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A b s t r a c t  

In-medium sum rules following from the chiral charge algebra of QCD are reviewed, and new 
sum rules are derived. The new sum rules relate the I C ( j e c )  = 1 - ( 0  ++) excitations (quantum 
numbers of a0(980) )  to the scalar and isovector densities, and are non-trivial for the isospin- 
asymmetric medium. We present an extensive illustration of the sum rules with the help of quark 
matter in the Nambu-Jona-Lasinio model. Collective excitations different from the usual meson 
branches (spin-isospin sound modes) are shown to contribute significantly to the sum rules and 
to play a crucial role in the limit of vanishing current quark masses. @ 1998 Elsevier Science 
B.V. 
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1. Introduction 

Over the past years intense efforts have been made to better understand the properties 
of nuclear systems under extreme conditions [ 1,2]. It is commonly accepted that basic 
properties of hadrons undergo severe modifications in nuclear medium [3-10]. We 
expect that at sufficiently large densities chiral symmetry is restored. Moreover, we 
know that already at nuclear saturation density we should find strong medium effects. 
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For instance the quark condensate (~q) is estimated to drop to about 70% of its vacuum 
value at the nuclear saturation density, as follows from the model-independent prediction 

of Refs. [11,12]. The change in this basic scale of strong interactions, as well as other 

matter-induced effects, undoubtedly lead to severe modifications of in-medium hadron 

properties, whose excitation energies, widths, coupling constants, size parameters, etc. 

undergo changes. The experimental evidence for these effects can be found in studies 
of mesonic atoms, or in the measurements of dilepton spectra in heavy-ion collisions 
in the CERES [13] and HELIOS [14] experiments at CERN. Much more accurate 
data on hot and dense matter will be provided by the Hades experiment, and by RHIC 
in the near future. It is therefore an important task to better understand and describe 

theoretically m e s o n i c  exc i ta t ions  in dense and hot systems. 
Recent years have brought new interesting ideas and developments in this field. The 

incomplete list, relevant for the subject of this paper, contains the possibility of S-wave 
kaon condensation in nuclear matter [ 15-18], and the application of chiral effective 

Lagrangians and models [ 18-27] to nuclear systems. General model-independent pre- 
dictions for excitations with quantum numbers of the pion, based on chiral charge 

algebra, were made in Refs. [18,28-31]. Our present work summarizes and further 
extends the results presented there. 

The purpose of this paper is twofold. In the first part we review the previously derived 
current-algebraic sum rules for pionic excitations in nuclear medium (the generalization 
of the Gell-Mann-Oakes-Renner relation [ 18,28], the sum rule of Ref. [29] ), as well 

as derive new sum rules concerning the excitations with quantum numbers of the a0 
meson ( I  c ( jPc )  = 1-  (0 ++) ) (Section 2). We discuss formal predictions following 

from these sum rules (Section 3). Particular attention is drawn to nuclear matter with 
isospin asymmetry, since this is the case where non-trivial conclusions can be drawn for 

the behavior of mesonic excitations in the limit of vanishing current quark masses. We 
discuss the appearance of very soft modes in this limit. In the pion channel there exists a 
positive-charge mode (for medium of negative isospin density) whose excitation energy 
scales in the chiral limit as the current quark mass itself, and the square root of it, as 
is the case of the vacuum. In the a0 channel there exists a positive-charge mode (for 
medium of negative isospin density) whose excitation energy scales as the difference 

of the current masses of the u and d quarks. These modes are shown to completely 

saturate the sum rules in the limit of vanishing current quark masses. 
In the second part of the paper (Sections 4-8) we present an extensive illustration of 

the general results with help of quark matter in the Nambu-Jona-Lasinio model [32]. 
Although quark matter is not a realistic approximation to nuclear matter (except, perhaps, 
at very large densities), the model is good for the present purpose. The reason is that 
the Nambu-Jona-Lasinio model is consistent with chiral symmetry and complies to 
chiral charge algebra relations leading to the sum rules. We show that the results of 
the model are highly non-trivial: collective states appear in isospin-asymmetric medium 
(spin-isospin sound modes) and these states are necessary to saturate the sum rules. 
For certain choice of model parameters, these sound modes become the very soft modes 
in the limit of vanishing current quark masses, and they completely saturate the sum 
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rules. Finally, we remark that the Nambu-Jona-Lasinio model is interesting in its own, 
and that much of the expectations concerning the behavior of mesons in medium have 
been based on calculations carried out in this model [18-27,33]. 

