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Abstract

In this paper we extend the concept of coherent pairs of measures from the real line to Jordan arcs and
curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that
if (�0,�1) is a coherent pair of measures on the unit circle, then �0 is a semi-classical measure. Moreover,
we obtain that the linear functional associated with �1 is a specific rational transformation of the linear
functional corresponding to �0. Some examples are given.
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1. Introduction

Let � be a nontrivial positive Borel measure supported on a subset E of the real line. There
exists a unique sequence {Pn} of monic polynomials, with deg Pn = n, such that∫

E

Pn(x)Pm(x) d�(x) = d2
n�n,m, dn �= 0.

In this case {Pn} is said to be the sequence of monic orthogonal polynomials associated with �.
It is well known that {Pn} satisfies a three-term recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + cnPn−1(x), n�0, (1)

where P−1(x) = 0 and

cn+1 =
∫
E

P 2
n+1(x) d�(x)∫

E
P 2

n (x) d�(x)
, bn =

∫
E

xP 2
n (x) d�(x)∫

E
P 2

n (x) d�(x)
, n�0.

On the other hand, if (1) holds with cn > 0, there exists the sequence of monic polynomials
defined by (1) orthogonal with respect to the measure �.

Let (�0, �1) be a pair of nontrivial positive Borel measures supported on subsets E0 and E1
of the real line. We introduce an inner product in the linear space P of polynomials with real
coefficients

(p, q) =
∫

E0

p(x)q(x) d�0(x) + �
∫

E1

p′(x)q ′(x) d�1(x), (2)

where p, q ∈ P and ��0.
This kind of inner products define a sequence {Qn(·, �)} of monic polynomials that is orthogonal

with respect to (2). It can be constructed using the standard Gram–Schmidt process. But these
polynomials do not satisfy a three-term recurrence relation as (1). If {Pn} and {Rn} denote,
respectively, the sequences of monic polynomials orthogonal with respect to �0, �1, then Iserles
et al. introduced the concept of coherent pairs of measures in [6].

A pair of nontrivial Borel measures (�0, �1) supported on subsets of the real line is said to be
coherent if the corresponding sequences of monic orthogonal polynomials satisfy

Rn(x) = P ′
n+1

n + 1
(x) + �n

P ′
n

n
(x), �n �= 0, n = 1, 2, . . . . (3)

From here, a relation between {Pn} and {Qn(·, �)} follows:

Pn(x) + n

n − 1
�n−1Pn−1(x) = Qn(x, �) + �n−1(�)Qn−1(x, �),

where �n−1(�) = �n−2(�)

�n−1(�)
, �n is a polynomial of degree n in the variable �, and {�n} satisfies a

three-term recurrence relation.
In [6] the authors ask about the description of all coherent pairs of measures. The answer

was given by Meijer [8], where he proves that at least one of the measures must be a classical
one (Laguerre or Jacobi). In particular, when the support is a compact subset of the real axis,
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the following cases appear:

(a) d�0 = (1 − x)�(1 + x)� dx, �, � > −1,

d�1 = (1 − x)�+1(1 + x)�+1

|x − �| dx + M�(x − �), |�|�1, M �0,

(b) d�0 = (1 − x)�(1 + x)�|x − �| dx, d�1 = (1 − x)�+1(1 + x)�+1 dx, �, � > −1,

(c) d�0 = (1 − x)� dx + M�(x + 1), d�1 = (1 − x)�+1 dx, � > −1,

(d) d�0 = (1 + x)� dx + M�(x − 1), d�1 = (1 + x)�+1 dx, � > −1.

The aim of this contribution is the analysis of the concept of coherent pairs of measures
supported on compact subsets of the complex plane. In particular, we will focus our attention
when the support is the unit circle.

The structure of the manuscript is as follows. In Section 2 we define coherent pairs of measures
supported on Jordan arcs or curves using the connection between the corresponding sequences
of orthogonal polynomials as in (3). As a consequence, the relation between these sequences
and the sequence of monic polynomials orthogonal with respect to the Sobolev inner product
associated with the pair of measures (�0, �1) is deduced. In Section 3 we present the basic results
concerning Hermitian orthogonality on the unit circle which will be used in the forthcoming
sections. We give a sufficient condition for a sequence of orthogonal polynomials on the unit
circle (OPUC) satisfying a first order structure relation to be semi-classical (see Theorem 3).
This result is an extension to the result deduced by Branquinho and Rebocho [3]. In Section
4 we present a characterization of pairs of coherent measures on the unit circle; we prove that
if (�0, �1) is a coherent pair of measures on the unit circle (�0, �1) then �0 is a semi-classical
measure and the linear functional associated with �1 is a specific rational transformation of the
linear functional corresponding to �0 (see, for example, [2]). Finally, in Section 5, we study the
companion coherent measure associated with the Bernstein–Szegő measure supported on the unit
circle.

