �ν(a) for some nonzero a (see, e.g. [17, Section 2]).
Clearly, if � is a face of Bν , then α� is also a face of Bν , for α ∈ K, |α| = 1. It is an easy

exercise to prove that, if � is a nontrivial face and α ∈ K:

α� ∩ � /= ∅ ⇒ α = 1. (7)

This implies, in case K = C, that Bνhas an infinite number of faces, i.e., Bν is not a polytope.
Let F be a proper, nonempty face of B(Nμν

◦). From (5) it follows that F is the convex hull of
a subset of Rμ

◦
ν
◦ , namely

F = conv(Rμ
◦
ν
◦ ∩ F). (8)

So the concrete problem emerging here is the determination of the intersections of Rμ
◦
ν
◦ with

the faces of B(Nμν
◦).

Definition 3.1. We keep the face F fixed, and define the binary relation T afforded by F in
the following way: xTy means that ν(x) = 1, μ◦(y) = 1 and x ⊗ y ∈ F. We denote by xT [by
Ty] the set of all y [resp. of all x] such that xTy. For any M ∈ S(Nμν), we let FM be the set
�Nμν(M), i.e., the exposed face of B(Nμν

◦) with outwards normal M . Finally, TM denotes the
binary relation afforded by FM .

Note that F∗(= {A∗ : A ∈ F}) is a face of B(Nμν
◦)∗ = B(Nν

◦
μ

◦◦); hence, the binary relation
afforded by F∗, call it T ∗, satisfies xTy iff yT ∗x. So, theorems about F and T automatically
transfer, by taking adjoints, to theorems about F∗ and T ∗; the pair (ν, μ) is then replaced by
(μ◦, ν◦). In the following theorem we collect some properties to be used later on. Item (b) has
been proved in [21, p. 183] (see also [23]) for mappings on real vector spaces.

Theorem 3.2

(a) For any M ∈ S(Nμν), the exposed face FM is given by

FM = conv{x ⊗ y : ν(x) = μ(Mx) = 1, y ∈ �μ(Mx)}. (9)

(b) For any u ∈ Sν and w ∈ Sμ
◦ , uT and T w are proper faces of Bμ

◦ and Bν, respectively.
(c) If F is an exposed face of B(Nμν

◦), then, for all u ∈ Sν and w ∈ Sμ
◦ , uT and T w are

exposed faces of Bμ
◦ and Bν, respectively.

Proof. (a) We just apply (8) to the face FM , and check the explicit expression in (9) under ‘conv’
for the set Rμ

◦
ν
◦ ∩ FM .

(b) Let y, y′ ∈ Bμ
◦ and λ > 0 satisfy λy + (1 − λ)y′ ∈ uT . Then λu ⊗ y + (1 − λ)u ⊗ y′ ∈

F. As F is a face, u ⊗ y and u ⊗ y′ lie in F. Then y, y′ ∈ uT , and therefore uT is a face of Bμ
◦ .

uT is clearly proper, otherwise 0 ∈ uT , and then F would be improper as well. The case T w is
dealt with in the same manner (or by considering F∗).

(c) We only treat the case when F is a proper, nonempty exposed face. Then F = FM for some
M ∈ S(Nμν). It is not difficult to see that

F∗
M = �Nν

◦
μ

◦(M∗).
We now combine this with (9) to get the following: uTM = �μ(Mu), in case μ(Mu) = 1, other-
wise uTM is empty; TMw = �ν◦(M∗w), in case ν◦(M∗w) = 1, otherwise TMw is empty. �
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We conjecture that the converse of Theorem 3.2(c) is also true. Now consider sets of the form

F = conv(U ⊗ W), (10)

where U ⊆ Sν and W ⊆ Sμ
◦ . We shall always assume that the real affine variety spanned by

U ⊗ W does not contain the origin, i.e., that both U and W span real affine varieties that do not
contain the origin.

Lemma 3.3. In the above conditions:

(a) conv(U ⊗ W) = conv[(conv U) ⊗ (conv W)].
(b) x ⊗ y ∈ conv(U ⊗ W) ⇔ x ⊗ y ∈ (conv U) ⊗ (conv W).

(c) conv(U ⊗ W) = conv(U ′ ⊗ W ′) if and only if (conv U) ⊗ (conv W) = (conv U ′) ⊗
(conv W ′).

