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Abstract

We focus on complex 3 x 3 matrices whose indefinite numerical ranges have a flat portion on the
boundary. The results here obtained are parallel to those of Keeler, Rodman and Spitkovsky for the classical
numerical range.
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1. Introduction

For J =1, & —1I,_, (0 <r < n), where I, denotes the identity matrix of order m, con-
sider C" endowed with the Krein structure defined by the indefinite inner product (&1, &)y =
£5JE1, &1,& € C". Let M, be the algebra of n x n complex matrices. The J-numerical range
of A € M, is defined as
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§*JAE
§¥J§
If J = +1,, then W;(A) reduces to the well-known classical numerical range of A, usually
denoted by W(A).
For A € M,,, W(A) is acompact and convex set [5], but W; (A) may not be closed and is either
unbounded or a singleton [8,9,10,12]. On the other hand, W; (A) is the union of the convex sets

Wi (A) = W (A UWT,(A),

WJ(A)={ :gecn,s*Jsgéo}.

where
WF(A) = [£*JAE: & e C", £ JE = 1)

and W*,(A) = —W; (4) [10,12].

For A € M,,, we have W;(al, + BA) = o + BW;(A), «, B € C. A matrix A can be uniquely
expressedas A = H’ +1K”, where H/ = (A + JA*J)/2and K’ = (A — JA*J)/(2i) are J-
Hermitian matrices, thatis, H/ = J(H”')*Jand K/ = J(K”’)*J.Denoting by Re S and Im S the
projection of S € C on the real and imaginary axes, respectively, we have Re W;(A) = W, (HY)
and Im W, (A) = W (K7).

The supporting lines of Wj (A) are the supporting lines of the convex sets W;“ (A)and W ;(A).
In [1,12], it was proved that if ux + vy + w = 0 is the equation of a supporting line of W;r(A)
(ij (A)), then the polynomial of Kippenhahn, Ff{ (u,v,w) = detwH’ + vk’ + wl,), satis-
fies

Fi(u, v, w) = 0. )

Eq. (1), with u, v, w viewed as homogeneous line coordinates, defines an algebraic curve of class
n on the complex projective plane P,(C) and its n real foci are the eigenvalues of A [3]. The
real affine part of this curve is denoted by C;(A) and called the associated curve of W;(A). If
J = x1I,, Cj(A) is simply denoted by C(A) and generates W (A) as its convex hull [7]. The
relation between C;(A) and W;(A) is described in [2,3]. For the degenerate cases, W;(A) may
be a singleton, a line, a subset of a line, the whole complex plane, or the complex plane except a
line. For the nondegenerate cases, W;(A) is the pseudo-convex hull of Cj(A) defined as follows.
Let X = X U X~ be a nonempty subset of C, such that X* € W} (A) and X~ € W, (A). For
any pair of points p, g in X, or in X, take the closed line segment [p, ¢], and for any pair of
points p, g produced by vectors with J-norms of opposite sign take the two half-rays of the line
defined by them with endpoints p, g. The set so obtained is called the pseudo-convex hull of X,
denoted by PC[X].

A matrix A is essentially J-Hermitian if there exist «, 8 € C such that « A + 81, is J-Her-
mitian. Obviously, a matrix A is essentially J-Hermitian if and only W;(A) is a subset of a line.
Let A be a non-essentially J-Hermitian matrix. Suppose that the straight line

C={(x,y) e Rax +by+c=0,a,bceR}

is a supporting line of W;(A). Let 0W;(A) denote the boundary of W;(A). If £NOW,(A)
contains more than one point, £ N OW,(A) is called a flat portion on the boundary of W;(A).
The definition of flat portions on 6Wj“(A) (or on GWILJ(A)) is analogous. A matrix U € M, is
J-unitaryif U~! = JU*J and all n x n J-unitary matrices form a group denoted by Ur.p—r. For
anyU € Uy p—r,wehave Wj(A) = Wy (UTAU). We say that a matrix A is J-unitarily reducible
if there exists a J-unitary matrix U € %, ,—, such that U TAU = Al B As, U-lJju = J1 & Jo,
where A1, J1 € My, m # 0, n, and we have W;(A) = PC[W,, (A1) U Wy, (A2)].
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For a J-unitarily reducible matrix, the existence of flat portions on the boundary of its J-
numerical range is a common occurrence. If A is J-normal with anisotropic eigenvectors, that
is, eigenvectors & such that £*J& # 0, then W;(A) is the pseudo-convex hull of the eigenvalues
of A [2] and flat portions appear on OW;(A). The smallest value of n for which there exist J-
unitarily irreducible matrices whose numerical ranges have a flat portion on 0W; (A) is n = 3,
and henceforth we concentrate on this case.

