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derivatives of orthogonal polynomials
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3504-510 Viseu, Portugal
b CMUC, Department of Mathematics, University of Coimbra,

3001-454 Coimbra, Portugal

Abstract

We discuss an inverse problem in the theory of (standard) orthogonal polynomials
involving two orthogonal polynomial families (Pn)n and (Qn)n whose derivatives of
higher orders m and k (resp.) are connected by a linear algebraic structure relation
such as

N∑
i=0

ri,n P
(m)
n−i+m(x) =

M∑
i=0

si,nQ
(k)
n−i+k(x)

for all n = 0, 1, 2, · · ·, where M and N are fixed non-negative integer numbers, and
ri,n and si,n are given complex parameters satisfying some natural conditions.

Let u and v be the moment regular functionals associated with (Pn)n and (Qn)n
(resp.). Assuming 0 ≤ m ≤ k, we prove the existence of four polynomials ΦM+k+i

and ΨN+k+i, of degrees M + k + i and N + k + i (resp.), such that

Dk−m (ΦM+k+iu) = ΨN+k+iv (i = 0, 1) ,

the (k−m)th−derivative, as well as the left-product of a functional by a polynomial,
being defined in the usual sense of the theory of distributions.

If k = m, then u and v are connected by a rational modification. If k = m + 1,
then both u and v are semiclassical linear functionals, which are also connected
by a rational modification. When k > m, the Stieltjes transform associated with u

satisfies a non-homogeneous linear ordinary differential equation of degree k − m

with polynomial coefficients.

Key words: Orthogonal polynomials, inverse problems, semiclassical orthogonal
polynomials, Stieltjes transforms
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1 Introduction

This paper deals with a special type of inverse problem in the theory of orthog-
onal polynomials (OP’s). We characterize the regular moment linear function-
als u and v, corresponding to given monic orthogonal polynomial sequences
(OPS’s), say (Pn)n and (Qn)n (resp.), whose derivatives of orders m and k

(resp.) fulfill the following linear algebraic structure relation

N∑
i=0

ri,n P
(m)
n−i+m(x) =

M∑
i=0

si,nQ
(k)
n−i+k(x) (1)

for all n ≥ max{M, N}, where M and N are fixed non-negative integer num-
bers, and ri,n and si,n are given complex numbers satisfying some natural
conditions, with the conventions ri,n = si,n = 0 if n < i.

The structure relation (1) appears naturally in the framework of the theory
of Sobolev OP’s, when the above moment linear functionals u and v admit
integral representations in terms of two positive Borel measures dμ1 and dμ0

(resp.) which are taken to define a Sobolev inner product of the form

〈f, g〉S =

+∞∫
−∞

f g dμ0 + λ

+∞∫
−∞

f ′ g′ dμ1 . (2)

Here, it is assumed that λ > 0 and dμ0 and dμ1 are supported on an inter-
val I ⊂ R (the support of each of these measures being an infinite set) and
with non-vanishing absolutely continuous components. This kind of orthogo-
nality in Sobolev spaces has attracted considerable attention, specially after
an important work by A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-
Serna [8] who demonstrate how this theory can be used for efficient evaluation
of Sobolev-Fourier coefficients. For instance, in [9] K. H. Kwon, J. H. Lee,
and F. Marcellán studied Sobolev OP’s arising from a relation as (1) with
(N, M, m, k) = (0, 2, 0, 1), and the case (N, M, m, k) = (1, 1, 0, 1) has been
completely studied by A. Delgado and F. Marcellán in [7]. We also remark
that the situation m = 0, k = 1 and N = 0 (with arbitrary M) was studied
in [12] by F. Marcellán, A. Mart́ınez-Finkelshtein and J. Moreno-Balcázar as
an extension of the concept of coherence.

� This work was supported by CMUC/FCT. M. N. de Jesus was supported by FCT
under grant SFRH/BD/29192/2006.
∗ Corresponding author.

Email addresses: mnasce@mat.estv.ipv.pt (M. N. de Jesus),
josep@mat.uc.pt (J. Petronilho).
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Assuming, without loss of generality, that 0 ≤ m ≤ k, we prove the existence
of four polynomials ΦM+m+i and ΨN+k+i, of degrees M + m + i and N + k + i

(resp.), such that

Dk−m (ΦM+m+iu) = ΨN+k+iv , i = 0, 1,

the (k − m)th−derivative, as well as the left-product of a functional by a
polynomial, being defined in the usual sense of the theory of distributions. If
k = m, this implies that u and v are connected by a rational modification. If
k = m + 1, then u and v are semiclassical linear functionals which are also
connected by a rational modification.