Proof. Only the implication ⇒ of (b) will be proved [note that (c) follows from (b)]. Let x ⊗ y =∑s
i=1 λiai ⊗ bi be a convex combination with positive λi , ai ∈ U and bi ∈ W . Our hypotheses

imply the existence of u ∈ E and v ∈ F such that 〈u|ai〉 = 〈v|bi〉 = 1, for all i. As the affine
variety spanned by W does not contain 0, 〈u|x〉 is nonzero; so we may assume that 〈u|x〉 = 1.
Computing (x ⊗ y)u gives y = ∑s

i=1 λibi , i.e., y ∈ conv W ; so 〈v|y〉 = 1. Computing (y ⊗ x)v

gives x ∈ conv U . �

This shows that, if (10) is a proper face of B(Nμν
◦), a ∈ U and b ∈ W , then

aT = conv W and T b = convU. (11)

If M is a rank-one tensor, (9) has a simple expression.

Proposition 3.4. For a ⊗ b ∈ Rμν, we have

Fa⊗b = conv[�ν◦(a) ⊗ �μ(b)]. (12)

Proof. We may assume a ∈ Sν
◦ and b ∈ Sμ. Any rank-one tensor ρ in FM ∪ �ν◦(a) ⊗ �μ(b)

may be represented as ρ = x ⊗ y where ν(x) = μ◦(y) = 1 and 〈a|x〉 is real nonnegative. With
such representation in mind, we have

ρ ∈ Rμ
◦
ν
◦ ∩ Fa⊗b ⇔ tr[(x ⊗ y)(a ⊗ b)∗] = 1

⇔ 〈a|x〉〈y|b〉 = 1 ⇔ 〈a|x〉 = 〈y|b〉 = 1

⇔ x ∈ �ν◦(a) ∧ y ∈ �μ(b)

⇔ ρ ∈ �ν◦(a) ⊗ �μ(b).

So the result follows from (8). �

Theorem 3.5. For U ⊆ Sν and W ⊆ Sμ
◦ , the set conv(U ⊗ W) is a nontrivial face of B(Nμν

◦)
if and only if conv U and conv W are nontrivial faces of Bν and Bμ

◦ , respectively. If these

conditions hold, the exposed face generated by conv(U ⊗ W) is conv(Û ⊗ Ŵ ), where Û and Ŵ

are the exposed faces of Bν and Bμ
◦ generated by U and W, respectively.

Proof. The only if part follows from Theorem 3.2(b) and (11). Conversely, assume conv U and
conv W are nontrivial faces of Bν and Bμ

◦ , respectively. There exist u ∈ Sν
◦ and v ∈ Sμ such



1934 E. Marques de Sá, V. Santos / Linear Algebra and its Applications 428 (2008) 1928–1938

that 〈u|a〉 = 〈v|b〉 = 1, for any a ∈ U and b ∈ W . Let A = ∑k
i=1 λiρi be a convex combination

of rank-one tensors ρi ∈ Rμ
◦
ν
◦ , with positive coefficients λi , such that A ∈ conv(U ⊗ W). We

write ρi = xi ⊗ yi where ν(xi) = μ◦(yi) = 1 and 〈u|xi〉 is real nonnegative. We then get

Au =
k∑

i=1

λi〈u|xi〉yi ∈ conv W.

As conv W is a face of Bμ
◦ , we have, for all i, 〈u|xi〉yi ∈ conv W ; as 〈u|xi〉 � 1, we must

have 〈u|xi〉 = 1 and yi ∈ conv W . Computing A∗v and using the fact that conv U is a face of Bν ,
we easily obtain xi ∈ conv U for all i. Therefore ρi ∈ conv(U ⊗ W) for all i. This proves that
conv(U ⊗ W) is a (nontrivial) face of B(Nμν

◦).
As Û and Ŵ are nontrivial exposed faces of Bν and Bμ

◦ , there exists a ⊗ b ∈ Rμν such that

Û = �ν◦(a) and Ŵ = �μ(b); by Proposition 3.4, conv(Û ⊗ Ŵ ) is an exposed face of B(Nμν
◦);

so it contains the exposed face generated by conv(U ⊗ W). On the other hand, if T1 denotes the
binary relation afforded by the exposed face generated by conv(U ⊗ W), and if we select any
α ∈ U and β ∈ W, αT1 and T1β are exposed faces of Bμ

◦ and Bν (cf Theorem 3.2), that contain

W and U , respectively; thus αT1 ⊃ Ŵ and T1β ⊃ Û . Therefore, the exposed face generated by
conv(U ⊗ W) contains conv(Û ⊗ Ŵ ) �.