For A € M>, the elliptical range theorem [11] states that W (A) is an elliptical disc (possibly
degenerate) whose foci are the eigenvalues o and o of A, being the major and minor axis of
length

VTr(A*A) — 2Re(@jorz) and \/Tr(A*A)—|o¢1|2—|a2|2,

respectively. In the indefinite case, for A € M> and J = diag(1l, —1), the hyperbolical range
theorem [1] states that W;(A) is bounded by the hyperbola (possibly degenerate) with foci at o
and o, and transverse and non-transverse axis of length

\/Tr(JA*JA) — 2Re(xrjap) and \/qul2 + |az|?2 — Tr(JA*J A),

respectively.

The description of W;(A), when A € M,, and n > 2, is in general difficult. In certain cases,
Wj;(A) is still an hyperbola and its interior, independently of the size of A. The 3 x 3 case
was studied in [3] using the classification of C;(A) based on the factorability of F X (u, v, w).
However, a constructive procedure allowing us to determine the shape of W;(A) for an arbitrary
matrix A € M3 is not provided. In Section 2, we investigate J-unitarily irreducible matrices in
M3 having a flat portion on the boundary of the J-numerical range. In Section 3, we determine
W (A) for upper triangular matrices A € M3. The particularly simple case of triangular matrices
with one-point spectrum is discussed. The results obtained here are inspired by those obtained by
Keeler et al. for the classical numerical range [6].

2. J-unitarily irreducible 3 x 3 matrices with a flat portion on 0W;(A)

A flat portion on the boundary of the J-numerical range may be a (closed) line segment, two
(closed) half-lines of the same line, a (closed) half-line or a whole line. The proof of the next
result uses well-known formulas for the maximum number of singularities of an algebraic curve
of order n (see, for example, [4, p. 49]).

Proposition 1. For A € M,,, with n > 2, the number of flat portions Lj(A) on OW;(A) is less
than or equal ton(n — 1)/2. IfFX (u, v, w) is irreducible, then

n—Dn-2)

[1(A) < >

Proof. Each line originating a flat portionon 0W;(A), A € M,, is a flexional tangent or a multiple
tangent of C;(A). By dual considerations, we obtain a singular point of the dual curve of C;(A).
Since Cj(A) is a curve of class n, its dual curve has order n and the number of its singularities
is less than or equal to n(n — 1)/2. For an irreducible curve of order n, the upper bound is
n—1Dm-2)/2. O
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Proposition 2. Let A = H’ +iK’ e M,. If 9W;(A) contains a flat portion, then for a cer-
tain real direction (u,v), u = cos, v =sinb, 0 € R, the matrix uH' + vK’ has a multiple
eigenvalue.

Proof. By a translation and a rotation, we consider the flat portion on the imaginary axis. The
imaginary axis defines a flat portion on OW, (A) if and only if it is a flexional tangent of C;(A) or
a multiple tangent of the associated curve (at least) at two distinct points (the points can be finite
or infinite, real or complex). Consider the dual curve of C;j(A), defined in homogeneous point
coordinates by

Fi(x,y,t) =detxH’ + yK’ +11,) = 0.

By dual considerations, if x = 0 is a flexional or a multiple tangent of C;(A), then (1:0:0) is a
singular point of the dual curve, with multiplicity m > 2. It follows that

J —1J
F{(1,0,0) = Finom==C Fago0n=o
ot orm—1
which implies that the coefficients x", xtg, L xmm=Dgm=1 of the polynomial F/{ (x,y,1)

vanish. Analyzing the solutions of the secular equation det(H J _\I,) = 0, we conclude that 0
is an eigenvalue of H” with multiplicity at least m. [

Throughout this section we assume that J = diag(1, 1, —1), and that A € M3 is a J-unitarily
irreducible matrix written as A = H’ +iK”’, where H” and K’ are J-Hermitian matrices. To
avoid trivial cases we also assume that A is not essentially J-Hermitian.

Theorem 1. Let J = diag(1, 1, —1) andlet A € M3 be a J -unitarily irreducible matrix. If W j (A)
has a line segment on its boundary, then it lies on GW}"(A). Analogously, if there exists a single
half-line on OW;(A), then it lies on ©W;r (A).