2. Current-algebraic sum rules 

In this section we present a set of sum rules that are going to be explored in this 
paper. The method follows Refs. [29,31]. The sum rules follow from the SU(2)®SU(2)  
chiral charge algebra [34,35] of QCD and involve no extra assumptions, therefore are 
very general. In the context of effective chiral models such relations were derived in 
Ref. [18]. In this section we also derive the corresponding relations involving the 
vector current, i.e. involving the excitations with quantum numbers of the ao(975) 
meson, with IC ( j ec )  = 1-(0++) .  For the simplicity of notation the derivation is made 
for two flavors, generically denoted by u and d. The cases involving strangeness (K and 
K~ excitations) can be obtained from the results below by replacing u or d by s. 

2.1. Operator identities 

Consider the charges corresponding to vector and axial vector rotations, defined in the 
usual way as Qa = f d3xj~) and Q'5' = f d3xJ~',o , with the appropriate currents defined 

7. a as J~ ~' = --~by~,7-~b~° and J~5,u = ~y~ys-f~b. The charges satisfy the SU(2) ® SU(2) chiral 
charge algebra 

[ Qa, Qb ] = ieabcQC, [ Q~, Qb 5 ] = ieabCQC. ( 1 ) 

The density of the QCD Hamiltonian is denoted as ~QCI~. We need explicitly the 
mass term, 7"~mass = ~.A.'[~p, where the current mass matrix is A.4 = diag(m, ,ma) .  
The canonical anticommutation rules for the quark operators, {~,~(x, t),  ~/,~(y, t)} = 
fi3 (x  - y ) f i , ~ ,  and the explicit form of "]"/mass result in the following operator identities: 

[Q~,, [Qh, ~QCD(0) ] ] = ~ ( 0 )  [za/2, [ 7"b/2, .A4] ]~/'(0), (2) 

[Q;', [Q~, ~QCD(0) ] ] = ~(0){~-a/2, {rb/2, A/l}}0 (0). (3) 

Rewriting these relations for the neutral and charged channels (with T + = (~-~ ± 
ir 2 ) /v /2 ) ,  we obtain the following operator identities: 

[QO, [QO, 7-(QCD(0) ] ] = mu~u(O) + md-dd(O), (4) 

[Qs-, [Q+,~QCD(0)] ] = ½(mu + ma) (~u(0) + d d ( 0 ) ) ,  (5) 

[QO, [Q0, 7-/QCD (0) ] ] = 0, (6) 

[ Q - ,  [Q+,7-/QCD(0)]] = 1 (gu(0) d d ( 0 ) ) .  -~(mu - ma) - (7) 

Relation (6) is trivial, since the third component of isospin is a good symmetry even 
when mu v~ ma. Relation (7) is non-trivial only if mu 4~ ma. 
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We should remark that in this work we neglect electromagnetic interactions. Inclusion 

of these leads to isospin-symmetry breaking and introduces extra terms into the r.h.s, of  

Eqs. (5) and (7).  As a result, mass spectra, matrix elements, etc. are split electromag- 

netically. However, the role of  electromagnetic effects is not interesting for our analysis, 

which focuses on finite-density effects. 

2.2. Gel l -Mann-Oakes-Renner  relations in medium 

In Appendix A we present a detailed derivation of sum rules from the above operator 

identities, and the reader is referred there for the details. The sum rules are obtained by 

the usual technique: identities (4),  (5),  (7) are sandwiched by a state IC), given below. 

Then, a complete set of  intermediate states is inserted in the l.h.s, of  the identities. 

The state IC) is chosen to be a uniform, translationally invariant state describing 

the medium. It has fixed baryon number density, PB, and isospin density, P1=l. 3 We 

choose to work in the rest frame of  nuclear matter. Let us explain the notation used 

below: states [ja/, where a labels isospin, denote all states that can be reached from 

the state IC) by the action of  the appropriate current. For instance, in the case of the 

J°0 operator, the states Ij °) have quantum numbers of  the neutral pion, and include all 

possible modes excited "on top" of  nuclear matter: the vacuum pion branch, collective 

modes, l p - l h ,  2p-2h, etc., excitations of the Fermi sea, etc. As shown in Appendix A, 

the sum rules involve intermediate states with momentum 0 in the nuclear matter rest 

frame. The quantity Ej,, denotes the excitation energy of  the state [ja} (in the rest frame 

of nuclear matter). The symbol ~j. includes the sum over discrete states, as well as 

the integration over continuum states. 

