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Abstract

The pulp and paper industry plays an important role in European economies. The chemical reactions that transform
wood chips in pulp occur mainly in a complex moving bed reactor, the digester. Nowadays the use of mathematical models
to simulate the transient behaviour of the digester in terms of temperature and compound concentrations represents a real
need for industry because it allows simulation of experiments that can not be afforded or that might be very risky. The
digester – the most critical piece of the equipment of a pulp mill – is a heterogeneous reactor with an almost cylindrical
shape, where wood chips react with an aqueous solution of sodium hydroxide and sodium sulfide, to remove the lignin
from the cellulose fibers. From a mathematical point of view the dynamical behaviour of the reactor can be represented
by a system of hyperbolic nonlinear partial differential equations. In this system, with 15 equations, we can identify three
main types: the equations that describe the temperature and the concentration respectively of the solid, entrapped liquid
and free liquid phase. Each of these type of equations present a certain complexity, its numerical simulation being a hard
task. In this sense we point out the high nonlinearity of the functions that represent the chemical reactions; the disconti-
nuities induced by the extraction and injection of the free liquor; the discontinuities in the convection velocity of the free
liquor – positive where the liquid flown downwards and negative where the free liquid flows upwards. Numerical methods
based on operator splitting, nonuniform refinement and some particular techniques to smooth discontinuities, are studied
from a qualitative and quantitative viewpoint. Several simulations on temperature and concentrations of organic and inor-
ganic compounds are presented. Special attention will be devoted to the effects induced in the process by discontinuities of
wood chips composition.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

The most critical piece of equipment in a kraft pulp and paper plant is the digester. The digester is a com-
plex heterogeneous reactor where a moving bed of wood chips, containing cellulose, hemicellulose and lignin,
reacts with sodium hydroxide and sodium sulfide, in a liquid phase, to remove the lignin from the cellulose
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fibers. The digester studied in this paper has been described in [1,2] and it is an industrial hydraulic continuous
reactor with isothermal cooking, a further development of modified continuous cooking.

Much work has been done for the last decades to model this system, mostly motivated by economical rea-
sons. After the H-factor model of Vroom [3], many other empirical models appeared. The need for a good
knowledge of the process promoted the development of a large number of first principles based models, rep-
resenting different approaches of the reaction kinetics, considering different digester types, or simply making
different assumptions. Smith and Williams [4] gave a good contribution including a kinetic model often known
as the Pardue model and approximated the digester by a series of CSTR (continuous stirred tank reactor). This
approach was later followed by other researchers such as Christensen et al. [5] and by Wisnewski et al. [6].
Gustafson et al. [7] proposed a kinetic model in three phases to describe the cooking of a softwood and this
work was later extended by Pu [8].

Another interesting work on fundamental modeling of the cooking process of wood is that developed by
Foss and co-workers [9–11]. They focused on the second part of two-vessel systems and proposed a mecha-
nistic description based on energy, mass and momentum balances. They used a simplified kinetic model where
the initial phase was eliminated and the bulk and residual phases were considered together. As a result of these
simplifications the kinetic model used is valid for kappa numbers between 50 and 150. In spite of this and
other assumptions in the kinetic model, the digester model created is quite detailed.

The mathematical transient model used here was derived from the fundamental principles of mass and
energy conservation and is represented by a system of fifteen nonlinear partial differential equations (PDE)
of convection–reaction type. In [2], it is possible to find a transient model of an industrial digester that takes
into account many mechanical and processual details inside and outside the digester. In order to study the
numerical viability of applying Smolareskiewisz procedure to this problem, the basic equations of the model
developed in [2] were taken. That 15 equations correspond to the mass and energy balances.

The numerical method used in the discretization of this PDE’s system is based on operator splitting which
essentially consists of considering separately convection and reaction phenomena. Splitting methods have been
studied by several authors [12–16]. A mathematical analysis of convergence for the method used in this paper
is developed in [17,18].

As far as the specificity of our approach is concerned we point out two main aspects. The system of PDE’s
presented furnishes a description of the transient behaviour of the digester – important, for example, when
grade transitions occur. From a mathematical point of view, the application of splitting methods to the system
allow the use of specially tailored methods adapted to the phenomena that take place in each part of the
digester.

The paper is organized as follows. In Section 2 we present the mathematical model. In Section 3 we describe
the numerical splitting method used in the discretization. Finally in Section 4 numerical simulations are
included.

