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Abstract

The purpose of this paper is to introduce monotonization in the setting of pointfree topology. More specifically, monotonically
normal locales are characterized in terms of monotone insertion and monotone extensions theorems.
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1. Introduction

The purpose of this paper is to introduce monotonization into pointfree topology. We first recall that pointfree
topology deals with complete lattices in which finite meets distribute over arbitrary joins. These lattices are called
frames or locales. A map between two frames is a frame homomorphism if it preserves arbitrary joins and finite meets.
The resulting category is denoted by Frm. One source of frames is given by the lattice OX of all open subsets of a
topological space X . The assignment X 7→ OX gives rise to a contravariant functor O : Top → Frm which makes a
continuous map f : X → Y into the frame homomorphism O f : OY → OX determined by O f (U ) = f −1(U ) for
all U ∈ OY .

What is then meant by a monotonization? Suppose we have a concept consisting of sets P, Q and a specific map
1 : P → Q. Suppose further that we can enrich the concept by claiming that both P and Q carry partial orderings
≤P and ≤Q and then require the map 1 : (P, ≤P ) → (Q, ≤Q) to be monotone, i.e., order-preserving. In this way
we have arrived at a new concept which is just the monotonization of the former concept. Usually, monotonization
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yields a specialization of the original concept. It should be remarked that a particular concept may have different
monotonizations (cf. [7]).

To illustrate the monotonization procedure, let X be topological space with topologyOX (and CX being the family
of all closed sets of X ), let P = {(K , U ) ∈ CX ×OX : K ⊆ U } and Q = OX . Then X is normal if and only if there
exists a map 1 : P → Q with K ⊆ 1(K , U ) ⊆ 1(K , U ) ⊆ U for all (K , U ) ∈ P . Such a map is called a normality
operator. Now observe that both P and Q carry natural orderings. Namely, P is ordered by componentwise inclusion
≤P , i.e., (K1, U1) ≤P (K2, U2) if and only if K1 ⊆ K2 and U1 ⊆ U2, while ≤Q is the usual inclusion. One may ask
what happens if one requires 1 : (P, ≤P ) → (Q, ≤Q) to be monotone. A space X for which there exists a monotone
normality operator is called monotonically normal. We refer to [9] for a survey of those spaces.

It is of interest to know whether a particular result does have – after the monotonization procedure – its monotone
variant. Indeed, a monotone version of Urysohn’s lemma is given in Borges [5]. It is good to recall that Urysohn’s
lemma is actually an insertion-type theorem, for it can be stated as follows:

A space X is normal if and only if for each closed subset K , contained in any open subset U , there is a
continuous function h : X → R such that χK ≤ h ≤ χU .

By replacing the characteristic functions by arbitrary upper and lower semicontinuous real-valued functions one
arrives at the classical Katětov–Tong insertion theorem ([14,29]; see also [15] and [17]) which we recall here for the
reader’s convenience:

A space X is normal if and only if for each upper semicontinuous function f : X → R and lower semicontinuous
function g : X → R such that f ≤ g, there is a continuous function h : X → R such that f ≤ h ≤ g.

The monotonization of the insertion property in the Katětov–Tong theorem was first investigated in [16] where it
has been proved to characterize monotonically normal spaces. Later on, it turned out that monotonizing the insertion
properties of the two other classical insertion theorems (viz., Michael insertion theorem [21] and Dowker insertion
theorem [6]) does characterize stratifiable spaces, i.e. monotonically perfectly normal spaces (see Good and Stares
[8] and Lane, Nyikos and Pan [18]). Stares, in [28], characterized monotone normality by a counterpart of the
Tietze–Urysohn extension theorem (see Theorem 6.3).

The recognition that the notions of upper and lower semicontinuous real functions in frames provide a pointfree
axiomatization of semicontinuity in spaces [11] naturally raised the question of pointfree insertion theorems and the
corresponding monotone versions. The first of these was the pointfree version of Katětov–Tong theorem [19,22]. The
purpose of this paper is to introduce monotonization in the pointfree context and, in particular, to present the monotone
pointfree version of Katětov–Tong insertion theorem and the pointfree counterpart of Stares’ extension theorem.

The paper is organized as follows. Section 2 sets up the basic terminology of pointfree topology. In Section 3 we
characterize normal locales in terms of certain operators. We introduce hereditarily normal locales as those locales
in which every sublocale is normal and prove that this is equivalent to the requirement that each open sublocale
be normal. Section 4 deals with monotonically normal locales. These are characterized in several ways in terms of
monotone normality-type operators. We show that every metrizable locale is monotonically normal. Section 5 provides
the monotone localic Katětov–Tong insertion theorem. On the one hand it is a monotonization of the localic insertion
theorem of [22], while on the other it is a pointfree variant of the monotone insertion theorem of [16]. In Section 6,
the monotone localic insertion theorem is used to characterize monotonically normal locales in terms of monotone
extenders. When applied to topological spaces it gives the result proved directly in [28, Theorem 2.3]. We point out
that, in contrast to [28], our argument is free of the T1-axiom.

2. Background in locales

Here we gather some basic frame-theoretic terminology that we shall need in what follows. Some other specific
concepts will be defined when actually needed. Our main references for frames and locales are [13] and [24].

A frame L is a complete lattice satisfying the frame distributive law

a ∧

∨
B =

∨
{a ∧ b : b ∈ B}

for all a ∈ L and B ⊆ L . A frame homomorphism is a map f : L → M which preserves finite meets (including the
top 1) and arbitrary joins (including the bottom 0). The bounds of L may occasionally be denoted by 1L and 0L . The
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resulting category is denoted Frm. The set of all frame homomorphisms from L to M is denoted by Frm(L , M). The
category of locales is the dual category Loc = Frmop of Frm.

Due to the frame distributive law, all the maps a ∧ (·) : L → L preserve arbitrary joins and, thus, have right
(Galois) adjoints a → (·) : L → L , which means that a ∧ c ≤ b iff c ≤ a → b. Thus, in a frame L we have

a → b =

∨
{c ∈ L : a ∧ c ≤ b},

and for a, b ∈ L and A ⊆ L the following hold:

(H1) a ≤ b → a,

(H2) a ∧ (a → b) = a ∧ b,

(H3) a → b = 1 iff a ≤ b,

(H4)
(∨

A
)

→ b =
∧

a∈A(a → b).