Corollary 3.6. The set conv(U ⊗ W) is a nontrivial exposed face of B(Nμν
◦) if and only if convU

and convW are nontrivial exposed faces of Bν and Bμ
◦ , respectively.

For real spaces and real linear mappings, [21, p. 159] gives the only if part for extreme points,
and the if part for exposed points, of the following:

Corollary 3.7. ρ ∈ L(E, F ) is an extreme [exposed] point of B(ND
νμ) if and only if ρ = u ⊗ w,

where u and w are extreme [exposed] points of Bν
◦ and Bμ, respectively.

4. Tangency points

Let B and C be two closed convex sets in a finite dimensional real vector space, such that
B ⊆ C. Let us look at the surfaces of B and C, i.e., their relative boundaries. Any point in the
intersection of these surfaces is called a tangency point. We assume, without loss of generality,
that C has interior points. To keep away from triviality we assume B is not contained in the surface
of C. For any tangency point p consider a supporting hyperplane to C at p; the intersection of
this hyperplane with B is a proper exposed face of B whose points are tangency points of our
surfaces. So the set of all tangency points is a union of proper exposed faces of B. In concrete
cases it is only natural to look for the exposed faces of B that are in contact with the surface of C.

For example, let M ∈ L(E, F ) satisfy Nμν(M) = 1. As M[Bν] ⊆ Bμ, we may apply our
previous comments to B :=Bν and C :=M−1[Bμ]; according to what has been said in between (9)
and Theorem 3.2, the set of tangency points of the two surfaces Sν and M−1[Sμ] is the union
of all exposed faces TMb of Bν . For the same M , we have the following “adjoint” assertion:
Nν

◦
μ

◦(M∗) = 1 and the set of tangency points of the two surfaces Sμ
◦ and (M∗)−1[Sν

◦] is the
union of all exposed faces aTM of Bμ

◦ .

Items (c) and (a) of Theorem 2.1 tell us that the unit ball of ND
νμ is contained in the unit ball

of Nμν , and all elements of Rμν are tangency points of the surfaces of these unit balls. We now
give a complete characterization of the set of tangency points of any rank.
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Theorem 4.1. The set of tangency points of surfaces S(Nμν) and S(ND
νμ) is the union of all

exposed faces of B(ND
νμ) which are normal to rank-one tensors.

Proof. Recall that B(Nμν) is the intersection of the half-spacesHκ for κ ∈ R∗
νμ [cf (4)]. Let A be

any tangency point of the surfaces S(Nμν) and S(ND
νμ), and let d(κ) be the (Euclidean) distance

of A to the boundary of Hκ . The infimum of d(κ) is zero; by the compactness of R∗
νμ, there

exists π ∈ R∗
νμ such that d(π) = 0, i.e., the boundary of Hπ is a supporting (real) hyperplane

of B(Nμν) at A. This hyperplane intersects B(ND
νμ) along an exposed face containing A. �

By Theorem 2.1(f) and Proposition 3.4 the exposed face with outwards normal a ⊗ b ∈ R∗
νμ

has the form (12), with ν and μ replaced by their polar. So the exposed faces of B(ND
νμ) in contact

with the surface S(Nμν) have the form

conv(�ν(a) ⊗ �μ◦(b)). (13)

Corollary 4.2. The following conditions are pairwise equivalent:

(a) All tangency points of the surfaces S(Nμν) and S(ND
νμ) are exposed points of B(ND

νμ);
(b) Nμ

◦
ν
◦ is differentiable at any rank one A;

(c) ν is differentiable and μ is strictly convex.

Proof. This follows because any of (a), (b) and (c) is equivalent to the fact that (13) is a singleton
for all a ⊗ b ∈ R∗

νμ. Recall that μ is strictly convex iff μ◦ is differentiable. �

The following corollary generalizes [20, Theorem 5]. It also follows from Theorems 5.5 and
5.1 of the next section.

Corollary 4.3. All contact points of the boundaries of B(Nμν) and B(ND
νμ) have rank one if and

only if either ν is differentiable or μ is strictly convex.

Proof. The if part is obvious. For the converse, assume there exists a ⊗ b ∈ R∗
νμ such that both

�ν(a) and �μ◦(b) have more than one element, say: x1, x2 ∈ �ν(a) and y1, y2 ∈ �μ◦(b), x1 /= x2
and y1 /= y2. By (7) x1 and x2 [y1 and y2] are K-linearly independent. Therefore (x1 ⊗ y1 + x2 ⊗
y2)/2 is a rank-two element of (13). �

The exposed face (13) of B(ND
νμ) is obviously contained in the exposed face of B(Nμν) with

outwards normal a ⊗ b, but in general (13) is not an exposed face of B(Nμν). As a matter of fact,
it is not difficult to prove that (13) is an exposed face of B(Nμν) for all nonzero a ⊗ b if and
only if Nμν = ND

νμ, i.e., iff Nμν is a self-D-dual norm. Except for the trivial case when E [or F ]
is a one dimensional K-space, we did not find any self-D-dual norm. We conjecture they do not
exist.