2. A mathematical model of the transient behaviour of the digester

The digester studied in this paper (Fig. 1) is a continuous kamyr digester with isothermal cooking. It has an
almost cylindrical shape, multiple liquid outputs and intermediate external heating points. The porous wood
chips – solid phase – containing cellulose, hemicellulose and lignin react with an aqueous solution – free liquid
phase – essentially composed by sodium hydroxide and sodium sulfide which penetrate the wood chips –
entrapped liquid phase. The aim of the reaction is the remotion of lignin from the cellulose fibers. In the upper
part of the digester the solid and liquid phases flow downwards concurrently. At several levels of the digester’s
height the free liquid is extracted, enriched and heated before being reinjected at a similar location. This tem-
porary extraction is called circulation. At the main extraction the free liquor is extracted and the wood chips
flow then countercurrently with a free liquor introduced at the bottom. This flow washes the degradation
products from the pulp and cools it to reduce damage caused by the continuation of the reaction.

The mathematical model under investigation corresponds to the basic equations of the model developed in
[2], that is the equations that come from mass and energy balances. It is represented by a set of fifteen PDE’s of
convection–reaction type involving fifteen dependent variables (concentrations and temperature). The fifteen
dependent variables represent the concentrations of organic compounds (cellulose (C), hemicellulose (H) and



Fig. 1. The digester.
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lignin (L)) in each of the three phases and the concentration of the inorganic compounds (effective alkali (E)
and hydrogen sulfide ion (S)) in both liquid phases as well as the temperature. Since the wood chips are porous
and impregnated with liquor the digester is a reactor with three simultaneous phases (solid, entrapped and free
liquors). The notations concerning the variables are described in Table 1.

2.1. The equations of the model

We will consider that the digester is a cylindrical plug flow reactor. Consequently, in our model, there is
only one space variable, z. As we may see in the picture of Fig. 1, there are several relevant points along
Table 1
Notations

Phase Unknown Meaning Units

Solid yS
1 Mass fraction of C in the chips dimentionless

yS
2 Mass fraction of H in the chips dimentionless

yS
3 Mass fraction of L in the chips dimentionless

Entrapped liquid yE
1 Mass concentration of C in the entrapped liquor kg m�3

yE
2 Mass concentration of H in the entrapped liquor kg m�3

yE
3 Mass concentration of L in the entrapped liquor kg m�3

yE
4 Molar concentration of E in the entrapped liquor mol dm�3

yE
5 Molar concentration of S in the entrapped liquor mol dm�3

yE
6 Temperature of the entrapped liquor K

Free liquid yF
1 Mass concentration of C in the free liquor kg m�3

yF
2 Mass concentration of H in the free liquor kg m�3

yF
3 Mass concentration of L in the free liquor kg m�3

yF
4 Molar concentration of E in the free liquor mol dm�3

yF
5 Molar concentration of S in the free liquor mol dm�3

yF
6 Temperature of the free liquor K
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the length of the digester. In the case under study we have the following points: the top of the digester, at posi-
tion zt = 0 m; the circulation C5, at position zs;C5

¼ 8:7 m, and the injection point just before it, at position
zinj;C5

¼ 8:2 m; the circulation C6, at zs;C6
¼ 13:1 m, and the injection point just before it, at position

zinj;C6
¼ 12:5 m; the main extraction EXT, at position zs,EXT = 20.1 m; the ITC, at position zs,ITC = 33.6 m,

and the injection point in it, at the same position zinj,ITC = zs,ITC; the circulation C8, at position
zs;C8
¼ 37:3 m, and the injection point in it, at the same position zinj;C8

¼ zs;C8
, and, finally, the bottom of

the digester, at position zb = 41 m. We will define X = {C5,C6,EXT,ITC,C8}.

2.1.1. Solid phase

In order to establish the equations of the model, we start by considering the solid phase. In this phase there
is only organic material and, for i = 1, 2, 3, the concentrations yS

i satisfy
oyS
i

ot
¼ �uc

oyS
i

oz
þ Ri; ð1Þ
where uc is the interstitial velocity of the moving bed of chips (m min�1) and Ri the reactions rates
(min�1).