2. Coherent pairs of measures supported on Jordan arcs and curves

Let �0, �1 be positive Borel measures on E0, E1, respectively, which are Jordan curves or arcs.
For � ∈ R+, consider the inner product

〈f, g〉S = 〈f, g〉0 + �〈f ′, g′〉1 where 〈f, g〉k =
∫

Ek

f (�)g(�) d�k(�), k = 0, 1.

Let us denote by {Qn(·; �)}, {Pn}, {Rn}, the sequences of monic polynomials orthogonal with
respect to 〈·, ·〉S , 〈·, ·〉0, 〈·, ·〉1, respectively.

We also denote

Sm,n := 〈zm, zn〉S = c0
m,n + �mnc1

m−1,n−1, m, n ∈ N,

where
{
ck
m,n

}
n∈N

are the moments with respect to the measures �k for k = 0, 1,
respectively.
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Taking into account this expression, we obtain the following representation in a determinantal
form for the polynomials Qn:

Qn(z; �) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0
0,0 c0

1,0 . . . c0
n,0

c0
0,1 c0

1,1 + �c1
0,0 · · · c0

n,1 + �nc1
n−1,0

...
...

. . .
...

c0
0,n−1 c0

1,n−1 + �(n − 1)c1
0,n−2 · · · c0

n,n−1 + �n(n − 1)c1
n−1,n−2

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0
0,0 c0

1,0 · · · c0
n−1,0

c0
0,1 c0

1,1 + �c1
0,0 · · · c0

n−1,1 + �(n − 1)c1
n−2,0

...
...

. . .
...

c0
0,n−1 c0

1,n−1 + �(n − 1)c1
0,n−2 · · · c0

n−1,n−1 + �(n − 1)2c1
n−2,n−2

∣∣∣∣∣∣∣∣∣∣∣∣

.

Since the coefficients of the above polynomial are rational functions in �, when � tends to infinity
we get the sequence of limit polynomials, {Sn}. It is straightforward to prove that the polynomial
Sn satisfies

〈Sn, 1〉0 = 0, n�1, 〈S′
n, z

k〉1 = 0, 0�k�n − 2, n�2,

and so S′
n(z) = nRn−1(z), n = 1, 2, . . . . See [4] for an analysis of such limit polynomials when

a pair of measures supported on the real line is considered.
Therefore, using the same arguments as in [6], we get the Fourier expansions of Sn with respect

to the sequences {Pn} and {Qn}, i.e.

Sn(z) =
n∑

k=1

an−1,kPk(z), Sn(z) = Qn(z; �) +
n−1∑
j=0

�n,j (�)Qj (z; �). (4)

From this we do not get more information, but if in (4) we assume that an−1,k = 0 for k < n − s

(with s a fixed nonnegative integer number), it follows that �n,j (�) = 0 for j < n − s. Thus, for
n�s,

n∑
k=n−s

an−1,kPk(z) =
n∑

j=n−s

�n,j (�)Qj (z; �). (5)

Conversely, notice that if (5) holds, and an−1,n−s �= 0, �n,n−s(�) �= 0, then∫
E1

n∑
j=n−s

an−1,jP
′
j (z)p

′(z) d�1 = 0, p ∈ Pn−s−1.

From this the following relation holds:

n∑
j=n−s

an−1,jP
′
j (z) =

n−1∑
j=n−s−1

bn,jRj (z).
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Therefore the following problem arises: To describe the measures �0, �1 such that the correspond-
ing sequences of monic orthogonal polynomials {Pn} and {Rn} are related by

Rn−1(z) = P ′
n(z)

n
+ �n−1

P ′
n−1(z)

n − 1
, �n−1 �= 0, n = 2, 3, . . . . (6)

From now on, for a sake of simplicity, we write �n instead of �n,n, as well as an instead of an,n.
For a coherent pair of measures we get some extra information about the sequence (�n(�)).