The pseudocomplement of a ∈ L is a∗
= a → 0. Then a ∧a∗

= 0, a ≤ a∗∗ and
(∨

A
)∗

=
∧

a∈A a∗. In particular,
a ≤ b implies b∗

≤ a∗.
The subobjects in Loc (equivalently, the quotients in Frm) have been described in several equivalent ways in the

literature. The definition of a sublocale that we adopt here is taken from [13, Exercise II.2.3]. It follows the lines
of [23].

A subset S ⊆ L is a sublocale of L if it satisfies the following:

(S1) For every A ⊆ S,
∧

A ∈ S,
(S2) For every a ∈ L and s ∈ S, a → s ∈ S.

Partially ordered by inclusion, the set of all sublocales of L is a complete lattice (more precisely, a co-frame, i.e. a
dual of a frame) in which {1} is the bottom and L is the top. The sets

o(a) = {a → b : b ∈ L} and c(a) = ↑a = {b ∈ L : a ≤ b}

are sublocales of L for all a ∈ L . They will be referred to as the open and closed sublocales of L , respectively.
Each sublocale S ⊆ L is a frame with the same meets as in L and with the same Heyting operation →, since the

relevant properties of the latter merely depend on the meet operation. However, the joins in S may differ from those
of L . One has, 1S = 1, but in general 0S 6= 0. In particular, 0o(a) = a∗ and 0c(a) = a.

A sublocale S ⊆ L determines the surjection cS ∈ Frm(L , S) given by

cS(a) =

∧
(S ∩ c(a))

for all a ∈ L . In particular, cS(s) = s for all s ∈ S. This correspondence yields a canonical representation of the
sublocales of L by the quotients of L (in the category of frames), that is, the codomains M of frame surjections
m : L → M (m is referred to as the quotient map): The quotients of L are naturally preordered by M ≤ N if the
quotient map n : L → N factors through the quotient map m : L → M . The equivalence relation induced by this
preorder identifies two quotients M and N if each is larger than the other, and this happens precisely when there is a
frame isomorphism h : M → N such that h ◦ m = n. The collection of all equivalence classes of quotients of a given
frame L forms a frame, dually isomorphic to the co-frame of all sublocales of L .

The open sublocale o(a) viewed as a quotient of L (with quotient map b 7→ a → b) is isomorphic to the quotient
↓a (with quotient map b 7→ a ∧ b), where the former is regarded as a frame in the order inherited from L . The
isomorphism h : o(a) → ↓a is given by h(a → b) = a ∧ (a → b) = a ∧ b.

Let us also recall that A ⊆ L generates L if each element of L is a join of a family of meets of finite subsets of A.
Following [1] and [2], the locale of reals is the locale L(R) generated by all ordered pairs (p, q) where p, q ∈ Q,

subject to the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
{(r, s) : p < r < s < q},

(R4) 1 =
∨

p,q∈Q(p, q).
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By (R3), (p, q) =
∨

∅ = 0 if p ≥ q . We write:

(p, −) =

∨
q∈Q

(p, q) and (−, q) =

∨
p∈Q

(p, q).

Then (p, −) ∧ (−, q) = (p, q).
An obvious equivalent representation of the locale of reals is the following [19]: L(R) is the locale generated by

the elements (p, −) and (−, q) where p, q ∈ Q, subject to the following relations:

(R1
′

) (p, −) ∨ (−, q) = 1 whenever p < q ,
(R2

′

) (p, −) ∧ (−, q) = (p, q) whenever q ≤ p,
(R3

′

) (p, −) =
∨

r>p(r, −),

(R4
′

) (−, q) =
∨

r<q(−, r),

(R5
′

) 1 =
∨

p∈Q(p, −) =
∨

q∈Q(−, q).

Following [11] (cf. also [19]), we denote by Lu(R) and Ll(R) the sublocales of L(R) generated by all the elements
(p, −) and (−, q)(p, q ∈ Q), respectively. As in [11], we let

USC(L) =

 f ∈ Frm(Ll(R), L) :

⋂
q∈Q

o( f (−, q)) = {1}


and

LSC(L) =

g ∈ Frm(Lu(R), L) :

⋂
p∈Q

o(g(p, −)) = {1}

 .

Members of USC(L) [resp., LSC(L)] are called upper [resp., lower] semicontinuous real functions on L .

Remark 2.1. The two extra algebraic conditions defining USC(L) and LSC(L) are just translations in terms of
sublocales of the original conditions of [11] stated in terms of congruences. We recall that the reason for these
extra conditions is that when L = OX , there is a one-to-one correspondence between USC(OX) and the set
USC(X, R) of all upper semicontinuous real functions on X as well as between LSC(OX) and the set LSC(X, R) of
all lower semicontinuous real functions on X (see [11, Corollary 4.3]). With these conditions our pointfree insertion
and extension theorems become true generalizations of their topological counterparts (see also [22] for a related
discussion).

Partial orders: (1) USC(L) is partially ordered by:

f1 ≤ f2 ⇔ f2(−, q) ≤ f1(−, q) for all q ∈ Q.

(2) LSC(L) is partially ordered by:

g1 ≤ g2 ⇔ g1(p, −) ≤ g2(p, −) for all p ∈ Q.

(3) C(L) = Frm(L(R), L) is partially ordered by:

h1 ≤ h2 ⇔ h1|Lu(R) ≤ h2|Lu(R) ⇔ h2|Ll (R) ≤ h1|Ll (R).

Members of C(L) are called continuous real functions [1] on L .