The values of the reaction rates, Ri, have been computed using the kinetic equations proposed by Nóbrega
and Castro [19] and they depend not only on the concentrations of the organic material in the solid matrix but
also on the concentration of effective alkali in the entrapped phase ðyE

4 Þ, on the temperature of the chips (solid
matrix and entrapped liquor) ðyE

6 Þ and on the concentration of hydrogen sulfide ion in the entrapped phase
ðyE

5 Þ. The values of Ri are defined by:

for cellulose (i = 1),
R1 ¼

� exp 4:16� 3708:0
yE

6

� �
yE

4 yS
1 ; yS

3 P 0:185;

� exp 27:28� 14256:9
yE

6

� �
yE

4 yS
1 ; 0:02 6 yS

3 < 0:185;

� exp 27:28� 14256:9
yE

6

� �
yE

4 yS
1 ; yS

3 < 0:02;

8>>>><>>>>: ð2Þ

for hemicellulose (i = 2),

R2 ¼

� exp 12:62� 6454:6
yE

6

� �
yE

4 yS
2 ; yS

3 P 0:185;

� exp 18:75� 9379:9
yE

6

� �
yE

4 yS
2 ; 0:02 6 yS

3 < 0:185;

� exp 5:3� 7443:4
yE

6

� �
yE

4 yS
2 ; yS

3 < 0:02;

8>>>><>>>>: ð3Þ

for lignin (i = 3),

R3 ¼

� exp 6:12� 4307:7
yE

6

� �
yS

3 ; yS
3 P 0:185;

� exp 35:35� 16100:0
yE

6

� �
yE

4 yS
3

� exp 29:23� 14400:0
yE

6

� �
ðyE

4 Þ
0:03ðyE

5 Þ
0:87yS

3 ; 0:02 6 yS
3 < 0:185;

� exp 19:64� 9800:0
yE

6

� �
ðyE

4 Þ
1:7yS

3 ; yS
3 < 0:02;

8>>>>>>>><>>>>>>>>:
ð4Þ

for effective alkali (i = 4),

R4 ¼
1

Rlw

ð2R3 þ 16ðR1 þ R2ÞÞ; ð5Þ

where Rlw is a liquid to wood ratio (dm3 kg�1), and for hydrogen sulfide ion (i = 5), R5 = 0.



A. Araújo et al. / Applied Mathematical Modelling 32 (2008) 1869–1882 1873
2.1.2. Entrapped liquid phase

For the entrapped liquid phase, we have, for the concentrations yE
i , i = 1, . . ., 5, the following equations
�c

oyE
i

ot
¼ �uc�c

oyE
i

oz
þ aiRi þ km;i þ uc

o�c

oz

� �
yF

i � yE
i

� �
; ð6Þ
where �c is the porosity of the chips (dimentionless), km,i represents the mass transfer of species i (min�1),
ai = �qc,OD, for i = 1, 2, 3, and ai = �c, for i = 4, 5, where qc,OD is the specific mass of oven dry chips (kg m�1),
and the reaction rates Ri are defined as in the solid phase. The parameter qc,OD has a similar behaviour of that
of �pi, where �pi is the porosity of an outside pile of chips.

According to [1], the term �c is given by �c ¼ 1� ðyS
1 þ yS

2 þ yS
3Þð1� �0Þ, where �0 is the initial porosity of the

chips (dimentionless), which is a function of space and time with the same behaviour of �pi. Note that, if we
consider different types of wood chips, �pi is a piecewise constant function on time which propagates along the
digester length with velocity uc.

As far as the temperature is concerned, since the heat effects due to chemical reaction are very moderate
inside the chips and the contact between solid and entrapped liquid phase is very effective due to the porous
structure of the chips, we will assume that the solid matrix and the entrapped liquor are at the same temper-
ature. The temperature behaviour is described by equation
qc
eCp;c

oyE
6

ot
¼ �ucqc

eCp;c
oyE

6

oz
þ U � þ qf

eCp;fuc

� �
yF

6 � yE
6

� �
þ qc;ODð�DH RÞðR1 þ R2 þ R3Þ: ð7Þ
Here qc (resp. qf) is the density of the chips (resp. free liquor), in kg m�3, eCp;c (resp. eCp;f ) is the thermal capac-
ity of the chips (resp. free liquor), in kJ m�1 K�1, U* is the heat transfer coefficient, in kJ min�1 m�3 K, and
DHR is the heat of reaction, in kJ kg�1.
2.1.3. Free liquid phase