The structure of the paper is as follows. In section 2 we review some basic
tools concerning the general theory of OP’s, focusing our attention on some
topics of the algebraic theory of OP’s, as well as on the theory of semiclassi-
cal OPS’s. In section 3 we give the main result of the paper, characterizing
the moment linear functionals such that the corresponding OPS’s fulfill the
above (up to normalization) linear structure relation (1). In section 4 we state
a relation between the Stieltjes transforms associated with these moment lin-
ear functionals. In particular, when k > m, we will show that the Stieltjes
transform associated with the moment linear functional with respect to which
(Pn)n is orthogonal satisfies a non-homogeneous linear ordinary differential
equation of degree k − m with polynomial coefficients. Finally, the particular
situation k = m + 1 is studied in detail in section 5, since it goes into the
theory of semiclassical OPS’s. We also give an illustrative example showing
that the proofs of our results are constructive.

2 Remarks on semiclassical orthogonal polynomials

In this section we make a review on the so-called semiclassical OPS’s, but first
let us recall some basic tools concerning algebraic (topological) aspects in the
theory of OP’s. (See [6,14,15,16,11,19].)

2.1 Topological aspects

The linear space of polynomials with complex coefficients will be denoted by
P. In P we consider the topology of the strict inductive limit of the sequence
(Pn)n, where Pn represents the Banach space of all polynomials of degree at
most n with the topology induced by the norm

‖q‖n :=
n∑

k=0

|ak| , q ≡
n∑

k=0

akx
k ∈ Pn .

3
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The topological dual space of P will be represented by P ′ and we consider on
it the strong dual topology (which coincides with the weak one). This topology
can be also characterized by the system of semi-norms {|.|n : n ∈ N0}, where

|u|n = sup
0≤m≤n

|um| , n = 0, 1, 2, · · · ,

being un := 〈u, xn〉 the moment of order n of u. Since this system of semi-
norms is countable, P ′ becomes a metrizable space and this fact can be used
to prove the following property:

P ′ = P∗ ,

where P∗ denotes the algebraic dual of P. The usefulness of this property
comes from the fact that it allows us to give a sense to any expansion of any
functional u ∈ P∗ as

u =
∑
n≥0

λnan , λn := 〈u, qn〉 ,

in the sense of the weak dual topology in P ′, where (qn)n denotes any simple
set of polynomials (i.e., deg qn = n for all n) and (an)n is its corresponding
dual basis in P ′, so that

〈an, qm〉 :=

⎧⎪⎨⎪⎩ 1 if n = m

0 if n �= m
(n, m = 0, 1, 2, · · ·) .

In the next, we introduce some operations in P and in P ′. Let u ∈ P ′ and
φ ∈ P. The left-multiplication of the functional u by the polynomial φ, denoted
φu, is the functional defined by

〈φu, q〉 := 〈u, φq〉 , q ∈ P .

The right-multiplication of the functional u by the polynomial φ, denoted uφ,
is the polynomial defined by

(uφ)(x) := 〈uξ,
xφ(x) − ξφ(ξ)

x − ξ
〉 ,

where the subscript ξ in uξ means that u acts in functions of the variable ξ.
We notice that, setting φ(x) =

∑n
i=0 cix

i, then

(uφ)(x) =
n∑

i=0

⎛⎝ n∑
j=i

cjuj−i

⎞⎠ xi ,

where uν := 〈u, xν〉 is the moment of order ν of u, for ever nonnegative
integer number ν. Finally, the (distributional) derivative of the functional u

4
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is the functional Du ∈ P ′ defined by

〈Du, q〉 := −〈u, q′〉 , q ∈ P .

If u ∈ P ′ and (Pn)n is a simple set of polynomials, then (Pn)n is called an
orthogonal polynomial sequence (OPS) with respect to u if

〈u, PnPm〉 =

⎧⎪⎨⎪⎩
νn , if n = m

0 , if n �= m
(n, m = 0, 1, 2, · · ·)

where (νn)n is a sequence of nonzero complex numbers. If there exists an
OPS with respect to u then u is called regular or quasi-definite. Since any
monic OPS (Pn)n is a simple set of polynomials then we can consider the
corresponding dual basis, (an)n. It is a very important fact that each element
of this dual basis admits the following explicit representation

an =
Pn

〈u, P 2
n〉

u , n = 0, 1, 2, · · · . (3)

2.2 Semiclassical orthogonal polynomials

A functional u ∈ P ′ is called semiclassical if the following two conditions hold:

(i) u is regular;
(ii) there exist two polynomials φ and ψ, with deg ψ ≥ 1, such that

D(φu) = ψu . (4)

Under such conditions, the class of u is the (unique) nonnegative integer num-
ber s defined by

s := min
(φ,ψ)∈A

max {deg φ − 2, deg ψ − 1} ,

where A is the set of all pairs of polynomials (φ, ψ), with deg ψ ≥ 1 satisfying
the distributional differential equation (4).

We also say that an OPS associated with a semiclassical linear functional is a
semiclassical OPS (of class s, if the class of u is s).

When s = 0, u is called a classical functional. If (Pn)n is an OPS associated
with a classical functional, then it is called a classical OPS. It is well known
that up to a linear change of the variables, we obtain Hermite polynomials,
(Hn)n, in the case φ ≡ const.; Laguerre polynomials, (L(α)

n )n, in the case

5
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deg φ = 1; Jacobi polynomials, (P (α,β)

n )n, in the case deg φ = 2 and φ with
distinct roots; and Bessel polynomials, (B(α)

n )n, in the case deg φ = 2 with
a double root. Furthermore, we can take for φ and ψ the canonical forms in
Table 1.