3. Normal and hereditarily normal locales

Recall that a locale L is called normal if, given a, b ∈ L with a ∨ b = 1, there exist u, v ∈ L such that a ∨ u
= 1 = b ∨ v = 1 and u ∧ v = 0. Clearly, one can select v = u∗. Thus, L is normal if and only if, whenever a ∨ b = 1,
there exists a u ∈ L satisfying a ∨ u = 1 = b ∨ u∗. For a future monotonization (in Section 4), it will be convenient
to restate the definition of normality in the following terms. Let

DL = {(a, b) ∈ L × L : a ∨ b = 1}.
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A locale L is normal if and only if there exists a function 1 : DL → L such that

a ∨ 1(a, b) = 1 = b ∨ 1(a, b)∗

for all (a, b) ∈ DL . The function 1 is called a normality operator.

Notation and terminology. For an arbitrary function 1 : DL → L we let 1op(a, b) = 1(b, a). The function 1 will
be called self-disjoint whenever the pointwise meet 1 ∧ 1op is equal to 0.

Remarks 3.1. (1) If 1 : DL → L is a normality operator, then so is 1~ defined by

1~(a, b) = 1(b, a)∗.

(2) If 11 and 12 are normality operators, then so is 11 ∧ 12 (the pointwise meet).
(3) In particular, each normal locale L admits a self-disjoint normality operator 2. Indeed, if 1 is a normality

operator, then 2 = 1 ∧ 1~ has the required property.

Proposition 3.2. Let L be a locale. The following are equivalent:

(1) L is normal.
(2) There exists a self-disjoint 2 : DL → L such that a ∨ 2(a, b) = 1 for all (a, b) ∈ DL .

Proof. (1) implies (2) by Remark 3.1(3). If (2) holds true, then b ∨ 2(a, b)∗ ≥ b ∨ 2(b, a) = 1, hence 2 is a
normality operator. �

A locale will be called hereditarily normal if every its sublocale is normal.

Proposition 3.3. A locale L is hereditarily normal if and only if every open sublocale of L is normal.

Proof. The “only if” part is obvious. To prove the “if” part, let L be a locale whose open sublocales are normal. Let
S ⊆ L be an arbitrary sublocale of L , given by the surjective homomorphism cS : L → S. In order to prove that
S is normal, let a, b ∈ S be such that a ∨S b = 1 and consider a, b ∈ L such that cS(a) = a and cS(b) = b. By
hypothesis, ↓(a ∨ b) is normal thus there exist c, d ∈ L such that a ∨ c = a ∨ b = b ∨ d and c ∧ d = 0. Now
a ∨S cS(c) = 1 = b ∨S cS(d) and cS(c) ∧ cS(d) = 0, showing S is normal. �

4. Monotonically normal locales

Conventions 4.1. (1) For (P, ≤) a partially ordered set, any subset P ⊆ P × P will always be assumed to have the
componentwise order inherited from Pop

× P , i.e.,

(a, b) ≤P (c, d) ⇔ c ≤P a and b ≤P d.

In what follows, P will either be L , LN or LQ, where the latter two sets are ordered componentwise.
(2) Let (P, ≤P ) and (Q, ≤Q) be two partially ordered sets. A map φ : (P, ≤P ) → (Q, ≤Q) is called monotone

[resp, antitone] iff: x ≤P y ⇒ φ(x) ≤Q φ(y) [resp., φ(y) ≤Q φ(x)] for all x, y ∈ P .

By monotonizing the concept of a normal locale one arrives at the concept of a monotonically normal locale.
Specifically, a locale L is called monotonically normal if there exists a monotone function 1 : DL → L such that

a ∨ 1(a, b) = 1 = b ∨ 1(a, b)∗

for all (a, b) ∈ DL . We call 1 a monotone normality operator.
We start with a monotone variant of Remarks 3.1.

Remarks 4.2. (1) If 1 : DL → L is a monotone normality operator, then so is 1~
: DL → L defined by

1~(a, b) = 1(b, a)∗. Indeed, 1~ is a normality operator (Remark 3.1(1)) and is monotone, because (a, b) ≤ (c, d)

in DL if and only if (d, c) ≤ (b, a) in DL and (·)∗ is antitone.
(2) If 11 and 12 are monotone normality operators, then so is the pointwise meet 11 ∧ 12.
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(3) Each monotonically normal locale L admits a self-disjoint monotone normality operator 2 (cf. [12, Lemma
2.2]). Indeed, if 1 is a monotone normality operator, then with 2 = 1 ∧ 1~ one has 2(a, b) ∧ 2op(a, b) ≤

1(a, b) ∧ 1(a, b)∗ = 0. Notice that if 2 is self-disjoint, then 2 ≤ 2~.
(4) A self-disjoint and monotone function 1 : DL → L such that a ∨ 1(a, b) = 1 for all (a, b) ∈ DL is clearly a

monotone normality operator (cf. Proposition 3.2).

Before moving to a canonical example of a monotonically normal locale, viz. metrizable locales, we give a number
of obvious examples.

Examples 4.3. (1) A topological space X is monotonically normal if and only if OX is monotonically normal (note
that here, as in [16] and [10], we do not assume the T1-axiom to be part of the definition of monotone normality,
contrary to what is usual in the literature – see [12], for example, which was the first paper on the topic – where T1 is
always taken as part of the monotone normality). When T1-separation is part of the definition of monotone normality,
then any monotonically normal space is hereditarily monotonically normal. It has already been pointed out in [10]
that this need not be the case without T1 (see Example 4.8).

(2) If 1 is coprime (i.e., a ∨b = 1 implies a = 1 or b = 1), thenDL = ({1}× L)∪(L ×{1}) and L is monotonically
normal. In fact, 1 : DL → L defined by

1(a, b) =

{
0 if a = 1 and b 6= 1,

1 if b = 1

is a monotone normality operator (see also [22, Example 4.2]).

We shall now show that metrizable locales [25] (further developed, among others, in [26,27] and [4]) are
monotonically normal. Before doing this, some preparatory material is needed which is taken from the just cited
papers. Given A ⊆ L and b ∈ L , we put

A(b) =

∨
{a ∈ A : a ∧ b 6= 0}.

Clearly, A(·) : L → L preserves arbitrary joins and – as such – admits a right (Galois) adjoint αA : L → L given by

αA(a) =

∨
{b ∈ L : A(b) ≤ a}.