Proof. We prove (by contradiction) that the line segment on 0W;(A) necessarily belongs to
6W)|r (A). Indeed, assume that W 7 (A) contains this line segment. After translation, rotation, and
scaling of A, we may assume that the line segment has endpoints 0 and i. By Proposition 2, 0 is
an eigenvalue of H” with multiplicity at least 2. There exists e3 € C" such that e;Jes = —1and
HYe3 = 0. Consider also two vectors eg, e, € C", ejJey = e5Jex = 1, such that {ey, ez, e3} is
a J-orthogonal basis of C3. The matrix representation of J H” in this basis is

a ¢ O
c b 0|, abeR, ceC,
0O 0 O

where ab = |c|*> # 0, because A is not essentially J-Hermitian. Hence, under a J-unitary simi-
larity transformation J H’ may be written as

a 0 0
JH' =10 0 0
0 0 0

with a’ = a + b. The quadratic form £*J H” £ vanishes if and only if &£ = (0, ¢, 7) € C3. Let
S be the subspace generated by ey, e3, and denote by A’ € M, the restriction of A to S. For
J' = diag(1, —1), W;(A’) may be the real line, the real line except a point, or two half-rays.
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Henceforth, it may not degenerate either to a half-line or to a line segment. Hence, [0, i] is
contained in the boundary of W;r (A).

To prove the second part of the theorem, we may suppose that the flat portion on OW; (A) is
contained on the positive imaginary axis, and analogous arguments hold. [

Next, we derive a canonical form for an irreducible matrix with a closed line segment on the
boundary of the J-numerical range.

Theorem 2. Let J = diag(1, 1, —1) and let A € M3 be J-unitarily irreducible. Under J-unitary
similarity, translation, rotation, and scaling, A may be written in the form

i 0 ¢
A=10 0 o, ()
g ¢ ¥

where c1, ¢ are positive real numbers and Re vy < 0, if and only if W;(A) has a closed line
segment on its boundary. In this form, W}'(A) has the line segment [0, i] as a flat portion and is
contained in the closed right half-plane.

Proof. (=) Assume that under J-unitary similarity, translation, rotation, and scaling, A is written
in the form (2). Consider the Hermitian matrices

0 0 0 1 0 —ic
JH =10 0 0 and JK'’=[0 0 —icy
0 0 —Rey ic; ico —Imy

Since Rey < 0, we have W, (H’) =] — co,Re ¢/], W} (H’) = [0, +-00[, and so W (A) is
entirely contained in the right half-plane. Furthermore, £*J H” & vanishes if & = (¢,1,0) € c?
and we get

E*JK'E 6P
§*J§ 112+ nl>
Thus, the interval [0, 1] is described, and so the line segment [0, i] is contained in Wf (A), being
the imaginary axis a supporting line of er(A).

(<) Let Wf (A) have a closed line segment as a flat portion on its boundary. After translation,
rotation and scaling, we may assume that this line segment is [0, i]. By Proposition 2, 0 is an
eigenvalue of H’ with multiplicity at least 2. There exists e; € C" such that efJe; =1 and
H7 ey = 0. Consider two vectors e, e3 € C", e5Jex = 1,e3Je3 = —1,such that {ey, ez, e3} isa

J-orthogonal basis of C3. In this basis, the matrix representation of J H T is

0 0
JH =10 a ¢/, 3)
0 ¢ b

where a, b are real and c is a complex number satisfying ab = |c|2. Since A is not an essentially
J-Hermitian matrix, it is clear that JH’ = 0, and so |c| # 0. We prove (by contradiction) that
lal # |c|. Let |a| = |c| and without loss of generality we may suppose ¢ > 0. Two possibilities
may occur: a = b = c ora = b = —c. Assume that @ = b = ¢. Since we have é*JH’'& = 0 if
E=(,n,—n) e ([33, consider the matrix representation of J K 7 in the basis {e1, e2, e3}
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o —iv;  —ivp
JK' = |ivy B —inz |, a, B,y R, v,mv3eC
iv; vz Y

and the function

fE):=E*TK'E =a+ (B+y —2Imv3)nl* + 20|y — va|sing,
where ¢ = argn + arg(v; — vp). This function reduces to a point if 8+ y —2Imv3 =0 and
v1 — v = 0, describes the whole real lineif 8 + y — 2Im v3 = O and v — vy # 0, and a half-line

of the real line if B 4+ y — 2Im v3 # 0. However, a line segment is never produced, contradicting
the hypothesis. Then |a| # |c|, and so in a certain basis the matrix (3) is either of the form

0o 0 O
JH =0 o 0 4)
0O 0 O
or of the form
0 O 0
JH =0 0 0 (5)
0 0 —d

with @’ = a — b. It can be easily seen that the form (4) leads to a contradiction, because it is
incompatible with the existence of a line segment on the boundary. Hence, we necessarily have
(5). Thus, W (H’) = [0, +-00[ and W*,(H”) =] — 00, —a'], being —a’ < 0 since W (A) is
contained in the closed right half-plane.