Indeed,

Pn(z) + an−1Pn−1(z) = Qn(z; �) + �n−1(�)Qn−1(z; �), (7)

where for n = 2, 3, . . .

an−1 = n

n − 1
�n−1,

�n−1(�) = an−1
〈Pn−1, Qn−1(·; �)〉0

〈Qn−1(·; �), Qn−1(·; �)〉S = an−1
‖Pn−1‖2

0

‖Qn−1(.; �)‖2
S

. (8)

Therefore, taking into account (6) and (7), after some calculations we get

‖Qn−1(·; �)‖2
S = 〈Qn−1(·; �), Pn−1〉S

= ‖Pn−1‖2
0 + �(n − 1)2‖Rn−2‖2

1 + ān−2
[
an−2 − �n−2(�)

] ‖Pn−2‖2
0.

Now, substituting in (8), and using the preceding notation for n = 3, 4, . . . , we deduce that

�n−1(�) = An

Bn − �n−2(�)
, (9)

where

An = an−1

ān−2

‖Pn−1‖2
0

‖Pn−2‖2
0

, Bn = an−2 + ‖Pn−1‖2
0 + �(n − 1)2‖Rn−2‖2

1

ān−2‖Pn−2‖2
0

,

with �1(�) = ‖P1‖2
0a1

�‖R0‖2
1 + ‖P1‖2

0

.

Notice that Bn is a polynomial of degree one in �. In this way, once we obtain the coherent pairs
we can deduce a representation for �n−1(�), which are rational functions of � and, eventually,
from (7) we get an explicit expression for Qn(·; �) in terms of {Pn}.

Theorem 1. The sequence (�n(�)) is given by

�n−1(�) = �n−2(�)

�n−1(�)
, n = 2, 3, . . . , (10)

where {�n} is a sequence of orthogonal polynomials associated with a positive Borel measure
supported on R.

Proof. Taking into account �1 is a rational function in � such that the degree of the numerator is
zero and the degree of the denominator is one, by induction we get (10) where �n is a polynomial
of degree n. Moreover, from (9), we get

�n(�) = Bn+1

An+1
�n−1(�) − 1

An+1
�n−2(�). (11)
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Taking into account that Bn is a polynomial of degree one in �, we get that {�n} is a sequence of
polynomials orthogonal with respect to a linear functional. This is a straightforward consequence
of the Favard Theorem, since they satisfy a three-term recurrence relation (see [5]).

Indeed, if �n(�) = sn�
n + lower degree terms, then (11) becomes

sñ�n(�) = Bn+1

An+1
sn−1̃�n−1(�) − sn−2

An+1
�̃n−2(�),

or, equivalently, for n = 2, 3, . . .

�̃n(�) = (� + cn−1)̃�n−1(�) − dn−1̃�n−2(�),

where

cn−1 = |an−1|2‖Pn−1‖2
0 + ‖Pn‖2

0

n2‖Rn−1‖2
1

, dn−1 = ‖Pn−1‖4
0|an−1|2

n2(n − 1)2‖Rn−1‖2
1‖Rn−2‖2

1

> 0,

and initial conditions �̃0(�) = 1, �̃1(�) = � + ‖P1‖2
0/‖R0‖2

1. Notice that, according to the Favard
Theorem, {̃�n} is a sequence of monic polynomials orthogonal with respect to a finite positive
Borel measure supported on R. �

3. Quasi-orthogonality on the unit circle

Let T = {z ∈ C : |z| = 1}, and � = span{zk : k ∈ Z}, be the linear space of Laurent
polynomials with complex coefficients. Given a linear functional u : � → C, and the sequence
of moments (cn)n∈Z of u, cn = 〈u, �n〉, n ∈ Z, c0 = 1, define the minors of the Toeplitz matrix
� = (ck−j ), by

�k =

∣∣∣∣∣∣∣
c0 · · · ck

...
. . .

...

c−k · · · c0

∣∣∣∣∣∣∣ , �0 = c0, �−1 = 1, k ∈ N.

u is said to be Hermitian if c−n = c̄n, ∀n ∈ N, and quasi-definite (respectively, positive definite)
if �n �= 0 (respectively, �n > 0), ∀n ∈ N. We will denote by H the set of Hermitian linear
functionals defined on �.

In the positive-definite case, u has an integral representation given in terms of a nontrivial
probability measure � with infinite support on the unit circle T,〈

u, ein	
〉
= 1

2


∫ 2


0
ein	 d�(	), n ∈ Z.

The corresponding sequence of orthogonal polynomials, called OPUC, is then defined by

1

2


∫ 2


0
Pn(e

i	)P̄m(e−i	) d�(	) = en�n,m, en > 0, n, m = 0, 1, . . . .