Consequently, A(b) ≤ a iff b ≤ αA(a). In particular, A(αA(a)) ≤ a.
A metric diameter on a locale L is a map d : L → [0, ∞] satisfying the following conditions:

(D1) d(0) = 0,
(D2) d is monotone,
(D3) d(a ∨ b) ≤ d(a) + d(b) whenever a ∧ b 6= 0,
(D4) for each ε > 0 the set Bε = {a ∈ L : d(a) < ε} is a cover of L (i.e.

∨
Bε = 1),

(D5) a =
∨

{b ∈ L : Bε(b) ≤ a for some ε > 0} for all a ∈ L ,
(D6) d(a) =

∨
{d(b ∨ c) : b, c ≤ a and d(b) ∨ d(c) < ε} for all a ∈ L and ε > 0.

A metric locale is a pair (L , d) where d is a metric diameter on L . A locale that admits a metric diameter is called
metrizable. We note that a topological space X is metrizable if and only if OX is metrizable as a locale. The passage
from a metric ρ to a metric diameter d is provided by the usual diameter d(U ) = sup{ρ(x, y) : x, y ∈ U } for all
U ∈ OX .

In what follows, we write αε instead of αBε . The following facts are standard (cf. [26, Lemma 1.10]):

Lemma 4.4. For each a ∈ L the following hold:

(1) a ∨ αε(a)∗ = 1 for all ε > 0.
(2) a =

∨
ε>0 αε(a).

Proposition 4.5. Each metrizable locale is monotonically normal.
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Proof. Let L be metrizable. Define 1 : DL → L by

1(a, b) =

∨
ε>0

(αε(a)∗ ∧ αε(b))

for all (a, b) ∈ DL . Since αε is monotone and (·)∗ is antitone, 1 is easily seen to be monotone. By Lemma 4.4, we have

a ∨ 1(a, b) =

∨
ε>0

((a ∨ αε(a)∗) ∧ (a ∨ αε(b)))

=

∨
ε>0

(a ∨ αε(b))

= a ∨

∨
ε>0

αε(b)

= a ∨ b = 1.

Also,

(1 ∧ 1op)(a, b) =

∨
ε1,ε2>0

(αε1(a)∗ ∧ αε2(a) ∧ αε2(b)∗ ∧ αε1(b))

≤

∨
ε1≥ε2

(αε1(a)∗ ∧ αε2(a)) ∨

∨
ε1<ε2

(αε2(b)∗ ∧ αε1(b)) = 0.

Hence, by Remark 4.2(4), 1 is a monotone normality operator. �

Remarks 4.6. (a) We note that the proof of Proposition 4.5 merely uses (D4), (D5) and the fact that {Bε : ε > 0} is
a chain under inclusion (the latter property is used in proving that 1 is self-disjoint). According to [25] and [26], a
system C of covers of a locale L is called admissible if it satisfies condition (D5), i.e.,

a =

∨
{b ∈ L : ∃

C∈C
C(b) ≤ a} =

∨
C∈C

αC (x),

i.e., we have (2) of Lemma 4.4. Also, we have a ∨ αC (a)∗ = 1 for all a ∈ L . Consequently: Each locale that has an
admissible chain of covers is monotonically normal.

Note that any nearness [3] with a countable basis is of this kind. It is also worth mentioning that since this general
condition is preserved by taking homomorphic images it is automatic that the locales in question are hereditarily
monotonically normal.

(b) Both L(R) and L[p, q] =↑ ((−, p) ∨ (q, −)) (where p < q), being examples of metrizable locales, are mono-
tonically normal.

We now have the following equivalent formulation of monotone normality (cf. [20, Proposition 3], and a part of
Theorem 2.4 in [5]; see also [10, Proposition 3.1]).

Proposition 4.7. For a locale L, the following are equivalent:

(1) L is monotonically normal.
(2) There exists a self-disjoint 6 : DL → L such that 6(a, b) ≤ b, a ∨ 6(a, b) = 1, and 6(a, ·) is monotone on

{b ∈ L : (a, b) ∈ DL}.

Proof. (1) ⇒ (2): By Remark 4.2(3), let 2 be a self-disjoint monotone normality operator of L . Further, for each
(a, b) ∈ DL , let

6(a, b) = b ∧

∨
(a,c)≤(a,b)

2(a, c).

Clearly, 6(a, b) ≤ b ∧ 2(a, b), so that 6(a, b) ≤ b and 6 ≤ 2. Consequently 6 ∧ 6op
≤ 2 ∧ 2op

= 0. Also,

a ∨ 6(a, b) = (a ∨ b) ∧

( ∨
(a,c)≤(a,b)

(a ∨ 2(a, c))

)
= 1.
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Finally, if (a, b) ≤ (a, d) in DL , then

6(a, b) = b ∧

∨
(a,c)≤(a,b)

2(a, c) ≤ d ∧

∨
(a,c)≤(a,d)

2(a, c) = 6(a, d).

(2) ⇒ (1): Let 6 be the operator of (2). Define 1 : DL → L by

1(a, b) =

∨
(c,b)≤(a,b)

6(c, b)

for all (a, b) ∈ DL . Clearly, a ∨ 1(a, b) ≥ a ∨ 6(a, b) = 1. Since 6 ∧ 6op
= 0, we have 6 ≤ 6~. Thus

1(a, b)∗ =

∧
(c,b)≤(a,b)

6(c, b)∗ =

∧
(b,a)≤(b,c)

6~(b, c) ≥

∧
(b,a)≤(b,c)

6(b, c) ≥ 6(b, a).

Therefore

b ∨ 1(a, b)∗ ≥ b ∨ 6(b, a) = 1.

Finally, if (a, b) ≤ (a1, b1), then 1(a, b) ≤
∨

(c,b)≤(a1,b1)
6(c, b) = 1(a1, b1). �

It is easy to show that any closed sublocale of a (monotonically) normal locale is (monotonically) normal. However,
in contrast to the topological situation (with the T1-separation axiom), the localic monotone normality fails to be a
hereditary property. The following example shows that a monotonically normal locale may have an open sublocale
which fails to be normal.