The quadratic form £*J H” £ vanishes for& = (¢, 1,0) € C3.Let A’ be the principal submatrix
of

0 O 0 o —iv1 —iU2
A=H'+ik’ =10 0 0 |+i| ivf g —inz |,
0 0 —d —iv; —iv3  —y

a, B,y € R,v1, v, v3 € C,inthe first two rows and columns and let J” = diag(1, 1). Observe that

W/ (A”), whichisasubsetof W, (A),is aline segment with endpoints i (# £/ % + vy |2>.
Ifa =1,8 =0,v; =0, then this line segment is [0, i], and

1 0 V2
A=H’+ik’ =0 0 V3 ,
v vz —ad —iy

where —a’ < 0. Without loss of generality, we may assume thatc; = v > 0,¢2 = v3 > 0. Hence,
A is of the asserted form. [

If OW;(A) has a flat portion constituted by two half-lines of the same line, then one of the
half-lines must be contained in an(A) and the other one in 6W_+](A). This is an obvious

consequence of the convexity of Wj' (A) and WT ;(A).

Theorem 3. Let J = diag(1, 1, —1) and let A € M3 be J-unitarily irreducible. Under J-unitary
similarity, translation, rotation, and scaling, A may be written in the form
a+t+ic b ¢
A=| —b i 0], (6)
c 0 0
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where @ € Rand a, b, c > 0, if and only if W;(A) has two closed half-lines of the same line on
its boundary. In this form, W;r (A) is contained in the closed right half-plane, the half-line of
the positive imaginary axis with endpoint i is contained in GWJ+ (A), while the closed negative
imaginary axis belongs to OW™* 7 (A).

Proof. (=) Let A be of the asserted form. Then

a 0 O a —1b —ic
JH =10 0 0| and JK'=|ib 1 0
0 0 0 ic 0 0

Sincea > 0, we have W} (H”) = [0, +o00[, W', (H’) =] — 00, 0]. On the other hand, §*J H’ &
vanishes if § = (0, ¢, n) € C3. For & of the above form, we obtain
EYJK'E  g)?
§¥J§ 112 = nl?”

If£*J& < Othis quotient describes | — oo, 0], whileif §*J& > Oit describes the interval [1, 4+o00[.
Thus, Wj' (A) is contained in the closed right half-plane and the asserted half-line is contained
in this set. On the other hand, W ;(A) is contained in the closed left half-plane and the negative
imaginary axis belongs to this set.

(<) Without loss of generality, we may assume that W; (A) has the asserted closed half-lines
on its boundary. Let {e], e2, e3} be a J-orthogonal basis of c3 satisfying H Tey =0, eTJ e =
esJer =1, e’§J e3 = —1. Consider the matrix representation of J H 7 in this basis

a 0 ¢
JH =10 0 0],
¢ 0 b

where a, b are real and ¢ is a complex number obeying ab = |c|?. By the same technique used in
Theorem 2, we necessarily have |a| # |c|, and so the principal submatrix of H” in the first and
third rows and columns has the eigenvalues 0 and a — b, with two linearly independent anisotropic
associated eigenvectors, and therefore, it can be diagonalized by a J-unitary similarity. Thus, in
a proper basis

a 0 0
JH =10 0 0 )
0 0 0
or
0 0 0
JH =10 0 0 (®)
[0 0 —a’

with @’ = a — b. Tt can be easily seen that the form (8) leads to a contradiction, because it is
incompatible with the existence of two half-rays on the boundary of W;(A), and so we necessarily
have (7). Thus, W} (H”) = [0, +oo[ and W*,(H') =] — 00, 0], being a’ > 0 since W (A) is
contained in the closed right half-plane. Let
o —iv;  —ivyy
JK’ = vy B —inz |, a,B,y€R, v, v;eClC.
iv; iv3 14
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Now, let J' = diag(1, —1) and consider the 2 x 2 principal submatrix of A = H' 4+ iK’/

A/:i /3 —il)3
-z -y ]’

By the hyperbolical range theorem, W/ (A”) reduces to two half-rays on the imaginary axis with
endpoints i (ﬂT” +,/ M —|v3 |2>. These endpoints coincide with 0 and i when we choose

abasissuchthat 8 =1,y =0,13=0. O

Now we investigate the existence of a whole line in 6Wf (A), and derive a canonical form for
A.