Pn φ ψ Restrictions

Hn 1 −2x —

L(α)
n x −x + α + 1 α�=−n , n≥1

P (α,β)
n 1 − x2 −(α + β + 2)x + β − α α�=−n , β �=−n , α+β+1�=−n , n≥1

B(α)
n x2 (α + 2)x + 2 α�=−n , n≥2

Table 1: Classification of the classical OPS

Remark 2.1 To check the regularity of a given moment linear functional in
P ′ may be an hard task. However, for classical moment linear functionals we
notice the following useful criteria [13]: given a nonzero functional u ∈ P ′,
then it is classical if and only if there exist two nonzero polynomials φ ∈ P2

and ψ ∈ P1 such that equation (4) holds and

ψ′
n/2 �= 0 , φ

(
−ψn(0)

ψ′

n

)
�= 0 for all n = 0, 1, 2, . . . ,

where ψν(x) := ψ(x) + νφ′(x) for any real number ν.

Remark 2.2 Usually, in the literature, it is imposed in the definition of semi-
classical functional that any pair (φ, ψ) satisfying (4) must be an admissible
pair, in the sense that the condition

na + p �= 0 for all n = 0, 1, 2, · · ·

must hold, where a and p are the leading coefficients of φ and ψ (resp.). J.
C. Medem [18] found a regular functional u and a pair of non-admissible
polynomials (φ, ψ) satisfying (4). For this reason we dropped the admissibility
condition in the above definition of semiclassical functional. We notice, how-
ever, that it always holds for classical functionals [17], since in this case it is
equivalent to the condition ψ′

n/2 �= 0 for all n = 0, 1, 2, · · ·, stated in Remark
2.1. (In fact, this is one of the reasons why the condition was imposed in the
semiclassical case.)

In practice, if u ∈ P ′ is a semiclassical functional, then we know that it satisfies
equation (4) for some pair of polynomials (φ, ψ), with deg ψ ≥ 1. For such a
pair (φ, ψ), the integer number s̃ := max {deg φ − 2, deg ψ − 1} needs not to
be the class of u (in this situation we only can say that u is semiclassical of
class at most s̃). However, when a pair (φ, ψ) fulfils (4), this upper bound s̃

6



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
for the class of u can be improved (reduced) in order to get the class. This can
be done applying an algorithm which can be constructed on the basis of the
following property [16]: if u is a semiclassical functional which satisfies (4) for
a certain pair (φ, ψ), then the class of u is max {deg φ − 2, deg ψ − 1} if and
only if∏

c∈Zφ

(
|ψ(c) − φ′(c)| + |〈u, θcψ − θ2

cφ〉|
)

> 0 , (5)

where Zφ := {c : φ(c) = 0} and

θcq(x) :=
q(x) − q(c)

x − c
, q ∈ P . (6)

The algorithm to improve (reduce) the class of a given semiclassical functional,
once a pair (φ, ψ) has been founded fulfilling (4), can then be described as fol-
lows. If this pair satisfies (5) then the class of u is max {deg φ − 2, deg ψ − 1}.
If not, pick a zero d of φ such that

ψ(d) − φ′(d) = 0 and 〈u, θdψ − θ2
dφ〉 = 0 (7)

and define φ̃ := θdφ and ψ̃ := θdψ − θ2
dφ. Then u satisfies D(φ̃u) = ψ̃u and

s̃ := max{deg φ̃ − 2, deg ψ̃ − 1} < max {deg φ − 2, deg ψ − 1}. Hence, if (5) is
fulfilled for the polynomials φ̃ and ψ̃, then s̃ is the class of u. If not, pick a
zero e of φ̃ such that (7) holds for these polynomials φ̃ and ψ̃ (with d replaced
by e) and proceed successively as before.

To finish this section, we point out that semiclassical functionals may be char-
acterized by several different ways (see [16]). One of the most useful character-
izations involves the (formal) Stieltjes series Su(z) associated with the given
moment linear functional u, which is defined as

Su(z) := −
∑
n≥0

un

zn+1
.

In fact, a regular functional u ∈ P ′ is semiclassical if and only if there exist
polynomials φ, C and D such that Su is a (formal) solution of the first order
non-homogeneous linear ordinary differential equation

φ(z)S ′
u
(z) = C(z)Su(z) + D(z) . (8)

Further, if φ, C and D are co-prime then the class of u is

s = max {deg C − 1, deg D} .

7
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Remark 2.3 It is well known that if u ∈ P ′ is semiclassical and satisfies (4)
then Su satisfies (8) where φ is the same polynomial appearing in (4) and

C(z) = ψ(z) − φ′(z) , D(z) = (uθ0ψ)(z) − (uθ0φ)′(z) .