Relations (4),  (5) result in sum rules which are in-medium generalizations of  the 

Gell-Mann-Oakes-Renner (GMOR) relations [ 36] : 

-m,(- f lu)c  - md(-dd)c = Z I <J°lJ°,o (°) Ic> 12 , (8) 
jo 

- ( m ,  + rod)<-flU + -dd)c = Z sgn(Ej -  ) [<j-[ J~,o (0)[C)12 
j-- 

+ Z sgn(Ei,  ) I <J+l<o(O) IC>l (9) 
j~ 

Indeed, in the case of  the vacuum, IC) = [vac), we can single out the one-pion contribu- 
tion in the r.h.s, of  Eqs. (8),  (9).  Let us denote this state (with three-momentum 0) as 

Icra). For example, in the case of  (8) we then find I<~°1~,o(O)Ivac>l = m~oGo, where 
m,,0 and F,~o are the neutral pion mass and decay constant. Therefore, we can write 

3 Note that isospin asymmetry of the medium, i.e. non-zero PI=I, may be due to an excess of neutrons over 
protons, as in a neutron star, but also for example by an excess of zr- over ~-+ in a pionic gas. Our general 
results are insensitive to the issue of what particles carry the isospin asymmetry. 
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-mu{-flU)vac md(-~d)vac = 2 2 - mrr°F~' + E [(J°IJs°,°(O)[C)[ 2 
jo#~ 

.2 F2 = m r o  ~o + O ( m 2 ) .  

165 

(~o) 

The symbol ~ j o , ~  denotes the sum over all contributions other than the one-pion 
state, e.g. three pions, p + ~', etc. As is well known, such contributions are chirally 
suppressed [37]. They are also infinite, hence require renormalization. Note, however, 
that since no extra divergencies are introduced by nuclear matter, the vacuum-subtracted 
sum rules (8),  (9) are well defined: 

-mu  ((-flu)c - (-flU)vac) - md ( <-dd)c - <dd)vac) 

-- ~ I<J°lg,o(O)lC>l = - ~ I <J°/~,o(O) Ivac>l ~ , 
jO jO 

(11) 

and similarly for the sum rule (9). 

2.3. Additional sum rules 

Repeating the steps of the previous section on Eq. (7) we arrive at the sum rule 

- ( m ,  - rod)(-flu -- -dd)c - vac = Z sgn(Ej- ) I (J-[Jo (0)I C) 12 
J 

+ Z sgn(Ei, ) l < J + l J o + ( O ) l C > ]  = - vac, 
.j 

(12) 

where vac means the vacuum subtraction as in Eq. (l  l ) .  Here the intermediate states 
have quantum numbers of the a0 meson, ( IC(J  Pc) = 1-(0++)) .  

Subsequent sum rules are obtained from Eqs. (1). The derivation repeats the steps of 
Appendix A. We obtain two sum rules involving the isovector density, P1=l = ½ (utu - 
d td)c ,  

1 [2, 
] 

1 1 12 ( u * u - d ~ d ) c = E  ~ j  ] [ ( j - l J o ( O ) l C ) [ 2 -  ~)+ ~-~j+[ . (14) 

Sum rules (13) and (14) involve excitations with the quantum numbers of rr and 
ao, respectively. These sum rules require no vacuum subtraction, since the left-hand 
sides involve the matrix element of the conserved vector-isovector current ( P I = I  = 

(CIJ°(O)]C)).  If the state [C) is isosymmetric, i.e. pl=l = 0, then the above relations 
are trivial and just reflect the isospin symmetry of the excitation spectrum. 
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3. Formal results from the sum rules 

For the discussion of this section it is convenient to rewrite the sum rules using the 

identities 

E/,,<j"lJ'J,o(O) Ic) = (jal [HQcD, J~,o(0)] IC) = <j"10(0)i3'5 {7s'/2, .A4} g,(0)IC),  