Example 4.8. Let L be a non-normal locale. Add a new element ∞ 6∈ L to L and consider M = L ∪ {∞} with its
natural ordering, i.e., a ≤ ∞ for all a ∈ L . Then ∞ is coprime in M ,DM = ({∞}× M)∪(M ×{∞}) and M becomes
a monotonically normal locale (see Example 4.3(2)). Finally, the open sublocale o(1) ∼= ↓1 = L fails to be normal.

An obvious question posed by this and Proposition 3.3 is whether a locale is hereditarily monotonically normal
whenever all its open sublocales are monotonically normal. We have not yet been able to prove or disprove that
statement.

It is well-known that a topological space is normal if and only if every two separated Fσ -sets have disjoint
open neighborhoods. A monotone variant of that statement is in [16, Proposition 3.1], while its localic variant is in
[22, Lemma 3.2]. The following provides its monotone localic counterpart.

The statement involves the set

UL =

{
(a, b) ∈ LN × LN :

(
a(n),

∧
b(N)

)
,
(

b(n),
∧

a(N)
)

∈ DL

}
partially ordered according to Conventions 4.1. For a sequence a ∈ LN, we define a↓(n) =

∧
i≤n a(n) (clearly, a↓(·)

is antitone).

Proposition 4.9. For a locale L, the following are equivalent:

(1) L is monotonically normal.
(2) There exists a monotone function ϒ : UL → L such that a(n) ∨ ϒ(a, b) = 1 and b(n) ∨ ϒ(a, b)∗ = 1 for all

(a, b) ∈ UL and n ∈ N.

Proof. (1) ⇒ (2): Let 1 : DL → L be a monotone normality operator. Recall that so is 1~. Define ϒ : UL → L by

ϒ(a, b) =

∨
n∈N

(
1
(

a↓(n),
∧

b(N)
)

∧ 1~
(∧

a(N), b↓(n)
))

.

It is easy to see that ϒ is monotone. Let (a, b) ∈ UL . Then with un = 1(a↓(n),
∧

b(N)) and vn =

1~(
∧

a(N), b↓(n)) one has

a↓(n) ∨ un =

∧
b(N) ∨ u∗

n = 1 =

∧
a(N) ∨ vn = b↓(n) ∨ v∗

n

for all n. Thus

a(n) ∨ ϒ(a, b) ≥ a↓(n) ∨ (un ∧ vn) ≥ (a↓(n) ∨ un) ∧

(∧
a(N) ∨ vn

)
= 1.
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Since both (un) and (v∗
n) are monotone, it follows that for all n and m one has

un ∧ vn ∧ u∗
m ∧ v∗

m ≤

{
un ∧ u∗

n if n ≤ m
vn ∧ v∗

n if n > m
= 0,

i.e., u∗
m ∧ v∗

m ≤
∧

n(un ∧ vn)∗ = ϒ(a, b)∗ for all m. So, we get

b(n) ∨ ϒ(a, b)∗ ≥ b↓(n) ∨ (u∗
n ∧ v∗

n) ≥

(∧
b(N) ∨ u∗

n

)
∧ (b↓(n) ∨ v∗

n) = 1.

(2) ⇒ (1): This is obvious. In fact, if (a, b) ∈ DL , then for a(n) = a and b(n) = b one has (a, b) ∈ UL and
2(a, b) = ϒ(a, b) defines a monotone normality operator for L . �

We still need a more specific normality-type operator. For this purpose, for each α ∈ LQ and r ∈ Q, define αr =

α(r) and let SL denote the collection of all ordered pairs (α, β) ∈ LQ × LQ where α is monotone, β is antitone and

αs ∨ βr = 1 whenever r < s.

The set SL is partially ordered according to Conventions 4.1.

Proposition 4.10. For a locale L, the following are equivalent:

(1) L is monotonically normal.
(2) There exists a monotone function 0 : SL → LQ such that for all (α, β) ∈ SL and r < s the following holds:

0(α, β)r ∨ αs = 0(α, β)r ∨ 0(α, β)∗s = βr ∨ 0(α, β)∗s = 1.

Proof. (1) ⇒ (2): Let {rn : n ∈ N} be an indexation of Q. For each (α, β) ∈ SL we will inductively define a family
{γri = 0(α, β)ri : i ∈ N} such that{

γr j ∨ αs = γri ∨ γ ∗
r j

= βr ∨ γ ∗
ri

= 1 if r < ri < r j < s (i, j < n),

0(α, β) ≤ 0(ᾱ, β̄) if (α, β) ≤ (ᾱ, β̄).
(In)

In doing so, we shall use the following sets:

An = {αr : r > rn}, Bn = {βr : r < rn},

Cn = {γri : ri < rn, i < n}, Dn = {γ ∗
ri

: ri > rn, i < n}.

Now we proceed inductively. For n = 2, if r < r1 < s, then, since α is monotone and β is antitone, one has

αs ∨

∧
B1 ≥ αs ∨ βr1 = 1 and βr ∨

∧
A1 ≥ βr ∨ αr1 ≥ 1.

Hence we have (a, b) ∈ UL with a and b being monotone enumerations of A1 and B1, respectively. Using
Proposition 4.9, we put γr1 = 0(α, β)r1 = ϒ(a, b).

Assume we have constructed {γri : i < n} satisfying (In). Let c and d be monotone enumerations of An ∪ Dn and
Bn ∪ Cn , respectively. As above, we check that (c, d) ∈ UL . Indeed, if r < ri < r j < s (i, j < n), then

αs ∨

∧
(Bn ∪ Cn) =

(
αs ∨

∧
Bn

)
∧

(
αs ∨

∧
Cn

)
≥ (αs ∨ βrn ) ∧

∧
r j <rn

(αs ∨ γr j ) = 1

and, similarly,

γ ∗
ri

∨

∧
(Bn ∪ Cn) ≥ (γ ∗

ri
∨ βrn ) ∧

∧
ri <r j

(γ ∗
ri

∨ γr j ) = 1.

Analogously, βr ∨
∧

(An ∪ Dn) = 1 = γri ∨
∧

(An ∪ Dn). Thus, using Proposition 4.9 again, we define γrn = ϒ(c, d)

and (In+1) holds true.