3 Main result

In the sequel the following notation will be useful

P [m]
n (x) :=

P
(m)
n+m(x)

(n + 1)m
(n, m = 0, 1, 2, · · ·) ,

where P
(m)
n+m ≡ dm

dxm Pn+m and (α)n denotes the Pochhammer symbol: for any
complex number α and n a nonnegative integer number,

(α)0 := 1 , (α)n := α(α + 1) · · · (α + n − 1) .

Notice that P [m]
n (x) is a monic polynomial in x of degree n. If n < 0 we set

P [m]
n (x) := 0.

Theorem 3.1 Let u and v be two regular moment linear functionals in P ′,
and let (Pn)n and (Qn)n be the corresponding MOPS’s. Assume that there exist
two nonnegative integer numbers N and M , and complex numbers ri,n and sj,n

(i = 1, · · · , N ; j = 1, · · · , M ; n = 0, 1, · · ·), with the conventions ri,n = 0 if
n < i and sj,n = 0 if n < j, such that

P [m]
n (x) +

N∑
i=1

ri,nP
[m]
n−i(x) = Q[k]

n (x) +
M∑

j=1

sj,nQ
[k]
n−j(x) (9)

holds for all n = 0, 1, 2, · · ·. Without loss of generality, we assume 0 ≤ m ≤ k.
Define a matrix AN+M := [ai,j]

N+M
i,j=1 of order N + M as

ai,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rj−i,j−1 , if 1 ≤ i ≤ M ∧ i ≤ j ≤ N + i

sj−i+M,j−1 , if M + 1 ≤ i ≤ M + N ∧ i − M ≤ j ≤ i

0 , otherwise

(10)

with the convention r0,κ = s0,ν = 1 (κ = 0, · · · , M − 1; ν = 0, · · · , N − 1).
Assume that the following conditions are fulfilled

rN,M+N+i sM,M+N+i �= 0 (i = 0, 1) , det AN+M �= 0 .

8
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Then there exist polynomials ΦM+m+i and ΨN+k+i, of degrees M + m + i and
N + k + i (resp.), such that

Dk−m (ΦM+m+iu) = ΨN+k+iv , i = 0, 1 . (11)

Proof. Let (an)n and (bn)n be the dual bases associated with the simple sets
(Pn)n and (Qn)n, respectively. Then one can write

an =
Pn

〈u, P 2
n〉

u , bn =
Qn

〈v, Q2
n〉

v (12)

for all n = 0, 1, 2, · · ·. According to (9), set

Rn(x) :=
N∑

i=0

ri,nP
[m]
n−i(x) =

M∑
i=0

si,nQ
[k]
n−i(x) , (13)

with the convention r0,n = s0,n = 1 for all n = 0, 1, 2, · · ·. Then (Rn)n is a sim-
ple set of polynomials. Let (cn)n, (en)n, and (dn)n be the dual basis associated
with the simple sets (Q[k]

n )n, (P [m]
n )n, and (Rn)n, respectively. Expanding en

in terms of the basis (dn)n, we can write

en =
∑
j≥0

λn,jdj , n = 0, 1, 2, · · · , (14)

where, according to (13),

λn,j = 〈en, Rj〉 =
N∑

i=0

ri,j〈en, P
[m]
j−i(x)〉 =

⎧⎪⎨⎪⎩
rj−n,j , if n ≤ j ≤ n + N

0 , otherwise .

Therefore, (14) reduces to

en =
n+N∑
j=n

rj−n,jdj , n = 0, 1, 2, · · · . (15)

Similarly, expanding cn in terms of the basis (dn)n, we find

cn =
n+M∑
j=n

sj−n,jdj , n = 0, 1, 2, · · · . (16)

9
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Now, consider equation (15) for n = 0, 1, · · · , M − 1 and equation (16) for
n = 0, 1, · · · , N − 1 to get the following system of linear equations

AM+N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0

...

dM−1

dM

...

dM+N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e0

...

eM−1

c0

...

cN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

where AM+N = [aij ]
N+M
i,j=1 , the aij ’s being defined in (10). Since we assume

det (AM+N) �= 0, solving (17) with respect to di we get

di = �i,0e0 + · · ·+ �i,M−1eM−1 + �i,Mc0 + · · ·+ �i,M+N−1cN−1 (18)

for all i = 0, 1, · · · , M + N − 1, where �i,j (j = 0, 1, · · · , M + N − 1) are some
constants.