If Pn(z) = zn + lower degree terms, {Pn} will be called a sequence of monic orthogonal poly-
nomials, and we will denote it by MOPS. It is well known that MOPS on the unit circle satisfy
the following recurrence relations, known as Szegő recurrence relations, for n�1:

Pn(z) = zPn−1(z) + anP
∗
n−1(z), P ∗

n (z) = P ∗
n−1(z) + ānzPn−1(z),
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with an = Pn(0), P0(z) = 1, and P ∗
n (z) = znP̄n(1/z), n = deg(Pn). In the literature of OPUC,

the polynomials {P ∗
n } are called either reversed or reciprocal polynomials (see [9]).

{P ∗
n } satisfies, for n ∈ N,

〈u, P ∗
n (z)z−k〉 = 0, k = 1, . . . , n, 〈u, P ∗

n (z)〉 = en. (12)

The following relation holds (see [7]):

(P ′
n)

∗(z) = nP ∗
n (z) − z(P ∗

n )′(z), n�1. (13)

For u ∈ H and A ∈ P, we define

〈Au, f 〉 = 〈u, A(z)f (z)〉, f ∈ �,

〈(A + Ā)u, f 〉 = 〈
u,
(
A(z) + Ā(1/z)

)
f (z)

〉
, f ∈ �.

Notice that (A + Ā)u is a Hermitian linear functional. We will use the notation

uA = (A(z) + Ā(1/z))u.

Definition 1 (cf. Alfaro and Moral [1]). Let v ∈ H, p ∈ N, and let {Pn} be a sequence of monic
polynomials. {Pn} is said to be T-quasi-orthogonal of order p with respect to v if

(i) 〈v, Pn(z)z
−k〉 = 0, for every k with p�k�n − p − 1 and for every n�2p + 1.

(ii) There exists n0 �2p such that 〈v, Pn0(z)z
−n0+p〉 �= 0.

Theorem 2 (cf. Alfaro and Moral [1]). Let u ∈ H be quasi-definite and let {Pn} be the MOPS
with respect to u. Then {Pn} is T-quasi-orthogonal of order p with respect to v ∈ H − {0} if and
only if there exists only one polynomial B (B �= 0) with deg(B) = p, such that v = uB .

Taking into account Theorem 4.1 of [1] we give the following definition.

Definition 2. Let u ∈ H be quasi-definite and let {Pn} be the MOPS associated with u. u is
said to be semi-classical if there exists û ∈ H − {0} such that the sequence {P̃n} given by
P̃n(z) = 1

n
zP ′

n(z), n�1, P̃0(z) = 1, is T-quasi-orthogonal with respect to û. In such a situation
{Pn} is said to be a semi-classical sequence of orthogonal polynomials.

In the sequel we define fn(z) = Pn(z)/P
∗
n (z), ∀n ∈ N, and we study the conditions in order to

{fn} satisfies a Riccati differential equation. This result will be useful to the following theorem.
Using the Szegő recurrence relations we get

zfn(z) = fn+1(z) − an+1

1 − ān+1fn+1(z)
, n = 1, . . . . (14)

Lemma 1. Let {Pn} be a sequence of monic orthogonal polynomials on the unit circle and {P ∗
n }

the sequence of reversed polynomials. If {fn} satisfies a Riccati differential equation with bounded
degree polynomial coefficients, i.e.,

An(z)f
′
n(z) = Bn(z)f

2
n (z) + Cn(z)fn(z) + En(z), ∀n ∈ N (15)
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then, for every n ∈ N, the following relations hold:

An+1 = An, (16)

zBn+1 = �−1
n

{
Bn − ān+1(zCn + An) + ā2

n+1z
2En

}
, (17)

zCn+1 = �−1
n

{
(−2an+1Bn + (zCn + An)(1 + |an+1|2) − 2ān+1z

2En

}
, (18)

zEn+1 = �−1
n

{
a2
n+1Bn − an+1(zCn + An) + z2En

}
, (19)

with �n = (1 − |an+1|2).

Proof. If fn satisfies (15), then

zAn(zfn)
′ = Bn(zfn)

2 + (zCn + An)zfn + z2En.

Using (14) in previous equation we get

zAn

(
fn+1−an+1

1−ān+1fn+1

)′
=Bn

(
fn+1−an+1

1−ān+1fn+1

)2

+(zCn+An)

(
fn+1−an+1

1−ān+1fn+1

)
+z2En.