(2) ⇒ (1): As in the proof of Proposition 4.9. �
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5. Monotone localic Katětov–Tong insertion theorem

Given f ∈ USC(L) and g ∈ LSC(L), we define

f Cu,l g ⇔ f (−, q) ∨ g(p, −) = 1 for all p < q in Q,

and

g Cl,u f ⇔ f (−, p) ∧ g(p, −) = 0 for all p ∈ Q.

Remark 5.1. It is easy to see that there is a one-to-one correspondence between C(L) and the set

CL = {( f, g) ∈ USC(L) × LSC(L) : f Cu,l g and g Cl,u f }.

Indeed, given an h ∈ C(L) and restricting it to Ll(R) and Lu(R) yields the pair (h|Ll (R), h|Lu(R)) ∈ CL . Conversely,
any ( f, g) ∈ CL gives rise to an h ∈ C(L) defined by h(p, q) = f (−, q) ∧ g(p, −). In such a case we shall write
h = 〈 f, g〉.

Let

UL(L) = {( f, g) ∈ USC(L) × LSC(L) : f Cu,l g}.

This set has the componentwise order inherited from USC(L)op
× LSC(L), i.e.,

( f1, g1) ≤ ( f2, g2) ⇔ f2 ≤ f1 and g1 ≤ g2.

A scale (descending trail in [1]) in L is a map τ : Q → L such that τ(r) ∨ τ ∗(s) = 1 whenever r < s, and∨
τ(Q) = 1 =

∨
τ ∗(Q) where τ ∗

= (·)∗ ◦ τ .

Lemma 5.2 ([1, Lemma 2]). Each scale τ in L generates an h ∈ C(L) defined by h(p, q) =
∨

{τ(r) ∧ τ ∗(s) : p <

r < s < q}. �

Remark 5.3. If τ1 and τ2 are scales with τ1 ≤ τ2 in LQ and h1 and h2 are the corresponding frame homomorphisms,
then h1 ≤ h2.

We shall need the characteristic maps χu
a ∈ USC(L) and χ l

a ∈ LSC(L), for any a ∈ L , defined by

χu
a (−, q) =

0, if q ≤ 0,

a, if 0 < q ≤ 1,

1, if q > 1,

and χ l
a(p, −) =

1, if p < 0,

a, if 0 ≤ p < 1,

0, if p ≥ 1.

We are eventually in a position to give a monotone version of the localic Katětov–Tong theorem of [22] (the reader
should consult [22] for a criticism of the localic insertion theorem of [19] which has not been a true generalization
of the Katětov–Tong insertion theorem; see also Remark 2.1 and [11]). When applied to L = OX it yields the
monotone insertion theorem of [16]. When ( f, g) ∈ UL(L) and h ∈ C(L) we shall simply write f ≤ h ≤ g whenever
f ≤ h|Ll (R) in USC(L) and h|Lu(R) ≤ g in LSC(L).

Theorem 5.4. For a locale L, the following are equivalent:

(1) L is monotonically normal.
(2) There exists a monotone function 3 : UL(L) → C(L) such that f ≤ 3( f, g) ≤ g for all ( f, g) ∈ UL(L).

Proof. (1) ⇒ (2): Let ( f, g) ∈ UL(L) and let ϕ, γ ∈ LQ be defined by ϕ(r) = f (−, r) and γ (r) = g(r, −). Then
(ϕ, γ ) ∈ SL . Let 0 : SL → LQ be the monotone function given by Proposition 4.10. Then the map 0(ϕ, γ ) : Q → L
is a scale that generates the required 3( f, g) ∈ C(L).

We first observe that 3 is monotone. Indeed, ( f, g) ≤ ( f1, g1) in UL(L) if and only if (ϕ, γ ) ≤ (ϕ1, γ1) in SL .
Thus, τ ≤ τ1 in LQ and, consequently (Remark 5.3), 3( f, g) ≤ 3( f1, g1).

It remains to show that f ≤ 3( f, g)|Ll (R) and 3( f, g)|Lu(R) ≤ g. By Proposition 4.10, if r < s we have

1 = ϕ(s) ∨ 0(ϕ, γ )(r) ≤ f (−, s) ∨ τ ∗∗(r).
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Hence
∨

r<s τ ∗(r) ≤ f (−, s) and this just says that 3( f, g)|Lu(L)(−, s) ≤ f (−, s). The second inequality follows
similarly.

(2) ⇒ (1): If (a, b) ∈ DL , then (χu
a , χ l

b) ∈ UL(L). Now it suffices to observe that 1 : DL → L defined by
1(a, b) = 3(χu

a , χ l
b)(

1
2 , −) is a monotone normality operator. �

6. Monotone extension property

Recall that an h ∈ C(L) is said to be bounded if h(p, q) = 1 for some p < q (or, equivalently, if h(−, p) ∨

h(q, −) = 0 for some p < q). In the sequel, C∗(L) stands for all the bounded members of C(L) such that
h(−, 0) ∨ h(1, −) = 0.

Remark 6.1. Let a ∈ L and h = 〈 f, g〉 ∈ C∗(↑a) (recall Remark 5.1). We define f̂ ∈ Frm(Ll(R), L) and
ĝ ∈ Frm(Lu(R), L) by

f̂ (−, s) =

0, if s ≤ 0,

f (−, s), if 0 < s ≤ 1,

1, if s > 1,

and ĝ(r, −) =

1, if r < 0,

g(r, −), if 0 ≤ r < 1,

0, if r ≥ 1.

Moreover, f̂ ∈ USC(L) and ĝ ∈ LSC(L) since the extra condition defining upper (resp., lower) semicontinuity
follows from f̂ (−, 0) = 0 (resp., ĝ(1, −) = 0). Finally, it is easy to check that f̂ Cu,l ĝ, i.e. ( f̂ , ĝ) ∈ UL(L).

Note that the construction above is only possible when the continuous function h belongs to C∗(L).
A function 8a : C∗(↑a) → C∗(L) is called an extender if 8a(h) extends h, meaning that c↑a ◦ 8a(h) = h for

each h ∈ C∗(↑a). Thus, 8a(h) extends h whenever

8a(h)(p, q) ∨ a = h(p, q)

for all p, q ∈ Q.
We shall say that L has the monotone bounded extension property if for each a ∈ L there exists a monotone

extender 8a .