For the free liquid phase, the PDE’s that describe the evolution of concentrations have no reaction term
because these state variables are simply governed by convection and diffusion between the two liquid phases.
For i = 1, . . ., 5, the free concentrations, yF

i , satisfy equations
�d
oyF

i

ot
¼ �uf�d

oyF
i

oz
� km;i 1� �dð Þ yF

i � yE
i

� �
þ binj yF

i;inj � yF
i

� �
; ð8Þ
where �d is the porosity of the digester (dimentionless) and binjy
F
i;inj stands for the gains per units of time and of

volume of digester due to the injections.
According to [1], the value of �d is given by �d = 1 � fc(1 � �pi), where fc is, for this digester, experimentally

given by
fc ¼
0:032zþ 1:01; z < 35:9;

2:16; z P 35:9:

�
ð9Þ
The mathematical form of binj can be found in [2] and is defined as
binj ¼
1

Ad

X
k2X�EXT

DQinj;kdðz� zinj;kÞ; ð10Þ
with d the generalized Dirac’s delta function. In the previous expression, Ad represents the sectional area of the
digester (Ad = 9p m2) and DQinj,k is the volumetric flow of the injected liquor at the screen k.

The term uf, the interstitial velocity of the free liquor (m min�1), is positive for z < zs,EXT and negative for
z > zs,EXT.

The value of yF
i;inj;k, for i = 1, . . ., 5 and k 2 X � EXT, is given by
yF
i;inj;k ¼ yF

i;b þ
DQext;k

DQinj;k

ðyF
i;ext;k � yF

i;b;kÞ; ð11Þ
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where yi,b,k is the concentration of species i, i = 1, . . ., 5, in the injected white fresh liquor at the screen k (whose
mass flow is known) and
yF
i;ext;k ¼

1

hs;k

Z zs;kþhs;k

zs;k

yF
i dz; ð12Þ
where hs,k is the length of the screen k. The volumetric flow of the extracted liquor at the screen k 2 X � EXT,
DQext,k, is the difference between DQinj,k and the volumetric flow of the injected white fresh liquor at the same
screen (a known value); for k = EXT, DQext,k can be measured directly.

The equation for the temperature is
qf
eCp;f�d

o

ot
yF

6 ¼ �ufqf
eCp;f�d

o

oz
yF

6 � U �ð1� �dÞ yF
6 � yE

6

� �
þ binjqinj

eCp;injðyF
6;inj � yF

6 Þ: ð13Þ
Note that yF
6;inj;k, for k 2 X, is a known constant, qinj (kg m�3) is the specific mass of injected free liquor andeCp;inj (kJ m�1 K�1) is the thermal capacity of the injected free liquor.

2.2. Boundary conditions

As far as the boundary conditions are concerned, we consider yS
i ð0; tÞ ¼ C0

i ðtÞ; i ¼ 1; 2; 3, where C0
i ðtÞ are

known concentrations that can change in time. The concentrations of inorganic compounds and temperature
at t = 0 are also assumed to be known. As for z P zs,EXT the fluid flows upwards and the respective boundary
conditions of the dependent variables representing solid and entrapped phases are known in z = zs,EXT as a
result of the computations in the first part of the digester and the dependent variables concerning the liquid
phase are known at z = zb.

2.3. Initial steady-state

For 0 6 z 6 zs,EXT we consider that the digester is filled with chips containing simply water in their pores
and consequently, for the organic compounds, we have yF

i ðz; 0Þ ¼ yE
i ðz; 0Þ ¼ 0; i ¼ 1; 2; 3, and yS

i ðz; 0Þ ¼ C0
i ð0Þ,

i = 1, 2, 3, where C0
i ð0Þ; i ¼ 1; 2; 3; clearly depend on the type of wood the chips are made. For the inorganic

compounds, we consider yF
i ðz; 0Þ ¼ yE

i ðz; 0Þ ¼ 0; i ¼ 4; 5. For the second part of the reactor, that is
zs,EXT 6 z 6 zb, we consider that the digester is filled with a ‘‘washing’’ liquor of known concentration and
temperature.

For the temperature, the initial steady-state yF
6 ðz; 0Þ and yE

6 ðz; 0Þ are computed using the boundary condi-
tions at z = zt. To obtain these steady-state solutions, we will solve the simplified system of ODE’s where we
consider only the phenomena of mass transfer.