Theorem 4. Let J = diag(1, 1, —1) and let A € M3 be J-unitarily irreducible. Under J-unitary
similarity, translation, and rotation, A may be written in the form

0 V1 V2
A=|-v d+ig vz, ©)]
V2 V3 0

where vy, v3 € C, vy € C\{0}, B € R, a’ > 0, or in the form

i Vi Vo

A=|-v a+if —-a+v3|, (10)
| 2 a+Vvy —a-—iy

where v, 2,13 € C, a, 8,y €R, a>0, B+y +2Imv3 =0, vi +vy #0, if and only if
6WJ+ (A) coincides with a line. In these forms, Wj' (A) is contained in the closed right half-plane,
being the imaginary axis the boundary of W}"(A).

Proof. (=) According to the hypothesis, for A in the form (9) we have

0 0 0 0 —ivy —in
JH =0 o« 0| and JK'=|ivy B —in3
0 0 0 iy iv3 0

Sincea’ > 0, wehave Wf(HJ) = [0, +o0[ and WjJ(HJ) =] — o0, O].Moreover,S*JHJE =0
when & = (£,0,7n) € C? and the quotient
E*JK'E  2[nll¢|In|sin6

§xJ§ 112 = Inl>
0 = argvy — arg ¢ + argn, describes the real line when ¢,  range over C since by hypothesis
vy # 0.
For A in the form (10), we have
0 O 0 o —ivy  —ivm
JH =10 a —a| and JK'=|ivy B —in
0 —a a iv; iv3 Y

Since a > 0, then W;_(HJ) = [0, +o0[ and WjJ(HJ) =] — o0, O[. Moreover, E*JHJS —0if
£ =(1,7,n) € C?, and so
£*JK’g

—— =a+B+y+2Imv 2412 +v sin ¢,
£ JE B+ Il [vi + valln| sin ¢
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¢ = arg(v1 + v2) + argn, describes the real line when n € C, since by hypothesis the coefficient
of [n|? is zero and |v; 4 v3| # 0.

(<) Suppose thatE)W;r (A) coincides with the imaginary axis. Lete; € C* suchthat H'e; = 0,
eTJel = 1. Consider the matrix representation of JH in the J-orthogonal basis {eq, e, e3}

0 0 O
0 a cf,
0 ¢ b

where a, b are real and ¢ is a complex number satisfying ab = |c|2. If we have |a| # |c|, then in
a proper basis J H’ may be taken either in the form

0 0 0
JH =0 0 0
|0 0 —d
or in the form
[0 0 0
JH =0 a 0f,
|0 0 O

where a’ = a — b. The first case leads to a contradiction, because it gives rise to a line segment
on the boundary. In the second case, we have, for a’ > 0, W} (H') = [0, +oo[, W, (H') =

]—00,0],and E*JH'& = 0if £ = (¢,0, 1) € C3. Let

o —iv1 —il)2
JK' =|ivy B —inz|, @B yeR, vi,mveCl
v vz 14

and consider the principal submatrix of A = H’ +iK’

A = i %)
v iy |
For J' = diag(1, —1), then W,/ (A’) is the imaginary axis if (a + y)2 — 4|v2|2 < 0, and without
loss of generality we may take « = y = 0, v» # 0, and so

0 V1 1%
A=|-v d+iB 3
2 V3 0

If |a| = |c]|, then J H’ may be taken in the form

0O 0 0
JH' =0 a —a
0 —a a

For a > 0, we get Wf(HJ) = [0, +o0[, Wj](HJ) =] — 00, O[. On the other hand, if & =
(1,n,m) € C*then £*JH’ & = 0. Let
o —iv;  —ivyy
JK' = vy B —inz |, a,B,yeR, v,y neC
iy vz Y
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and

e*JK'g ) .
f(E)I=W =a+ (B+y +2Imv3)n|” +2nllvi + v2sing,
where ¢ = argn + arg(v; + v2) € R. This function describes the imaginary axis if 8+ y +
2Im vz = 0 and v; + v2 # 0. Hence, A has the asserted form. [

We note that if A is of the form (9), then the imaginary axis is also a flat portion on owr J(A).
However, this is not true when A is of the form (10).