5. Ranks and dimensions

For any subset S of E we let 〈S〉R be the real subspace of E spanned by S. If E is a complex
space, 〈S〉C denotes the complex subspace of E spanned by S; the dimension of 〈S〉K over K is
denoted by dimK(S). It is an easy exercise to show that, for an n-dimensional complex space E
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and nonnegative integers r and c, the inequalities c � r � 2c � 2n are equivalent to the existence
of a real subspace � ⊆ E such that dimR(�) = r and dimC(�) = c.

The dimension of a convex subset C ⊆ E, denoted dim(C), is the dimension, over the real
field, of the real affine variety spanned by C.

For nonempty sets U ⊆ E and W ⊆ F , the rank of a given A ∈ conv(U ⊗ W), i.e., the dimen-
sion over K of the image of A, is a nonnegative integer k that satisfies

k � min{dimK(U), dimK(W)}. (14)

It is also clear that any positive integer k satisfying the above condition is the rank of some
A ∈ conv(U ⊗ W). These considerations will apply to our contact faces (13), with U and W

defined by

U :=�ν◦(a) and W :=�μ(b).

In case K = R we have a nice expression for the upper bound in (14), because the current U spans
a real subspace of dimension dim(U) + 1. We have then

Theorem 5.1. Let E and F be real spaces. An integer k is the rank of some element A of the
contact face (13) if and only if

1 � k � min{dim(�ν◦(a)), dim(�μ(b))} + 1.

The complex case is not so neat. We first prove a lemma.

Lemma 5.2. Let E be a complex space, dimC E = n, and let r and c be nonnegative integers.
There exists a norm ν in E whose unit ball has an exposed face F such that dimC F = c and
dimR F = r if and only if c � r < 2c and c � n.

Proof. Assume F is an exposed face of Bν with the appropriate dimensions. There exists a vector
w, such that ν◦(w) = 1 and �ν◦(w) = F. Clearly 〈w|x〉 = 1 for x ∈ F, and the same holds for
any x ∈ A, where A is the real affine variety spanned by F. We have A = a + S, where a ∈ F

and S is the real subspace parallel to A. Clearly dimR(S) = r − 1. As 〈w|s〉 = 0 for s ∈ S, a

does not lie in S + iS = 〈S〉C. The space 〈F〉C is spanned (over C) by {a} ∪ (S + iS); therefore
c = dimC(S + iS) + 1. We thus have

2(c − 1) = dimR(S + iS) = 2(r − 1) − dimR(S ∩ iS).

The only if part of the lemma follows from 0 � dimR(S ∩ iS) � r − 1.
For the converse, assume c � r � 2c − 1 and c � n. We firstly consider the special case when

c = n. Let v1, . . . , vn be an orthogonal basis of E and consider the set

V :=vn + {0, v1, . . . , vn−1, iv1, . . . , ivr−n}.
Let F be the convex hull of V . Clearly dimC F = n and dimR F = r . Define

W :=conv{eiθ v : θ ∈ R, v ∈ V }.
It is not difficult to prove that W is a convex, compact neighbourhood of the origin, and eiθW = W ;
so W is the unit ball of a norm. Moreover, 
〈vn|eiθ v〉 � 1, for all real θ and v ∈ V , with equality
iff eiθ = 1. Therefore, F is an exposed face of W .

Now assume that c < n. Let E = F ⊕ G be a C-orthogonal direct decomposition of E, where
dimC F = c. For any norms f in F and g in G, the direct sum f ⊕ g, defined by f ⊕ g(x +
y) :=f (x) + g(y), for x ∈ F and y ∈ G, is a norm on E such that
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(f ⊕ g)◦(x + y) = max{f ◦(x), g◦(y)},
�(f ⊕ g)◦(x) = �f ◦(x)

(we omit the details of proof). So the exposed face of Bf ⊕g with outwards normal x ∈ F\{0} is
the same as the corresponding one of Bf .