Since (
fn+1 − an+1

1 − ān+1fn+1

)′
= �nf

′
n+1

(1 − ān+1fn+1)2
with �n = 1 − |an+1|2,

from the previous equations we get

zAn

�nf
′
n+1

(1 − ān+1fn+1)2
= Bn

(
f 2

n+1 + a2
n+1 − 2an+1fn+1

(1 − ān+1fn+1)2

)

+(zCn + An)

(
fn+1 − an+1

1 − ān+1fn+1

)
+ z2En,

as well as

�nzAnf
′
n+1 =

{
Bn − ān+1(zCn + An) + ā2

n+1z
2En

}
f 2

n+1

+
{
(−2an+1Bn + (zCn + An)(1 + |an+1|2) − 2ān+1z

2En

}
fn+1

+a2
n+1Bn − an+1(zCn + An) + z2En.

If we divide by �n = (1 − |an+1|2) then

zAnf
′
n+1 = �−1

n

{
Bn − ān+1(zCn + An) + ā2

n+1z
2En

}
f 2

n+1

+�−1
n

{
(−2an+1Bn + (zCn + An)(1 + |an+1|2) − 2ān+1z

2En

}
fn+1

+�−1
n

{
a2
n+1Bn − an+1(zCn + An) + z2En

}
.
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Now, comparing previous equation with (15) to n + 1 and multiplied by z, i.e., with

zAn+1f
′
n+1 = zBn+1f

2
n+1 + zCn+1fn+1 + zEn+1,

we get (16)–(19). �

Theorem 3. Let {Pn} be an MOPS the unit circle and {P ∗
n } be the sequence of reversed poly-

nomials. If {Pn} satisfies a structure relation with bounded degree polynomials, n�1,

z�n(z)P
′
n(z) = Gn(z)Pn(z) + Hn(z)P

∗
n (z), (20)

z�n(z)(P
∗
n )′(z) = Sn(z)Pn(z) + Tn(z)P

∗
n (z) (21)

then �n does not depend on n.
Let p = max{deg(Gn), deg(Hn)+1, deg(Sn), deg(�1−Tn)}, ∀n∈N. If there exists n0 �2p

such that deg(�1 − Tn0) = p, then {Pn} is semi-classical.

Proof. If we multiply (20) by P ∗
n , (21) by Pn, and divide the resulting equations by (P ∗

n )2,
we get, after subtracting the corresponding equations,

z�n

(
P ′

nP
∗
n − Pn(P

∗
n )′

(P ∗
n )2

)
= (Gn − Tn)PnP

∗
n + Hn(P

∗
n )2 − Sn(Pn)

2

(P ∗
n )2

⇔ z�n

(
Pn

P ∗
n

)′
= −Sn

(
Pn

P ∗
n

)2

+ (Gn − Tn)
Pn

P ∗
n

+ Hn.

Thus,

z�nf
′
n = −Snf

2
n + (Gn − Tn)fn + Hn.

From previous lemma, �n = �n−1, ∀n ∈ N. Thus, �n = �1, ∀n ∈ N.
Let us write (20) and (21) in the form

A
zP ′

n

n
= G̃nPn + H̃nP

∗
n , (22)

A
z(P ∗

n )′

n
= S̃nPn + T̃nP

∗
n , n�1, (23)

with A = �1, G̃n = Gn/n, H̃n = Hn/n, S̃n = Sn/n, T̃n = Tn/n. Furthermore, if we use (13) in
(23) then

A

(
zP ′

n

n

)∗
= −S̃nPn + (A − T̃n)P

∗
n . (24)

On the other hand, from the Hermitian character of u, we have〈
uA,

zP ′
n

n
z−k

〉
=
〈
u, A

zP ′
n

n
z−k

〉
+
〈
u, A

(
zP ′

n

n

)∗
zk−n

〉
.

Using (22) and (24) in previous equation we get〈
uA,

zP ′
n

n
z−k

〉
= 〈u, G̃nPnz

−k〉 + 〈u, H̃nP
∗
n z−k〉

−〈u, S̃nPnzk−n〉 + 〈u, (A − T̃n)P ∗
n zk−n〉. (25)
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Since

〈u, G̃nPnz
−k〉 = 0, k = deg(G̃n), . . . , n − 1,

〈u, H̃nP
∗
n z−k〉 = 0, k = deg(H̃n) + 1, . . . , n,

〈u, S̃nPnz
k−n〉 = 0, k = 1, . . . , n − deg(S̃n),

〈u, (A − T̃n)P
∗
n zk−n〉 = 0, k = 0, . . . , n − deg(A − T̃n) − 1

then, with p = max{deg(G̃n), deg(H̃n) + 1, deg(S̃n), deg(A − T̃n)}, ∀n ∈ N, it follows that〈
uA,

zP ′
n

n
z−k

〉
= 0 for every p�k�n − p − 1 and for every n�2p + 1.