Consider now the system of two equations, one of which is (15) with n = M

and the other one is (16) with n = N . Multiplying the first one of these two
equations by sM,M+N and the second one by rN,M+N , and then subtracting
the resulting equations, we get

sM,M+NeM − rN,N+McN = �1dK + · · ·+ �M+N−KdN+M−1, (19)

where K := min{N, M} and �1, · · · , �M+N−K are constants. Then, substitute
dK , · · · ,dN+M−1 given by (18) in the right-hand side of (19) to arrive at

α0e0 + · · ·+ αM−1eM−1 + sM,M+NeM

= β0c0 + · · ·+ βN−1cN−1 + rN,N+McN ,
(20)

where α0, · · · , αM−1, β0, · · · , βN−1 are constants. Taking the k−th derivative
on both sides of (20) and taking into account the relations

Dkcn = (−1)k(n + 1)kbn+k , (21)

Dmen = (−1)m(n + 1)man+m , (22)

10
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since we are assuming m ≤ k, according to (12) we get

Dk−m (ΦM+mu) = ΨN+kv , (23)

where

ΦM+m(x) := (−1)m (M + 1)msM,N+M

〈u, P 2
M+m〉

xM+m + πM+m−1(x) ,

ΨN+k(x) := (−1)k (N + 1)krN,N+M

〈v, Q2
N+k〉

xN+k + π̃N+k−1(x) ,

with πM+m−1 ∈ PM+m−1 and π̃N+k−1 ∈ PN+k−1. It is clear that ΦM+m and
ΨN+k are polynomials of degrees M + m and N + k, respectively.

Next, consider a new system with two equations, one of which is (15) with
n = M +1 and the other one is (16) with n = N +1. Multiplying the first one
of these equations by sM,M+N+1 and the second one by rN,M+N+1 and then
subtracting the resulting equations, we get

sM,M+N+1eM+1 − rN,N+M+1cN+1 = �̃1dK+1 + · · · + �̃M+N−KdN+M , (24)

where �̃1, · · · , �̃M+N−K are again some constants. But, from (15) with n = M

we can write

dN+M =
1

rN,N+M

⎛⎝eM −
M+N−1∑

j=M

rj−M,jdj

⎞⎠ ,

and so, the right-hand side of (24) becomes a linear combination of the func-
tionals dK , · · · ,dN+M−1, hence, using (18) we get

α̃0e0 + · · ·+ α̃M−1eM−1 + sM,M+N+1eM+1

= β̃0c0 + · · ·+ β̃N−1cN−1 + rN,N+M+1cN+1 ,
(25)

where α̃0, · · · , α̃M−1, β̃0, · · · , β̃N−1 are constants. Taking the k−th derivative of
both sides of (25) and taking into account (21), (22) and (12), we find

Dk−m (ΦM+m+1u) = ΨN+k+1v , (26)

11



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
with

ΦM+m+1(x) := (−1)m (M + 2)msM,M+N+1

〈u, P 2
M+m+1〉

xM+m+1 + πM+m(x) ,

ΨN+k+1(x) := (−1)k (N + 2)krN,N+M+1

〈v, Q2
N+k+1〉

xN+k+1 + π̃N+k(x) ,

where πM+m ∈ PM+m and π̃N+k ∈ PN+k. This completes the proof. �

Remark 3.1 Setting k = m = 0 in Theorem 3.1 gives the main result in [20]:
u and v are connected by a rational modification:

ΦMu = ΨNv .

See also [1] and [2] were some related problems were studied.

Remark 3.2 Theorem 3.1 gives the solution of the inverse problem associ-
ated with the linear algebraic structure relation (9). Similar inverse problems,
involving orthogonal polynomials and their derivatives, have been studied pre-
viously in many contexts, both from the algebraic as well as from the analyt-
ical point of view. For instance, in [4,5] S. Bonan, D. S. Lubinsky, and P.
Nevai characterized all positive Borel measures associated with OPS’s (Pn)n

and (Rn)n such that there exists nonnegative integer numbers s and t, and a
polynomial φ of degree t, such that the structure relation

φ(x)R′
n+1(x) =

n+t∑
i=n−s

λn,iPi(x) , n ≥ s

holds, where the λn,i’s are real numbers such that λn,n−i �= 0 for all n ≥ s,
with the convention λn,i = 0 if i < 0. The main result concerning this structure
relation, stated in [5], is that the involved measures are connected by a rational
modification plus an atomic measure with finite support. In the setting of the
theory of formal OP’s it can be shown that both (Pn)n as well as (Rn)n are
semiclassical OPS’s (see [10]).

4 Relation between the formal Stieltjes series

In order to explore the meaning of the differential relations (11) between the
linear functionals u and v in Theorem 3.1, we will deduce some extra informa-
tion concerning their moments. This will be done given the relation between
the associated formal Stieltjes series,

Su(z) := −
∑
n≥0

un

zn+1
, Sv(z) := −

∑
n≥0

vn

zn+1
,

12
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where un := 〈u, xn〉 and vn := 〈v, xn〉 are the moments of order n for u and v

(resp.). Notice that the (formal) derivative of order j of Su(z) is

S(j)
u

(z) := (−1)j+1
∑
n≥0

(n + 1)j

un

zn+1+j
.

We also note that given φ ∈ P, and being θ0φ defined according with (6) with
c = 0, then uθ0φ is the polynomial defined by

(uθ0φ)(z) = 〈uξ,
z(θ0φ)(z) − ξ(θ0φ)(ξ)

z − ξ
〉 .