Now we investigate the existence of a single half-line on 6W;F(A) contained in the closed right
half-plane, and derive a canonical form for A.

Theorem 5. Let J = diag(1, 1, —1) and let A € M3 be J-unitarily irreducible. Under J-unitary
similarity, translation, and rotation, A may be written in the form

o Vi vy
A=|-v a+if —-a+vs]|, (1)
v, a+vy —a-—iy

where v, vy, 3 € C,a, 8,y € R,a>0,8+y +2Imvs >0, and

4wl
B+y+2Imysy’

if and only if Wj(A) has one closed half-line on its boundary. In this form, W}L (A) has the
positive imaginary axis as a flat portion and is contained in the closed right half-plane.

Proof. (=) According to the hypothesis

0 0 0 o —il)] —il)2
JH' =|0 a —a| and JK'=|ivy B —in
0 —a a v  iv3 y

Sincea > 0, it follows that W (H’) = [0, +-oo[, W, (H’) =] — 00, 0[. Wehave §*JH’£ = 0
for§ =(,n,n) € ([33, and we easily obtain
§*JK'E
§*J§

where ¢ = argn + arg(vy + v2). This function ranges over the positive imaginary axis because
B+ v +2Imvs is positive and o = |v] + vz|2/(ﬁ + vy +2Imwvz).

(<) Let the positive imaginary axis be a flat portion on GWJJ“ (A). Let e; € C? be such that
H’ e =0, e’l"J e1 = 1. Consider the matrix representation of JH 7 in the J -orthogonal basis
{e1, e2, €3}

fE) = = o+ (B +y +2Imv3)n* +2Inllv + v2|sing,

0 0 O
0 a cf,
0 ¢ b

where a, b are real and ¢ is a complex number satisfying ab = |c|?. We cannot have |a| # |c|,
because under this assumption we are lead to the cases treated in Theorems 2,3,4. Thus, |a| = |c|
and in a proper basis



N. Bebiano et al. / Linear Algebra and its Applications 428 (2008) 2863-2879 2873

0 0 0
JH =0 a -a
0 —a a

Fora > 0, we get W} (H’) = [0, +oo[, W*,(H’) =] — 00, O[. Let

o —il)l —il)2
JK' = |ivy B —ivz |, o B,y eR, v,m v3eClC.
[iv2 i3 14
We easily find that £*JH'E = 0for& = (1,1, 1) € C3, and we obtain
E*JK'g 2 ~
f(S)ZZW =a+ (B+y +2Imv3)[nl” +2[nllvi + v2fsing

with ¢ = argn + arg(vi +v2) e R If B+ ¢y +2Imvs > 0, then f (&) describes a half-line of
the form [b’, +00[. Taking & = |v; + v2|>/(B + y + 2Imv3), we have b’ = 0. O

3. W;(A) for J-unitarily reducible 3 x 3 triangular matrices

We denote by Tr %> (B) the sum of the 2 x 2 principal minors of a matrix B. Easy calculations
show that:

Lemmal. For A= H' +iK/ e Myand J =1, & —_, (0<r <3)

Fi (u, v, w) = w® + det(H')u® + det(K 7 )v* + Re Tr(A)uw? + Im Tr(A)vw?
+ ImTr %2 (A)uvw + Tr 6> (H )u>w + Tr 2(K ) )v*w
+ [det(H”) — Redet(A)Juv? + [det(K’) 4 Im det(A)]u’v.
If A € M3 is J-unitarily reducible, then there exists a matrix U € %>,1 such that U “lAU =
A1 @ Aj, and either the diagonal block A has size 2 — Case 1, or size 1 — Case 2. First we analyze

Case 1.

Theorem 6. Ler J = diag(1, 1, —1) and let

a d e
A=|(0 b f|eMs.
0 0 ¢

The associated curve C j(A) is the union of the ellipse E (possibly degenerating into a disk) with
foci a, b, minor axis of length s, and the point c if and only if

() s* =d* — |e|* = | fI* > O and
(2) s2c = c|d|* — ble|* —a|f|* + de f.

Proof. Consider the matrix

a
B=|0
0

[N e

0
0, s>0,
c
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whose associated curve C;(B) is the union of the ellipse £ with foci a, b, minor axis of length
s, and the point c.