After the first extraction (zs,EXT 6 z < zb) the steady-state solutions yF
6 ðz; 0Þ and yE

6 ðz; 0Þ are computed from
the boundary conditions in z = zb, for the free liquor, and in z = zs,EXT, for the entrapped liquor.

3. Numerical method

The PDE’s of the digester model can be represented by
oy
ot
¼ F ðyÞ; ð14Þ
where F is a nonlinear operator that describes the convection, the reaction and the mass transfer phenomena.
In a simplified way, this operator may be consider of type
F ðyÞ ¼ �u
oy
oz
þ f ðyÞ; ð15Þ
where u represents a real constant and f(y) the reaction and mass transfer terms. The initial condition
y(0,z) = y0(z) is coupled with (14) and (15). In order to take into account the different phenomena (convection
and reaction/mass transfer), we will consider a numerical method based on a functional splitting of the
problem.
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Let us define, in [0,T], the splitting grid {ts} with ts = sDt and ts + 1/2 = ts + Dt/2, where Dt represents the
splitting step size. We suppose that y(t) is known (at least approximately) at t = ts. To compute an approxi-
mation for y(t) at t = ts + 1 we decompose (14) into the three subproblems
ov
ot
¼ �u

ov
oz
; t 2�ts; tsþ1=2�; vðtsÞ ¼ yðtsÞ; ð16Þ

ow
ot
¼ f ðwÞ; t 2�ts; tsþ1�; wðtsÞ ¼ vðtsþ1=2Þ; ð17Þ

op
ot
¼ �u

op
oz
; t 2�tsþ1=2; tsþ1�; pðtsþ1=2Þ ¼ wðtsþ1Þ: ð18Þ
It is proved in [18] that, if no boundary condition is considered, that is, if z 2 R; then p(ts + 1) = y(ts + 1) which
means that there is no functional splitting error. However, if a boundary condition is included at z = 0, then
kp(ts + 1) � y(ts + 1)k1 = O(Dt). Under special conditions, this estimation can be improved as mentioned in [14].
3.1. Numerical splitting

As problem (16)–(18), for the digester model, exhibits different qualitative behaviour for z 6 zs,EXT and
zs,EXT 6 z 6 zb, different families of splitting methods are used in each part of the digester.

For z 6 zs,EXT the profiles of concentrations and temperature present big gradients due to the sharp
changes imposed in the circulations and also to the reaction speeds. To cope with this situation, (16)–(18)
is solved with an EIE method obtained by patching together an explicit upwind Smolarkiewicz method
– E – to solve (16) and (18) and the implicit Euler method – I – to solve (17). The resulting EIE splitting
method is defined by
vsþ1=2
j � vs

j

Dt=2
¼ �u 1þ 1� uDt

2h

� �
vs

j � vs
j�1

�þ vs
j þ vs

j�1

 !
vs

j � vs
j�1

h
; vs

j ¼ ys
j; ð19Þ

wsþ1
j � ws

j

Dt
¼ f ðwsþ1

j Þ; ws
j ¼ vsþ1=2

j ; ð20Þ

psþ1
j � psþ1=2

j

Dt=2
¼ �u 1þ 1� uDt

2h

� �
psþ1=2

j � psþ1=2
j�1

�þ psþ1=2
j þ psþ1=2

j�1

 !
psþ1=2

j � psþ1=2
j�1

h
; psþ1=2

j ¼ wsþ1
j ; ð21Þ
where we assume that u > 0 and � is a small positive constant.
For z P zs,EXT the profiles are softer because practically no chemical reaction occurs and consequently a

EEE method obtained by patching together three explicit methods can be used. Eqs. (16) and (18) are discret-
ized with the Smolarkiewicz upwind method but where now, as the convection speed u < 0, we consider
ov
oz
ðzj; tsÞ ’

vs
jþ1 � vs

j

h
;

op
oz
ðzj; tsþ1=2Þ ’

psþ1=2
jþ1 � psþ1=2

j

h
:

The reaction Eq. (17) is solved with the explicit Euler method. The global EEE method is then defined by
vsþ1=2
j � vs

j

Dt=2
¼ �u 1þ 1� uDt

2h

� �
vs

jþ1 � vs
j

�þ vs
j þ vs

jþ1

 !
vs

jþ1 � vs
j

h
; vs

j ¼ ys
j; ð22Þ

wsþ1
j � ws

j

Dt
¼ f ðws

jÞ; ws
j ¼ vsþ1=2

j ; ð23Þ

psþ1
j � psþ1=2

j

Dt=2
¼ �u 1þ 1� uDt

2h

� �
psþ1=2

jþ1 � psþ1=2
j

�þ psþ1=2
j þ psþ1=2

jþ1

 !
psþ1=2

jþ1 � psþ1=2
j

h
; psþ1=2

j ¼ wsþ1
j : ð24Þ



1876 A. Araújo et al. / Applied Mathematical Modelling 32 (2008) 1869–1882
3.2. Qualitative behaviour

Methods EIE and EEE are globally first order methods. The qualitative behaviour of EEE and EIE is stud-
ied in [17].

One of the main advantages of splitting techniques is the fact that all combinations of methods with differ-
ent explicitness/implicitness and order properties are allowed. In the numerical simulation of the digester
behaviour the two first order approaches – EIE and EEE – lead to enough accuracy. In cases where the model
exhibits significant stiffness, different choices are more suitable as, for example, second order implicit methods
for reaction Eq. (17) and nonlinear flux limiters methods for (16) and (18).

The proposed numerical scheme is a splitting method which treats differently the convection terms and the
reaction/mass transfer terms. It is well known (20) that the classical linear schemes, central or upwind, present
some drawbacks in respect their qualitative behaviour. For instance, first order upwind can be very diffusive
and central difference schemes may exhibit an oscillatory behaviour.

In order to minimize these effects, we will consider the nonlinear Smolarkiewicz upwind scheme to treat the
convection part. This method uses the first order Euler-upwind as a basis and introduces a correction step in
order to minimize the diffusivity behaviour. More specifically, if we consider the modified equation for the first
order Euler-upwind scheme applied to the convection Eq. (16), we conclude that this method represents a sec-
ond order approximation of the modified equation
oy
ot
¼ �u

oy
oz
þ uh

2
1� uDt

2h

� �
o2y
oz2

:

The term
uh
2

1� uDt
2h

� �
o2y
oz2

ð25Þ
is responsible for the large diffusivity of the method. In order to remove this diffusive behaviour, we will con-
sider (25) as a convective term of the form � ou�y

oz ; with
u� ¼ � uh
2y

1� uDt
2h

� �
oy
oz
: ð26Þ
The idea of Smolarkiewicz [20] was to add another upwind step using the additional velocity u* with minus
sign. Doing this, we obtain a second order scheme to discretize (16) which is less diffusive than the Euler-
upwind scheme. The anti-diffusive velocity u* is approximated numerically by
u�j � u 1� uDt
2h

� �
yj � yj�1

yj þ yj�1

:

In order to study the numerical stability of the proposed numerical methods, let us consider ~vs
h, ~ws

h and ~ps
h to

be perturbed numerical solutions of (19)–(21), respectively. Let
J f ¼
of ðiÞ

oyj

ðhsþ1
j Þ

" #
;

with
hsþ1
j ¼ ~wsþ1

1 ; . . . ; ~wsþ1
j�1; h~wsþ1

j þ ð1� hÞ~wsþ1
j ; ~wsþ1

jþ1; . . . ; ~wsþ1
n�1

� �
; h 2 ð0; 1Þ:
With ysþ1
h ¼ psþ1

h and ~ysþ1
h ¼ ~psþ1

h Proposition 1 can be proved.

Proposition 1. Let ysþ1
h and ~ysþ1

h be two numerical approximations of y(ts+1) computed from the approximations

ys
h; ~y

s
h 2 BqðyðtsÞÞ, where Bq(y(ts)) is the open ball with center u(ts) and radius q 2 Rþ, using the EIE method (19)–

(21). Then
kysþ1
h � ~ysþ1

h k1 6 kðI � DtJ fÞ�1k2
1ðr þ rj1� rjM þ j1� r � rj1� rjM jÞkys

h � ~ys
hk1
where M = k$gk1, with gðx1; x2Þ ¼ ðx1�x2Þ2
x1þx2

and r ¼ uDt
2h .
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According to the previous result, we may conclude that, the EIE method is stable if
r 6 min 1; 1=M ; 1=kJ fk1
	 


: ð27Þ
Taking into account that the numerical method (19)–(21) is consistent with the problem (16)–(18), we may
conclude that, if r verifies (27), the numerical solution obtained by EIE, when h and Dt goes to zero, converges
to the exact solution of (16)–(18) . But, as we had already mentioned, kp(ts + 1) � y(ts + 1)k1 = O(Dt), where p
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and y are, respectively, the solutions of (16)–(18) and (14)–(15). Then the convergence of the numerical solu-
tion obtained by EIE to the solution of the original problem (14)–(15) is concluded.