Theorem 4.1 Under the conditions of Theorem 3.1 the two relations

ΨN+k+i(z)Sv(z) − (ΦM+m+i(z)Su(z))(k−m) = B(z; i) , i = 0, 1 (27)

hold, where B(·; 0) and B(·; 1) are polynomials in z, given explicitly by

B(z; i) = (uθ0ΦM+m+i)
(k−m)(z) − (vθ0ΨN+k+i)(z) , i = 0, 1 ,

being deg B(·; i) ≤ i − 1 − k + max{M + 2m, N + 2k} for i = 0, 1.

Proof. We will prove (27) for i = 0. The case i = 1 can be handled mutatis
mutandis. From (11) with i = 0 we get

〈Dk−m(ΦM+mu), xn〉 = 〈ΨN+kv, xn〉 , n = 0, 1, 2, · · · .

Setting

ΦM+m(z) =
M+m∑
ν=0

aνz
ν , ΨN+k(z) =

N+k∑
ν=0

bνz
ν ,

the above relation gives the following linear relation between the moments of
the linear functionals u and v:

(−1)k−m
M+m∑
ν=0

aν (n − k + m + 1)k−m un−k+m+ν =
N+k∑
ν=0

bνvn+ν

for all n = 0, 1, 2, · · ·. Multiplying both sides of this equality by z−n−1 and
summing for n = 0, 1, 2, · · · we obtain

(−1)k−m
M+m∑
ν=0

aν

∑
n≥0

(n − k + m + 1)k−m

un−k+m+ν

zn+1
=

N+k∑
ν=0

bν

∑
n≥0

vn+ν

zn+1
.(28)

Now, we see that

∑
n≥0

vn+ν

zn+1
= −zν

(
Sv(z) +

ν−1∑
n=0

vn

zn+1

)
, ν = 0, · · · , N + k (29)

13
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and, for ν = 0, · · · , M + m, we also have

zk−m−ν
∑
n≥0

(n − k + m + 1)k−m

un−k+m+ν

zn+1

=
∑
n≥0

(n + 1)k−m

un+ν

zn+ν+1

=
k−m∑
j=0

(
k − m

j

)
(−ν)k−m−j

∑
n≥0

(n + ν + 1)j

un+ν

zn+ν+1

=
k−m∑
j=0

(
k − m

j

)
(−ν)k−m−j

(
(−1)j+1zjS(j)

u
(z) −

ν−1∑
n=0

(n + 1)j

un

zn+1

)
,

(30)

the second equality being justified by taking p = k − m, α = −ν and β =
n + ν + 1 in the following analogue of the binomial theorem (see [3, p.70])

(α + β)p =
p∑

j=0

(
p

j

)
(α)p−j (β)j ,

which holds for all complex numbers α and β and any nonnegative integer
number p. Substituting (29) and (30) in (28), and taking into account that
for a given polynomial φ of degree p, say φ(z) =

∑p
ν=0 cνz

ν , uθ0φ admits the
explicit representations

(uθ0φ)(z) =
p−1∑
ν=0

cν+1

ν∑
n=0

unz
ν−n =

p−1∑
ν=0

⎛⎝p−1∑
n=ν

cν+1un−ν

⎞⎠ zν ,

then the desired result follows after straightforward computations. �

Theorem 4.2 Under the conditions of Theorem 4.1, if k > m then

k−m∑
ν=0

Aν(z)S(ν)
u

(z) = B(z) , (31)

so that Su(z) is a (formal) solution of a non-homogeneous linear ordinary
differential equation of order k − m with polynomial coefficients, given by

Aν(z) :=
(

k−m
ν

) [
ΨN+k(z)Φ

(k−m−ν)
M+m+1 (z) − ΨN+k+1(z)Φ

(k−m−ν)
M+m (z)

]
,

B(z) := ΨN+k+1(z)B(z; 0) − ΨN+k(z)B(z; 1) ,

being

deg Aν ≤ N + M + 2m + 1 + ν , ν = 0, · · · , k − m ,

deg B ≤ N + max{M + 2m, N + 2k} .

14
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Proof. Consider the two equations resulting from (27) for i = 0 and i =
1. Multiplying both sides of the first one of these equations by Ψn+k+1(z)
and those of the second one by Ψn+k(z), and then subtracting the resulting
equations, we get

ΨN+k(z) (ΦM+m+1Su)(k−m) (z) − ΨN+k+1(z) (ΦM+mSu)(k−m) (z) = B(z) ,

from which (31) follows, taking into account Leibniz rule for the higher deriv-
atives of a product. �

Remark 4.1 We notice that the restriction k > m needs not to be made
explicitly in the statement of the theorem. However, if k = m then equation
(31) becomes trivial, since then one can show that A0(z) = B(z) ≡ 0.

Remark 4.2 If we are able to solve the ODE (31) to find Su(z), then we also
get Sv(z) immediately from equation (27).