Using Lemma 1, we conclude that the polynomials F X (u, v, w)and F g (u, v, w) have the same
coefficients, except possibly the coefficients of 1>, v3, u?>w and v2w. Moreover, the coefficients

of u>w and v?w in both polynomials are equal if and only if

s2=dI> — le]* — | f* > 0.

On the other hand, the corresponding coefficients of ul, v

s’c = cld|* — ble|* — a|f)* + def.

are equal if and only if

Hence, conditions (1) and (2) are necessary and sufficient for the matrices A and B to have the
same associated curves. [

Remark 1. To obtain an invariant form of conditions (1) and (2) in Theorem 6, note that

d|* = lel* = | fI* = Tr(JA*T A) — (lal* + B> + |c|?); (12)
cld?> = ble> —alfI> +def = (ld* — le|> — | fI)Tr A — Tr(J A*J A?)
+ (alal® + b|b| + c|c|?). (13)

Thus, the following reformulation holds for conditions (1) and (2) and the theorem holds for
matrices in M3 that are J-unitarily triangularizable:

(1) s2 =Tr(JA*JA) — (la|® + |b|? + |c|?) and
(2) s2c =s*Tr A — Tr(JA*J A?) + (ala|® + b|b|?> + ¢|c|?).

Denote by o;r (A) (o7 (A)) the set of eigenvalues of A € M, with associated eigenvectors
with positive (negative) J-norms.

Corollary 1. Under the assumptions of Theorem 6, Wj(A) is a “cone-like” figure (the pseudo-
convex hull of E and c) if and only if c lies outside E; and it is the whole complex plane if and
only if ¢ lies inside E.

Proof. Conditions (1) and (2) are equivalent to C;(A) being the union of the ellipse E and the
point c. Wj(A) is the pseudo-convex hull of ¢ and E. If ¢ is inside E, then W;(A) is the complex
plane, because ¢ € o; (A) and the ellipse is generated by vectors with positive J-norms. If ¢ lies
outside E, then W;(A) is a “cone-like” figure. [l

We observe that under the assumptions on J and A, W, (A) may be neither an elliptical disk
nor a circular disk. Now we investigate when C; (A) consists of a hyperbola and a point (Case 2).

Theorem 7. Let J = diag(1, 1, —1) and let

a d e
A=|0 b f| e Ms.
0 0 ¢

The associated curve Cj(A) consists of the point a and the hyperbola with foci b, ¢ and non-
transverse axis of length s if and only if
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(1) s =—|d|> + le|* + | fI*> > 0 and
() s2a = —c|d|*> + ble|* +a| f|* — def.

Proof. Consider the matrix

a 0 O
B=|0 b s|eM; s>0,
0 0 ¢

whose associated curve is the point a and the hyperbola with foci b and ¢ and non-transverse axis
of length s. The proof follows analogous steps to the proof of Theorem 6. [

Remark 2. Recalling (12) and (13), we obtain an invariant form of conditions (1) and (2) in
Theorem 7:

(1) s = =Tr(JA*JA) + |a|*> + |b|* + |c|> and
(2) s2a = —s2Tr A + Tr(JA*J A%) — (ala|* + b|b|? + c|c]?).

Corollary 2. Under the assumptions of Theorem 1, denote by H|(H>) the branch of H containing
b (¢) inside. Then W;(A) is:

(1) Cifand only if a is inside Hy;
(2) the hyperbolical region limited by H if and only if a is inside Hy;
(3) a “cone-like” figure (the pseudo-convex hull of H and a) if and only if a is outside H.

Proof. Under the hypothesis, conditions (1) and (2) in Theorem 7 are equivalent to C;(A) being
the union of the hyperbola H and the point a. Since W;(A) is the pseudo-convex hull of a and
H, and recalling that the pointa € a;“ (A), we conclude that W;(A) coincides with the complex
plane if the point a lies inside H>; if a lies inside Hj, then the pseudo-convex hull of @ and H
is the hyperbolical region limited by H; finally, if a lies outside H, then W;(A) is a “cone-like”
figure. O

The case of a triangular matrix with a triple eigenvalue is particularly simple.

Proposition 3. Ler J = diag(1, 1, —1) and

p q r
A=10 p s |€eMs.
0 0 p

If at least one of the entries q, r or s is nonzero, then Wj(A) coincides with C. Otherwise, the
set reduces to {p}.