Next we show that condition (ii) of Definition 2,

∃n0 �2p :
〈
uA,

zP ′
n0

n0
z−n0+p

〉
�= 0,

holds for n0 �2p if and only if deg(A − T̃n0) = p.
From (25)〈

uA,
zP ′

n0

n0
z−n0+p

〉
= 〈u, G̃n0Pn0z

−n0+p〉 + 〈u, H̃n0P
∗
n0

z−n0+p〉

−〈u, S̃n0Pn0z
−p〉 + 〈u, (A − T̃n0)P

∗
n0

z−p〉. (26)

Since deg(G̃n)�p, deg(H̃n)�p − 1, deg(S̃n)�p, ∀n ∈ N, and n0 − p�p, then

〈u, G̃n0Pn0z
−n0+p〉 = 〈u, H̃n0P

∗
n0

z−n0+p〉 = 〈u, S̃n0Pn0z
−p〉 = 0.

Therefore, (26) is equivalent to〈
uA,

zP ′
n0

n0
z−n0+p

〉
= 〈u, (A − T̃n0)P

∗
n0

z−p〉.

Taking into account the orthogonality relations (12) and deg(A − Tn)�p, we get

〈u, (A − T̃n0)P
∗
n0

z−p〉 �= 0 ⇔ deg(A − T̃n0) = p.

Thus, 〈
uA,

zP ′
n0

n0
z−n0+p

〉
�= 0 ⇔ deg(A − T̃n0) = p.

Therefore, if there exists n0 �2p such that deg(A − T̃n0) = p, then the sequence { 1
n
zP ′

n} is
T-quasi-orthogonal of order p with respect to the Hermitian functional uA and we conclude that
{Pn} is semi-classical. �
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4. Characterization theorem

In the sequel we will use the vectors defined by

�n(z) = [Pn(z) P ∗
n (z)]T , ϑn(z) = [Rn(z) R∗

n(z)]T , n ∈ N.

We will use the Szegő recurrence relations in the matrix form for {�n},

�n(z) = An(z)�n−1(z), An(z) =
[

z an

ānz 1

]
, n ∈ N, an = Pn(0), (27)

and for {ϑn},

ϑn(z) = Bn(z)ϑn−1(z), Bn(z) =
[

z bn

b̄nz 1

]
, n ∈ N, bn = Rn(0). (28)

We will write X(i,j) to denote the entry (i, j) of a matrix X, i, j = 1, 2.

Theorem 4. Let (u, v) be a coherent pair of Hermitian linear functionals on the unit circle and
{Pn}, {Rn} the corresponding MOPS. Then, there exist A ∈ P and matrices Kn, Mn of order two
whose elements are bounded degree polynomials such that, for n�1,

zA(z)�′
n(z) = Kn(z)�n(z), (29)

zA(z)ϑn(z) = Mn(z)�n(z). (30)

Moreover,

(a) {Pn} is semi-classical;
(b) {Rn} is quasi-orthogonal of order p (p�6) with respect to the functional uzA. Thus, there

exists a unique polynomial B of degree p such that uzA = vB .

Proof. From

Rn = P ′
n+1

n + 1
+ �n

P ′
n

n
(31)

we get

R∗
n = (P ′

n+1)
∗

n + 1
+ �̄nz

(P ′
n)

∗

n
.

Using (13), last equation is equivalent to

R∗
n = P ∗

n+1 + �̄nzP
∗
n − z

(P ∗
n+1)

′

n + 1
− �̄nz

2 (P ∗
n )′

n
. (32)

If we write (31) and (32) in a matrix form and use (27), we obtain

ϑn = Sn�n + Tn�
′
n, n�1, (33)
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with

Sn =
[

0 0
0 1

]
An+1 +

[
0 0
0 �̄nz

]
+
[

1/(n + 1) 0
0 −z/(n + 1)

] [
1 0

ān+1 0

]
,

Tn =
[

1/(n + 1) 0
0 −z/(n + 1)

]
An+1 +

[
�n/n 0

0 −�̄nz
2/n

]
.

Using (33) for n + 1 and the recurrence relations (27) and (28), we get

Hn�
′
n = M̃n�n, (34)

where the matrices Hn and M̃n are given by

Hn = Bn+1Tn − Tn+1An+1, M̃n = Sn+1An+1 + Tn+1

[
1 0

ān+1 0

]
− Bn+1Sn.