5 The case k = m + 1

5.1 Semiclassical character

The case k = m + 1 in Theorem 3.1 is of particular interest, since in this
situation both u and v are semiclassical moment linear functionals. We notice
that if k = m + 1 then Theorem 4.2 shows that Su satisfies an ODE of the
type (8), hence it follows immediately that u is a semiclassical functional. We
will show that v is also a semiclassical functional and, furthermore, each one
of these functionals is a rational perturbation of the other one. We begin with
the following

Theorem 5.1 Under the conditions of Theorem 3.1, if k = m+1 and (Pn)n ≡
(Qn)n, so that u and v coincide up to a constant factor, then

D(ΦM+mu) = ΨN+m+1u ,

hence u is semiclassical of class at most max{M + m − 2, N + m}.

Remark 5.1 The special case when m = 0, N = 0 and M = 2 in Theo-
rem 5.1, gives the well known characterization for classical OP’s which states
that the classical OPS’s are the only OPS’s such that each polynomial in the
sequence is a linear combination of the derivatives of three consecutive poly-
nomials of the same family (see e.g. Marcellán et al. [11]).

When (Pn)n �≡ (Qn)n the following proposition holds.

15
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Theorem 5.2 Under the conditions of Theorem 3.1, if k = m+1, then u and
v are semiclassical moment linear functionals of classes at most N +M +2m
and N +3M +4m (resp.), which are also connected by a rational modification.
More precisely, we have

Λu = Φv , (32)

D (Φu) = Ψu , (33)

D
(
Φ̃v

)
= Ψ̃v , (34)

where

Λ := ΦM+mΦ′
M+1+m − ΦM+1+mΦ′

M+m ∈ P2(M+m) ,

Φ := ΦM+mΨN+2+m − ΦM+1+mΨN+1+m ∈ PN+M+2m+2

Ψ := Ψ′
N+2+mΦM+m − Ψ′

N+1+mΦM+1+m ∈ PN+M+2m+1 ,

Φ̃ := ΛΦ ∈ PN+3M+4m+2 , Ψ̃ := 2Λ′Φ + Λ(Ψ − Φ′) ∈ PN+3M+4m+1 .

Proof. From Theorem 3.1 we have

D (ΦM+mu) = ΨN+1+mv , D (ΦM+1+mu) = ΨN+2+mv , (35)

from which (32) and (33) are easily deduced. To prove (34), notice first that,
using (32),

D
(
Φ̃v

)
= D (Λ (Φv)) = Λ′Φv + ΛD (Λu) ,

and since

D (Λu) = D
(
Φ′

M+1+m (ΦM+mu)
)
− D

(
Φ′

M+m (ΦM+1+mu)
)

= Φ′′
M+1+mΦM+mu + Φ′

M+1+mΨN+1+mv

−Φ′′
M+mΦM+1+mu− Φ′

M+mΨN+2+mv

= Λ′u + (Ψ − Φ′)v ,

the desired result follows. �

Remark 5.2 It remains an open problem to know wether u and v still remain
semiclassical moment linear functionals in the case k > m + 1.

Remark 5.3 The numbers N+M+2m and N+3M+4m are upper bounds for
the classes of the semiclassical functionals u and v in Theorem 5.2 (resp.). For
concrete families of OPS’s these numbers may not coincide with the class of
the functionals u and v, hence they may be improved (reduced) by applying the
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reduction process described in section 2. An example illustrating this situation
is given in below.

Remark 5.4 Often, the regular linear functionals u and v in Theorem 5.2
are positive-definite, so there exists two positive Borel measures dμ1 and dμ2,
whose supports are infinite sets, such that u and v admit the integral repre-
sentations (see, e.g., [6, Chapter II])

〈u, f〉 =

+∞∫
−∞

f dμ1 , 〈v, f〉 =

+∞∫
−∞

f dμ2

for all f ∈ P. Under the conditions of Theorem 5.2 assume, in addition to
the positive-definitiveness of u and v, that all zeros of the polynomial Λ are
real and distinct, say, x1 < x2 < · · · < xν (ν := deg Λ ≥ 1), and that all
these zeros of Λ lie out the convex-hull of the support of dμ1. Then, it can be
shown that equation (32) leads to the following relation between the measures
dμ1 and dμ2:

dμ1(x) =

∣∣∣∣∣Φ(x)

Λ(x)

∣∣∣∣∣ dμ2(x) +
deg Λ∑
i=1

Miδ(x − xi) , (36)

provided

Mi := u0 −
1

Λ′(xi)

⎛⎝deg Φ−1∑
j=0

vj

j!
(θxi

Φ)(j) (0) + Φ(xi)F (xi; dμ2)

⎞⎠ ≥ 0

for all i = 1, 2, · · · , deg Λ. Here, u0 and vj denote the moments of orders 0
and j for the measures dμ1 and dμ2 (resp.), θxi

is the operator defined as in
(6), and F (·; dμ2) is the Stieltjes transform associated with the measure dμ2,

F (z; dμ2) :=

+∞∫
−∞

dμ2(x)

x − z
, z ∈ C \ co (supp (dμ2)) ,

where co(K) means the convex-hull of a subset K ⊂ R. Of course, if all the
zeros of the polynomial Φ are real and distinct, then an equation analogous to
(36) can be written expressing dμ2 in terms of dμ1. Formula (36) is certainly
known, but we didn’t find an available reference.