Proof. Obviously, if g =r =s =0, then W;(A) = {p}. If s #0, let A’ = A[2,3] and J' =
diag(1, —1). Then W,/ (A") € W;(A) and by the hyperbolical range theorem Wj/(A’) is the
complex plane. The case r # 0, may be analogously treated considering A’ = A[1,3] and J' =
diag(l, —1).If g # 0, we take A’ = A[l, 2] and J' = diag(1, 1). By the elliptical range theorem,
Wy (A’) is a disc centered at p with radius |g|/2. The point p € o (A) is in the interior of the
disc, and since the disc is generated by vectors with positive J-norm, the pseudo-convex hull of
the disc and of the point p is the whole complex plane. [
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4. Examples

We present illustrative examples of the obtained results. The figures were produce with Math-
ematica 5.1, and the boundaries of the convex sets Wf (A) and W 7 (A) are represented by thick

lines.

Example 1. Let

i 0 12
A=|0 0 12
12 12 =2

Easy calculations show that
F/{(u, v, w) = v3/4 + (v — 2«/§u)vw/2 + (v — x/iu)w2 + w3,

The associated curve Cj(A), represented in Fig. 1, is quartic with a real cusp, being the imaginary
axis a double tangent. The set W}L (A) is contained in the closed right half-plane and it is the
convex hull of the branch of C;(A) in this half-plane. The line segment [0, i] is a flat portion
on 6W1+ (A). On the other hand, W™ ;(A) is contained in the half-plane {z € C : Rez < -2},
being the convex hull of the branch of Cj(A) in that region (see Theorem 2).

Example 2. Consider, now, the matrix

2 1 1)2
A=|-1 i 0
12 0 0

with F/{(u, v, w) = v3/4 — 3v2w/4 + (vw + w2)(2u + w). The associated curve C;(A), rep-
resented in Fig. 2, is quartic with a real cusp and the imaginary axis is a double tangent of the
curve. Its pseudo-convex hull originates half-lines on GW;’(A) and on OW ™ ;(A), being W}'(A)

(Wt ;(A)) contained in the closed right half-plane (closed left half-plane) (see Theorem 3).

-

-2

Fig. 1. The line segment [0, {] is a flat portion on 8W;r (A).
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N

-

AN &

-2

Fig. 2. The negative imaginary axis is a flat portion on BWj' 7 (A) and the half-line of the positive imaginary axis with

endpoint i is a flat portion on 8W7(A).

Example 3. Let

0 1 1/2
A=|-1 1 o |,
/2 0 O
where Ff{ (u,v,w) = —3v2w/4 + u(v2/4 + w?) + w3. The associated curve C; (A),represented

in Fig. 3, is quartic with three real cusps and the imaginary axis is a double tangent of the curve (at
complex points). This example leads to a degenerate case, since wt ;(A) ={z € C:Rez < O}and
Wf(A) = {z € C:Rez > 0}. The imaginary axis is a flat portion on awj(A) and on GW:FJ(A)
(see Theorem 4 (9)).

-2

Fig. 3. The imaginary axis is a flat portion on i)WJ+ (A) and on BWZLJ (A).
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Example 4. Let

0o -1 -1
A= 1 1 -1,
-1 I -1

where F /{ (u, v, w) =4u v2 + w3. The associated curve C 7 (A),illustrated in Fig. 4, is cubic witha
real cusp and a real flex, both in the line of infinity. The flexional tangent is the imaginary axis. This
example leads also to a degenerate case, because Wf] (A) ={z € C:Rez < 0} and Wf(A) =
{z € C:Rez > 0}. The imaginary axis is a flat portion on GW}L(A) (see Theorem 4 (10)).

-2
Fig. 4. The imaginary axis is a flat portion on E)W]+ (A).

5

4

Fig. 5. The positive imaginary axis is a flat portion on BW;" (A).
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Example 5. Finally, consider the matrix

i/16 —1/2 0
A=[1/2 1+i —1+i
0 1-i —1-—i

We get F/{ (u, v, w) = 16w> + vw? — 64uvw — 4v>w + 4v>. The associated curve C;(A), rep-
resented in Fig. 5, is quartic with a real cusp, being the imaginary axis a double tangent (at the
origin and at a point in the line of infinity). The set W}L (A (Wt ;(A)) is contained in the closed
right half-plane (open left half-plane), and it is the convex hull of the branch of C;(A) in this
half-plane. The positive imaginary axis is a flat portion on OW;F(A) (see Theorem 5).
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