Now, if we multiply (34) by the adjoint matrix of Hn, adj Hn, we get

hn�
′
n = Kn�n,

where hn = det(Hn) is a nonzero polynomial and Kn = adj(Hn)M̃n. Moreover, hn(0) = 0,
∀n ∈ N, and deg(hn)�5, ∀n�1. From Theorem 3 it follows that hn is independent of n. Thus,
we obtain (29) with zA = h1 and Kn defined as above.

To obtain (30) we multiply (33) by zA and use (29). Thus, we obtain (30) with Mn = zASn +
TnKn.

To prove assertion (a) we remind that Eqs. (29) can be written as equations of the same type as
(20) and (21) of Theorem 3. Moreover, if

p = max{deg(K(1,1)
n ), deg(K(1,2)

n ) + 1, deg(K(2,1)
n ), deg(A − K(2,2)

n )}, ∀n ∈ N,

then one can see that p�4 and deg(A − K(2,2)
n ) = p, n�1. Thus, from Theorem 3 we conclude

that {Pn} is semi-classical.
To prove assertion (b) we use an analogue argument as in the proof of Theorem 3. We write

(30) in the form

zARn = GnPn + HnP
∗
n , (35)

zAR∗
n = SnPn + TnP

∗
n , n�1, (36)

with Gn, Hn, Sn, Tn ∈ P. From the definition of uzA and the Hermitian character of u, we have

〈uzA, Rnz
−k〉 = 〈u, zARnz

−k〉 + 〈u, zAR∗
nzk−n〉. (37)

On the other hand, using (35) and (36) in (37) we get, for n, k�0,

〈uzA, Rnz
−k〉 = 〈u, GnPnz

−k〉 + 〈u, HnP
∗
n z−k〉 + 〈u, SnPnzk−n〉 + 〈u, TnP ∗

n zk−n〉.
(38)

Using a similar reasoning as in the proof of Theorem 3, we obtain for

p = max{deg(Gn), deg(Hn) + 1, deg(Sn), deg(Tn)}, ∀n ∈ N,
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that

〈uA, Rnz
−k〉 = 0 for every p�k�n − p − 1 as well as for every n�2p + 1.

Thus the condition (i) of Definition 2 is satisfied.
Then, we can also establish that condition (ii) of Definition 2,

∃n0 �2p : 〈uA, Rn0z
−n0+p〉 �= 0

holds for n0 �2p if and only if deg(Tn0) = p. Moreover, we get that p�6 and deg(Tn) = p,
∀n�1.

Thus {Rn} is quasi-orthogonal of order p with respect to the functional uzA. In this case,
from Theorem 2, we conclude that there exists a polynomial B with deg(B) = p such that
uzA = vB . �

5. Examples of coherent pairs on the unit circle

In this section we present the examples of coherent pairs corresponding to the Bernstein–Szegő
class.

Theorem 5. Let (�0, �1) be a coherent pair of measures supported on the unit circle. If �0 is the
Lebesgue measure, then �1 belongs to the Bernstein–Szegő class, and the corresponding MOPS,
{Rn}, is given by, Rn(z) = zn−1(z + c), n�1, with c a constant, |c| < 1.

Furthermore, d�1 = d	/(2
|z + c|2).

Proof. If in (6) we assume the sequence {Pn} is a classical Hahn MOPS in the sense that
{P ′

n+1/(n+1)} is a sequence of monic polynomials orthogonal with respect to a measure supported
on the unit circle, we know that Pn(z) = zn (see [7]). Therefore,

Rn−1(z) = zn−1 + �n−1z
n−2.

If we want that {Rn} is a monic orthogonal polynomial sequence on the unit circle, then it will
satisfy a forward recurrence relation

zRn−1(z) + Rn(0)R∗
n−1(z) = Rn(z), (39)

and so �n = �n−1 = · · · = �2 = c. As a consequence,

Rn(z) = zn−1(z + c).

Thus the MOPS {Rn} belongs to the Bernstein–Szegő class and �1 is defined as stated (see [2],
for example). �

Theorem 6. The only Bernstein–Szegő measure, �0, that admits a companion measure �1
supported on the unit circle such that it yields a coherent pair, is the Lebesgue measure.