Ej"<Ja[J~)(O)]C) = (J"] [HQcD, Ja(0) ]  ] C) = <Jai l (0)  [r" /2,  M ]  g,(0)IC >. (15) 

Then Eq. (8)  becomes 

1 
-mu(-au)c - md(-dd)c -- vac = ~o ~7 ° ](j°l (mu~iy5u -- md-diysd) ]C)I 2 - vac, 

3 

(16) 

where jo labels all excitations with the quantum numbers of ~.o, Eqs. (9) ,  (13) give 

- ( ~ u  + dd )c  - vac 

= Z 2m" + md I(J-l-di'/sulC)12 + ~ 2lE/~mu +]E/+md i<j+l_ai75dlC)12 - vac, 
Ei-  E~ 

. j - -  . j l 

(17) 

(mu + rod) 2 I(J-l-diysul C) II 2 __ V "  (mu + rod) 2 Z I<J+l~irsdlC) 12 2 p l = l  2IE j 13 ~ 13 21E: 
.i 

(18) 

where j ±  label all excitations with the quantum numbers of ~-~:, and finally Eqs. (12,14) 

give 

- (-flu - dd)c  - vac 
m .  - m .  ,2 m .  - m .  ,2 

= Z.i_ 2--~jT]E-fj, [(J-l-du] C) I + Z,i ~ 2IEi~ . . . .  [Ej+ ](j+l-fldlC) I - vac, (19) 

(mu - md) 2 2 (mu -- md) 2 
2p/=l = ~ -~]/~--7 I(J-13ulC)l - ~ g l ~  [(J+l-adlC)12' (20) 

. l -  J+ 

where j+  label all excitations with the quantum numbers of a0 ~. 
We stress that the above sum rules are valid for all values of current quark masses, 

i.e. not necessarily in the chiral (mu + ma ---+ 0) or isovector (mu - ma ---+ 0) limits, 

and hold for all densities PB and pi=l. 

3.1. Chiral limit at finite density in isospin-symmetric medium 

Now we are going to explore several formal predictions following from Eqs. (16) ,  
(17),  (19).  The method has been discussed in detail in Refs. [29,31 ]. First, we analyze 
the case when the state IC) carries no isovector density, such as the vacuum or symmetric 
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nuclear matter. To simplify notation we take the strict isovector limit mu = ma = ~.  In 

this case of  exact isospin symmetry of  the Hamiltonian, as well as of the state [C), the 

excitation spectrum is invariant under isospin rotations, and clearly Ejo = Ej+ = Ei • 
Also, (-au)c = (-dd)c = (-qq)c. Sum rule (16) becomes 

- 2 ( ~ q ) c  - vac = / ~  ° ~ I(j°[ (-ffiysu - -d iysd)[C)[  2 - vac. (21) 

As long as the chiral symmetry is broken, (-qq)c is non-zero in the chiral limit ~ -+ 0. 

As already mentioned, the vacuum subtraction terms are of order ~ ,  thus are chirally 

small. Therefore, to match the chiral dimensions on both sides of Eq. (21),  there must 

exist a state, denoted as 7r °, for which (~/E~0)[(zr° l  (-ffiysu - -d iysd)[C)[  2 ~ 1. Since 

the matrix element (~o1 (-ffiysu - - d i y s d ) [ C )  is finite in the chiral limit, it follows that 

E~0 ~ x/~.  Thus, we obtain the same chiral scaling as in the vacuum, where in the 

chiral limit we have m~- = 2 v ~ q ) o / F ~ r  ~ v/-~. By isospin symmetry we have 

E~o = E~-_ = Ezr+ ~ x/~.  (22) 

Note that this result is true for finite (not necessarily small) baryon densities as long as 

(~q) remains non-zero. 

In principle, in the dense medium there could be more than one state contributing to 

the sum rule (21) in the chiral limit. It is known that many-body effects of the Fermi sea 

can induce additional branches of excitations, and we could have several states scaling 

as (22).  Whether or not this occurs is a complicated dynamical issue. The formal result 

states that there exists at least one state scaling as (22) in the chiral limit. 