5.2 Some final remarks

The aim of these final remarks is to point out that the proofs of Theorems
3.1 and 5.2 are constructive and, moreover, to illustrate the fact mentioned
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above that the upper bounds for the classes of the moment linear functionals
in Theorem 5.2 may be improved for concrete families of OP’s. These con-
siderations will be illustrated by an example. We consider two sequences of
monic OP’s (Pn)n and (Qn)n and assume that it is known a priori that they
fulfill the following structure relation

Pn + rnPn−1 =
Q′

n+1

n + 1
+ sn

Q′
n

n
, n = 1, 2, · · ·

where (rn)n and (sn)n are sequences of real numbers. We also assume that the
ri’s and si’s are known for i = 1, 2, 3, say

r1 = 1
6

, r2 = 4
15

, r3 = 9
28

, s1 = −1
3

, s2 = −2
5

, s3 = −3
7

,

as well as the first five polynomials of the (Qn)n family:

Q0(x) = 1 , Q1(x) = x , Q2(x) = x2 − 1
3

,

Q3(x) = x3 − 3
5
x , Q4(x) = x4 − 6

7
x2 + 3

35
.

We will show that Theorems 3.1 and 5.2 can be applied in order to completely
characterize the two OPS (Pn)n and (Qn)n. Notice first that this example
corresponds to a situation where k = 1, m = 0 and N = M = 1. Therefore,
going to the proof of Theorem 3.1, we compute

Φ1(x) = −8
3
x + 8

3
, Ψ2(x) = −6x2 − 4x + 2 ,

Φ2(x) = −225
16

x2 + 225
8

x − 225
16

, Ψ3(x) = −675
16

x3 + 675
16

x ,

and so from (33) and (34) in Theorem 5.2 we get

D ((x2 − 1)2 u) = 6 (x2 − 1)
(
x − 1

3

)
u ,

D ((x + 1)2(x − 1)4 v) = 6(x + 1)(x − 1)3
(
x + 1

3

)
v .

Therefore, u and v are semiclassical moment linear functionals of classes at
most 2 and 4, respectively. However, applying the algorithm of reduction of
the class described in section 2, after some straightforward computations we
can show that

D
(
(1 − x2)u

)
= 2 (1 − 2x)u , D

(
(1 − x2)v

)
= −2xv.

As a consequence, u and v are, in fact, classical moment linear functionals.
Furthermore, we see from Table 1 that Pn is a monic Jacobi polynomial of
degree n and Qn is the monic Legendre polynomial of degree n:

Pn ≡ P̂ (0,2)
n , Qn ≡ P̂ (0,0)

n ≡ L̂n .
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We notice that this illustrative example is a particular situation of the family
J1,2 considered in [7, p. 251].

Acknowledgments

The authors are grateful to the anonymous referee for his valuable suggestions
which improved the final version of the paper.

References

[1] M. Alfaro, F. Marcellán, A. Peña, and M. L. Rezola, On linearly related

orthogonal polynomials and their functionals, J. Math. Anal. Appl. 287 (2003)
307–319.

[2] M. Alfaro, F. Marcellán, A. Peña, and M. L. Rezola, On rational

transformations of linear functionals: direct problem, J. Math. Anal. Appl. 298

(2004) 171–183.

[3] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of
Mathematics and Its Applications 71, Cambridge University Press, 1999.

[4] S. Bonan and P. Nevai, Orthogonal polynomials and their derivatives, I, J.
Approx. Theory, 40 (1984) 134–147.

[5] S. Bonan, D. S. Lubinsky, and P. Nevai, Orthogonal polynomials and their

derivatives, II, SIAM J. Math. Anal., 18(4) (1987) 1163–1176.

[6] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach,
New York, 1978.

[7] A. M. Delgado and F. Marcellán, Companion linear functionals and Sobolev

inner products: a case study, Meth. Appl. of Anal. 11(2) (2004) 237-266.

[8] A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna, On polynomials

orthogonal with respect to certain Sobolev inner products, J. Approx. Theory,
65(2) (1991) 151-175.

[9] K. H. Kwon, J. H. Lee, and F. Marcellán, Generalized coherent pairs, J. Math.
Anal. Appl., 253 (2001) 482-514.

[10] F. Marcellán, A. Branquinho, and J. Petronilho, On inverse problems for

orthogonal polynomials, I, J. Comput. Appl. Math., 49 (1993) 153-160.

[11] F. Marcellán, A. Branquinho, and J. Petronilho, Classical orthogonal

polynomials: a functional approach, Acta Appl. Math., 34(3) (1994) 283-303.

19



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[12] F. Marcellán, A. Mart́ınez-Finkelshtein, and J. Moreno-Balcázar, k−coherence
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