Proposition 6.2. Every monotonically normal locale has the monotone bounded extension property.

Proof. Let L be monotonically normal and let h = 〈 f, g〉 ∈ C∗(↑a) with ( f, g) ∈ C↑a (see Remark 5.1). By
Remark 6.1 and Theorem 5.4, 8a : C∗(↑a) → C∗(L) defined by 8a(h) = 3( f̂ , ĝ) is as required. In fact, since
f̂ ≤ 3( f̂ , ĝ) ≤ ĝ, it follows that 8a(h)(−, 0) ≤ f̂ (−, 0) = 0 and 8a(h)(1, −) ≤ ĝ(1, −) = 0, i.e. 8a(h) ∈ C∗(L).
Also, for each p, q ∈ Q we have

8a(h)(p, −) ∨ a ≤ ĝ(p, −) ∨ a = g(p, −) = h(p, −)

and

8a(h)(−, q) ∨ a ≤ f̂ (−, q) ∨ a = f (−, q) = h(−, q).

Consequently 8a is a monotone extender. �

We would like to emphasize that the previous result could also be stated in terms of unbounded real functions.
However, its proof is quite technical and so we omit it.

We now recall the extension theorem of Stares [28, Theorem 2.3] which we enrich with the assertion (3).

Theorem 6.3. Let X be a topological space. The following are equivalent:

(1) X is monotonically normal.
(2) For each closed F ⊆ X there exists an extender 8F : C(F, [0, 1]) → C(X, [0, 1]) such that for each two closed

F1 ⊆ F0 and each fi ∈ C(Fi , [0, 1]) (i = 0, 1) the following is satisfied:
(i) If f0|F1 ≥ f1 and f0(x) = 1 for all x ∈ F0 \ F1, then 8F0( f0) ≥ 8F1( f1).

(ii) If f0|F1 ≤ f1 and f0(x) = 0 for all x ∈ F0 \ F1, then 8F0( f0) ≤ 8F1( f1).
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(3) For each closed F ⊆ X there exists an extender 8F : C(F, [0, 1]) → C(X, [0, 1]) such that for each two non-
disjoint closed F, G and f ∈ C(F, [0, 1]), g ∈ C(G, [0, 1]), if g|F∩G ≥ f |F∩G , g(x) = 1 for all x ∈ G \ F and
f (x) = 0 for all x ∈ F \ G, then 8G(g) ≥ 8F ( f ).

Proof. (1) ⇔ (2): See [28].
(2) ⇒ (3): Let F, G be non-disjoint closed subspaces and f ∈ C(F, [0, 1]), g ∈ C(G, [0, 1]) such that

g|F∩G ≥ f |F∩G , g(x) = 1 for all x ∈ G \ F and f (x) = 0 for all x ∈ F \ G.
Take F1 = F ∩ G, F0 = G, f1 = f |F∩G and f0 = g. Then f0|F1 ≥ f1 and f0(x) = g(x) = 1 for all x ∈ F0\F1 =

G \ F . It follows from (i) of (2) that 8G(g) = 8F0( f0) ≥ 8F1( f1).
Now, with F and g playing the role of F0 and f0 of (ii) of (2), we get 8F ( f ) = 8F0( f0) ≤ 8F1( f1).
Consequently 8G(g) ≥ 8F1( f1) ≥ 8F ( f ).
(3) ⇒ (2): Let F1 ⊆ F0 be closed subspaces and fi ∈ C(Fi , [0, 1]) (i = 0, 1). If f0|F0 ≥ f1 and f0(x) = 1

for all x ∈ F0 \ F1, then (2) applies with F = F1, f = f1, G = F0 and g = f0 and so 8G(g) ≥ 8F ( f ), i.e.
8F0( f0) ≥ 8F1( f1).

Also, if f0|F0 ≤ f1 and f0(x) = 0 for all x ∈ F0 \ F1, then (2) applies with F = F0, f = f0, G = F1 and g = f1
and so 8G(g) ≥ 8F ( f ), i.e. 8F1( f1) ≥ 8F0( f0). �

The particular case L = OX of the next theorem is the pointfree counterpart of Theorem 6.3 and hence implies
Theorem 2.3 of [28]. Our proof, when applied to the case L = OX , provides another proof of Theorem 2.3 of [28]. It
is worth mentioning that the proof in [28] depends upon the T1-axiom, while our argument is free of it. For historical
reasons, it may also be remarked that Theorem 2.3 of [28] could have already been obtained as a consequence of the
(topological) insertion theorem of [16].

Theorem 6.4. For a locale L, the following are equivalent:

(1) L is monotonically normal.
(2) For every a ∈ L there exists an extender 8a : C∗(↑a) → C∗(L) such that for each a1, a2 ∈ L and

hi = 〈 fi , gi 〉 ∈ C∗(↑ai ) (i = 1, 2) with ( f̂1, ĝ1) ≤ ( f̂2, ĝ2) one has 8a1(h1) ≤ 8a2(h2).

Proof. (1) ⇒ (2): For each a ∈ L let 8a : C∗(↑a) → C∗(L) be the extender given by Proposition 6.2,
i.e., 8a(h) = 3( f̂ , ĝ) where ( f, g) ∈ C↑a generates h (see Remark 5.1). Let a2, a1 ∈ L and hi = 〈 fi , gi 〉 (i = 1, 2)

with ( f̂1, ĝ1) ≤ ( f̂2, ĝ2). Then, 8a1(h1) ≤ 8a2(h2).
(2) ⇒ (1): We shall exhibit a function 6 : DL → L satisfying condition (2) of Proposition 4.5. For each

(a, b) ∈ DL consider the characteristic maps of a and b that take values in the locale ↑(a ∧ b) (rather than in L), i.e.,
χu

a ∈ USC(↑(a ∧ b)) and χ l
b ∈ LSC(↑(a ∧ b)).