By the previous case, there exists a norm f in F , and a nonzero u ∈ F , such that the exposed
face F :=�f (u) satisfies dimC F = c and dimR F = r . This completes the proof. �

Remark 5.3. It is interesting to notice the influence that strict homogeneity (assumed all over
the paper) has on the dimension of faces. In Lemma 5.2, dim(F) = r − 1; therefore, in com-
plex spaces, there is no face of affine dimension 2n − 1. Now strict homogeneity is sometimes
weakened to one of the forms

H1 : ν(λx) = λν(x) for real nonnegative λ,

H2 : ν(λx) = |λ|ν(x) for real λ.

With axiom H1, which characterizes pseudo-norms, the unit ball may be any convex, compact
neighbourhood of the origin; with H2, the unit ball satisfies the additional property −Bν = Bν ,
while in the complex, strictly homogeneous case, we have eiθBν = Bν , for all real θ . In the latter
case, the group of real isometries of Bν is far from being trivial, while for pseudo-norms that
group eventually reduces to the identity. With similar techniques to those used in Lemma 5.2, we
may prove

Lemma 5.4. Let E be a complex space, dimC E = n, and let r and c be nonnegative integers.
The following statements are equivalent:

(i) There exists B, a convex, compact neighbourhood of the origin [such that −B = B],
having an exposed face F such that dimC F = c and dimR F = r;

(ii) c � r � 2c and c � n.

The next theorem is an immediate consequence of Lemma 5.2. The Lemma also shows that
Theorem 5.5 is the best possible in an obvious sense.

Theorem 5.5. Let E and F be complex spaces. Denote by R(a, b) the maximum rank of the
elements A of the contact face (13). Then

R(a, b) � min{dim(�ν◦(a)), dim(�μ(b))} + 1 < 2R(a, b).
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[5] R. Grza̧ślewicz, Extremal structure of L(l2m, l

p
n ), Linear and Multilinear Algebra 24 (1989) 117–125.

[6] C.R. Johnson, T. Laffey, C.K. Li, Linear transformations on Mn(R) that preserve the Ky Fan k-norm and a remarkable
special case when (n, k) = (4, 2), Linear and Multilinear Algebra 23 (1988) 47–53.



1938 E. Marques de Sá, V. Santos / Linear Algebra and its Applications 428 (2008) 1928–1938

[7] K. Lau, W. Riha, Characterization of best approximations in normed linear spaces of matrices by elements of
finite-dimensional linear subspaces, Linear Algebra Appl. 35 (1981) 109–120.

[8] P-J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972.
[9] A.S. Lewis, Group invariance and convex matrix analysis, SIAM J. Matrix Anal. Appl. 17 (1996) 927–949.

[10] A.S. Lewis, Eigenvalue constrained faces, Linear Algebra Appl. 269 (1998) 159–181.
[11] C.K. Li, N.K. Tsing, Duality between some linear preserver problems. II. Isometries with respect to c-spectral norms

and matrices with fixed singular values, Linear Algebra Appl. 110 (1988) 181–212.
[12] C.K. Li, N.K. Tsing, Some isometries of rectangular complex matrices, Linear and Multilinear Algebra 23 (1988)

47–53.
[13] C.K. Li, N.K. Tsing, Linear operators preserving unitarily invariant norms of matrices, Linear and Multilinear

Algebra 26 (1990) 119–132.
[14] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, 1970.
[15] E.M. Sá, Faces of the unit ball of a symmetric gauge function, Linear Algebra Appl. 197 (1994) 349–395.
[16] E.M. Sá, Faces of the unit ball of a unitarily invariant norm, Linear Algebra Appl. 197 (1994) 451–493.
[17] E.M. Sá, Exposed faces and duality for symmetric and unitarily invariant norms, Linear Algebra Appl. 197,198

(1994) 429–450.
[18] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New

York, 1970.
[19] W. So, Facial structures of schatten p-norms, Linear and Multilinear Algebra 27 (1990) 207–212.
[20] J. Stoer, On the characterization of least upper bound norms in matrix space, Numer. Math. 6 (1964) 302–314.
[21] P.D. Tao, Contribution à la Théorie de Normes et ses Applications à l’Analyse Numérique, Thèse, Université

Scientifique et Médicale de Grenoble, 1981.
[22] P.D. Tao, Convergence of a subgradient method for computing the bound norm of matrices, Linear Algebra Appl.

62 (1984) 163–182.
[23] G.A. Watson, Characterization of the subdifferential of some matrix norms, Linear Algebra Appl. 170 (1992) 33–45.
[24] C. Zenger, Dual operator norms and the spectra of matrices, Linear Algebra Appl. 58 (1984) 453–460.
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