For the EEE numerical method (22)–(24), an analogous result can be established.
In order to compute an approximation to y(xj) when yj = yj+1 = 0, we replace (26) by
u�j � u 1� uDt
2h

� �
yj � yj�1

�þ yj þ yj�1

;

where � is a small number (for instance 10�15).

3.3. Numerical results

In this section we present some numerical results obtained by the algorithm described in the previous sec-
tion when applied to the solution of the fifteen PDE’s that constitute the core of the digester model. The initial
profiles and boundary conditions are defined according to the explanation given in Section 2.

In order to define the computational grid, we took into account the stability result (27). Note that (27)
imposes a restriction to the choice of the step sizes which depends on the convection term and on the stiffness
of the problem. In our case, we took into account the changes on the free liquid volumetric flow expressed in
Fig. 2. In the regions where the flow presents sharp gradients, we refine the spatial grid. Doing this we may
consider a constant time step in order to guarantee the stability.
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To validate this model and the numerical procedure, we did not use real data. Apart from being a model
focusing only in the main equations, dynamical data of the digester is not easy to obtain. Meanwhile, in [1] the
authors presented a model for the steady-state regime and they used real data. In [21] we presented some
numerical results for the steady-state solutions which show physical evidence and agree with the numerical
results in [1]. These results are now obtained by the proposed algorithm and are plotted in Figs. 3 and 4.
Fig. 5. Changes every hour.

Fig. 6. Changes every two hours.



Fig. 7. Changes every hour.

Fig. 8. Changes every two hours.
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In the present work our goal is to study the transient behaviour in the case where two different types of
wood chips are considered. The evolution in time of the concentrations and temperature are plotted in Figs.
5 and 6, when we change the wood every hour and every two hours. Note that, in spite of the changes been
made only for the organic compounds, the inorganic compounds are also affected (see the results for the
entrapped alkali). Meanwhile, the temperature inside the digester is not affected by that changes.

In Figs. 7 and 8 we compare the results in solid cellulose and solid lignin when we change the wood chips
every hour and every two hours. The periodicity chosen has no correspondence to an industrial context. Our
goal is to put in evidence the behaviour of the transient regime. As we may see, for this case, the digester
achieves a steady-state regime in less than two hours. This fact is consistent with other computations that
we considered. So we may conclude that, the process tends quickly to a steady-state.

We may conclude that, in agreement with physical evidence, the quality of the pulp is affected by the wood
changes and the model described here can be used to predict the mean composition of the produced pulp.
Appendix
The parameters are given in the following table

Parameter Meaning Units

Ad Sectional area of the digester m2

�0 Initial voidage of the chips dimentionless
�pi Voidage of an outside pile of chips dimentionless
�d Voidage of the bed dimentionless
�c Voidage of the chips dimentionless
uc Interstitial velocity of the moving bed of chips m min�1

uf Interstitial velocity of the free liquor m min�1

qc,OD Density of an oven dry chip kg m�3

qc Density of the chips kg m�3

qf Density of the free liquor kg m�3eCp;c Thermal capacity of the chips kJ m�1 K�1eCp;f Thermal capacity of the free liquor kJ m�1 K�1

km,i Mass transfer coefficient of species i min�1

U* Heat transfer coefficient kJ min�1 m�3 K
Rlw Liquid to wood ratio dm�3 kg�1

hs,k Length of the screen k m
qinj Density of the injected liquor kg m�3eCp;inj Thermal capacity of the injected liquor kJ m�1 K�1

DQext,k Volumetric flow of the extracted liquor at screen k m3 min�1

DQinj,k Volumetric flow of the injected liquor at screen k m3 min�1
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[18] A. Araújo, J.A. Ferreira, P. de Oliveira, F. Patrı́cio, P. Rosa, The use of splitting methods in the numerical simulation of reacting

flows, Comput. Visual Sci. 6 (2004) 59–66.
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