Since a ∨ b = 1, it follows that χu
a Cu,l χ l

b, while χ l
b Cl,u χu

a follows from the fact that 0↑(a∧b) = a ∧ b. By
Remark 5.1, hab = 〈χu

a , χ l
b〉 ∈ C∗(↑(a ∧ b)).

Note also that χ̂u
a = χu

a and χ̂ l
b = χ l

b in C∗(L) (see Remark 6.1).
By hypothesis, there exists an extender 8a∧b : C∗(↑(a ∧ b)) → C∗(L) satisfying the condition of (2). Define

6 : DL → L by

6(a, b) = 8a∧b(hab)

(
1
2
, −

)
∧ 8a∧b(hba)

(
−,

1
2

)
.

Claim 1: 6 ∧ 6op
= 0. Indeed,

6(a, b) ∧ 6(b, a) ≤ 8a∧b(hab)

(
1
2
, −

)
∧ 8a∧b(hab)

(
−,

1
2

)
= 0.

Claim 2: 6(a, b) ≤ b and a ∨ 6(a, b) = 1. Indeed, since 8a∧b is an extender, one has 8a∧b(h) ∨ (a ∧ b) = h. Thus

(a ∧ b) ∨ 6(a, b) = hab

(
1
2
, −

)
∧ hba

(
−,

1
2

)
= χ l

b

(
1
2
, −

)
∧ χu

a

(
−,

1
2

)
= b.

In particular, 6(a, b) ≤ b and a ∨ 6(a, b) ≥ a ∨ b = 1
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Claim 3: 6(a, b) ≤ 6(a, c) whenever (a, b) ≤ (a, c) in DL . Indeed, we have hca = 〈χu
c , χ l

a〉, hba = 〈χu
b , χ l

a〉, and
since

(χ̂u
c , χ̂ l

a) = (χu
c , χ l

a) ≤ (χu
b , χ l

a) = (χ̂u
b , χ̂ l

a),

it follows that 8a∧c(hca) ≤ 8a∧b(hba).
Dually, hac = 〈χu

a , χ l
c〉, hab = 〈χu

a , χ l
b〉, and since

(χ̂u
a , χ̂ l

c) = (χu
a , χ l

c) ≤ (χu
a , χ l

b) = (χ̂u
a , χ̂ l

b),

it follows that 8a∧c(hac) ≥ 8a∧b(hab).
Finally

6(a, c) = 8a∧c(hac)

(
1
2
, −

)
∧ 8a∧c(hca)

(
−,

1
2

)
≥ 8a∧b(hab)

(
1
2
, −

)
∧ 8a∧b(hba)

(
−,

1
2

)
= 6(a, b). �

In the following we shall provide an argument showing that the extension theorem of Stares [28] indeed follows
from our pointfree extension theorem. For this purpose, let us recall the relationship between C(F, [0, 1]) and
C∗(↑(X \ F)) given by:

C(F, [0, 1]) 3 f 7−→ h f ∈ C∗(↑(X \ F)) : h f (p, q) = f −1(p, q) ∪ (X \ F).

Then we have the following:

Proposition 6.5. Let X be a topological space, F, G be non-disjoint closed and f ∈ C(F, [0, 1]), g ∈ C(G, [0, 1]).
Then g|F∩G ≥ f |F∩G , g(x) = 1 for all x ∈ G \ F and f (x) = 0 for all x ∈ F \ G if and only if

ĥg = 〈ĥ1
g, ĥ2

g〉 ≥ 〈ĥ1
g, ĥ2

g〉 = ĥ f .

Proof. ⇒: g|F∩G ≥ f |F∩G implies that f −1(p, +∞) ∩ F ∩ G ⊆ g−1(p, +∞) for all p ∈ Q. Also, since g(x)

= 1 for all x ∈ G \ F , it follows that G \ F ⊆ g−1(p, +∞) whenever p < 1. Consequently

ĥ1
g(p, −) = g−1(p, +∞) ∪ (X \ G) ⊇ f −1(p, +∞) ∪ (X \ F) = ĥ1

f (p, −).

On the other hand, g|F∩G ≥ f |F∩G implies that g−1(−∞, q) ∩ F ∩ G ⊆ f −1(−∞, q) for all q ∈ Q. Also, since
f (x) = 0 for all x ∈ F \ G, it follows that F \ G ⊆ f −1(−∞, q) whenever q > 0. Consequently

ĥ1
g(−, q) = g−1(−∞, q) ∪ (X \ G) ⊆ f −1(−∞, q) ∪ (X \ F) = ĥ1

f (−, q).

It follows that ĥg = 〈ĥ1
g, ĥ2

g〉 ≥ ĥ f = 〈ĥ1
f , ĥ2

f 〉.

⇐: Let x ∈ F ∩ G. If g(x) < f (x), take q ∈ Q such that g(x) < q < f (x), and since x ∈ ĥ1
g(−, q) ⊆ ĥ1

f (−, q)

we conclude that x ∈ f −1(−∞, q) ∪ (X \ F), a contradiction.
On the other hand, if g(x) < 1 for some x ∈ G \ F , then there exists p ∈ Q such that g(x) < p < 1 and, since

x ∈ X \ F ⊆ ĥ1
f (p, −) ⊆ ĥ1

g(p, −) we conclude that x ∈ g−1(p, +∞) ∪ (X \ G), a contradiction.
Dually, if f (x) > 0 for some x ∈ F \ G, then there exists q ∈ Q such that f (x) > q > 0 and, since

x ∈ X \ G ⊆ ĥ1
g(−, q) ⊆ ĥ1

f (−, q) we conclude that x ∈ f −1(−∞, q) ∪ (X \ F), a contradiction. �

After these explanations it is now clear how Stares’ extension theorem can be deduced from Theorem 6.3.
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[10] J. Gutiérrez Garcı́a, I. Mardones-Pérez, M.A. de Prada Vicente, Monotone normality without T1 axiom, preprint, 2007 (submitted for

publication).
[11] J. Gutiérrez Garcı́a, J. Picado, On the algebraic representation of semicontinuity, J. Pure Appl. Algebra 210 (2007) 299–306.
[12] R.W. Heath, D.J. Lutzer, P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973) 481–493.
[13] P.T. Johnstone, Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.
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