Proof. Let (�0, �1) be a coherent pair of measures supported on the unit circle and {Pn}, {Rn} the
corresponding MOPS. We will prove that if Pn belongs to the Bernstein–Szegő class,
then Pn(z) = zn.
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Let us suppose that the monic orthogonal polynomial sequence {Pn} is defined by Pn(z) =
zn−kPk(z) for n�k (for a fixed nonnegative integer number k), where Pk is a monic polynomial
of degree k with zeros of absolute value less than 1 and such that Pk(0) �= 0. Thus

P ′
n(z) = (n − k)zn−k−1Pk(z) + zn−kP ′

k(z).

From (6) it follows that

Rn(z) = zn−k−1Pk(z)

[
n − k + 1

n + 1
z + �n

n − k

n

]
+ zn−kP ′

k(z)

[
z

n + 1
+ �n

n

]
.

Since Rn(0) = 0 for n�k + 2 and taking into account (39), we have

Rn(z) = zRn−1(z), n�k + 2.

Thus, for n�k + 2

Pk(z)

[(
n − k + 1

n + 1
− n − k

n

)
z + n − k

n
�n − n − k − 1

n − 1
�n−1

]
+zP ′

k(z)

[(
1

n + 1
− 1

n

)
z + �n

n
− �n−1

n − 1

]
= 0. (40)

Hence, taking into account that Pk(0) �= 0, we get from (40) with z = 0,

�n = n

(k + 1)(n − k)
�k+1, n�k + 2.

Substituting this expression in (40),

kPk(z) − P ′
k(z)

[
z + n(n + 1)

(k + 1)

1

(n − k)(n − k − 1)
�k+1

]
= 0, n�k + 2

then �k+1 = 0, as well as Pk(z) = zk . But this contradicts the fact Pk(0) �= 0, up to k = 0.
In such a case we are in the previous situation. So we obtain that Pn(z) = zn, n ∈ N. �

Lemma 2. Let (un) be a sequence of complex numbers. If a sequence of monic polynomials {Pn}
orthogonal with respect to a linear functional v on the unit circle satisfies

zn

n
+ un−1 = Pn(z)

n
+ �n−1

Pn−1(z)

n − 1
, n = 2, 3, . . . , (41)

where we assume that �n−1 �= 0, n = 2, 3, . . . then un = 0, n = 1, 2, . . . .
Furthermore, the moments cn, associated with v, are zero for n = 2, 3, . . . and c1 �= 0.

Proof. Take n = 2, 3, . . . , multiply (41) by 1, 1/z, . . . , 1/zn−1, respectively, and use the linear
functional v to get

cn

n
+ un−1c0 = 0, (42)

cn−j

n
+ un−1c̄j = 0, j = 1, 2, . . . , n − 2, (43)

c1

n
+ un−1c̄n−1 = �n−1

n − 1
〈v, Pn−1(z)P̄n−1(1/z)〉. (44)
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From (42) and (44) with n = 2 we get that c1 �= 0. From (42) to (44) with n = 3, 4 we get that
c2 = c3 = 0 and, as consequence, u1 = u2 = u3 = 0.

Now, we use induction arguments to conclude the proof, i.e. assuming uk−1 = 0 as well as
ck = 0 for k = 2, 3, . . . , n − 1, then from (43) we get that un−1 = 0 and thus, from (42),
cn = 0. �

Theorem 7. Let (�0, �1) be a coherent pair of measures supported on the unit circle. If �1 is the
Lebesgue measure then �0 must be an absolutely continuous measure

d�0 = |z − �|2 d	

2

, z = ei	.

Proof. If we assume �1 is the Lebesgue measure supported on the unit circle, i.e., Rn(z) = zn,
then (6) becomes

zn−1 = P ′
n(z)

n
+ �n−1

P ′
n−1(z)

n − 1
, n = 2, 3, . . . .

Integrating the above expression, there exists a sequence of complex numbers (un) such that

zn

n
+ un−1 = Pn(z)

n
+ �n−1

Pn−1(z)

n − 1
, n = 2, 3, . . . .

According to the previous lemma, the moments, cn, associated with the linear functional, v, such
that {Pn} is the corresponding MOPS, satisfy cn = 0, n = 2, 3, . . . , and c0, c1 are two complex
arbitrary constants.

Furthermore, since v is a positive-definite linear functional associated with a positive Borel
measure �0 supported on the unit circle, then we get an integral representation of such a functional
taking into account its moments c0 and c1. Indeed,

c0 = A

2


∫ 2


0
|z − �|2 d	, c1 = A

2


∫ 2


0
z|z − �|2 d	,

with z = ei	. Thus, c0 = (1 + |�|2)A, c1 = −�A. In other words,
�

1 + |�|2 = −c1

c0
. �
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