3.2. Chiral limit at finite density in isospin-asymmetric medium 

As shown in Ref. [29] ,  in medium with finite isovector density, Pl=I ~ O, the behavior 

of  charged excitations in the chiral limit is radically different from the isosymmetric 

case (22).  First, an obvious remark is that since the medium state [C) breaks the isospin 

invariance, the isospin symmetry of  excitations is broken. In fact, at low densities [ 18] 

one can relate the splitting of E~+ and E~-_ to the Weinberg-Tomosawa term in the 
zr-N scattering, and obtain 

E~r+ E~r- = PI=I F~ " (23) 

In this approach one takes the low-density limit prior to the chiral limit. Eq. (23) shows 

that for negative PI=I at small densities we have E~,_ > E~+. However, Eq. (23) cannot 
be used at large densities. 

Now, following Ref. [29] ,  we assume that the isospin density is fixed, and employ 

sum rules (17),  (18).  Without loss of generality we can assume that pl=l < O, as in the 
case of  neutron stars or large nuclei. Since p1=l is an external property of  the system, 
i.e. independent of  the chiral parameter, it is treated as large (finite) in the chiral limit. 

Then, also the isovector chemical potential,/zt=l, defined as the minimum energy needed 
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to lower the isospin by one unit, is finite in the chiral limit. 4 The excitation energies of 

positive (negative) isospin can now be written as Ej± =/.*t=t + 6 E j ± ,  with ,SEj= /> 0 by 

definition of  the chemical potential. Hence, for the medium with PI=1 < 0. or ,u,i=~ < 0, 

only the positive-isospin excitation energies can vanish. The negative-isospin excitation 

energies cannot vanish, including the case of the chiral limit. Hence we arrive at the 

result that for Pt=I < 0 the negative-charge excitations are chirally large, 

EJ- " 1. (24) 

Since the matrix elements (ja[aiysd]C) are non-singular in the chira] limit, the sum 

over negative-isospin excitations, j - ,  in Eqs. (17), (18) does not contribute as m,+ 
ma -+ 0. Therefore in the chiral limit the negative-charge states do not contribute at all 

to the sum rules (17), (18). For the sum rules to hold, there must exist positive-charge 
states scaling appropriately in the chira] limit [29].  Assuming there is only one such 

state, labeled 7r +, we find that in the chiral limit 

mu q- nld 2 
-(~iu +-dd)c  - 2[Er, ]E~-÷ I(rr+[ff iysd[C)[ ' (25) 

( In. + md ) 2 ~- "~ 
-2p,=,  - 21E~ 13 [ Q r ' [ f i y s d l C ) ] - .  (26) 

Eqs. (25), (26) immediately give 

(m,, + re,t) (-flu + -dd)c 
E,~_ = ,-, O ( m ,  + re,l),  (27) 

2pt=l 

r 3 
. . . .  2 (m,, + ma) !(au +-dd)c~ ~ O(m~, + m,~). (2S) ]('iT i l l l l~sd[C) i  - ' -  2p~= I 

This is totally different from the "usual" behavior in the chiral limit, Eq. (22) the 

excitation energy of  the 7r + mode scales as the current quark mass itself, m, + mj. and 

not ~ + m d. 

The formal case where more than one state contributes to the sum rules ( t 7 ) .  (18) 

in the chiral limit has been analyzed in Ref. [29] in the following way: Assume 

-that the excitation energies of one of these modes scales as E~,_ ~ (m,, - m,~)'~, and 

the corresponding matrix element scales as I(,"r'[-ffiysdlC)] ~ (m,, + ma)/J. Since the 
matrix element is not singular in the chiral limit.-one has /3 ~> 0. The r.h.s, of the sum 
rule (18) contains, in the chiral limit, only the positive-charge contributions, which are 

a Although we have not been able to prove this statement from first principles, one can present a number 
of physical arguments in its favor. In the p-exchange model discussed in Ref. [291, when an object of 
isospin 13 is placed in the isospin-asymmetric medium, the energy gain is equal to t,,~/In~ Pt=113, and the 

corresponding chemical potential is /z/=t = g}/m-p Pt=l ~ Pt=L/(2F~),  where the last equality follows from 
the KSFR relation. This shows that finite Pt=~ in the chiral limit implies finite/Zl=l. Note that in this argument 
it does not matter what particles are carriers of the isospin. It remains true also e.g. for an isospin-asymmetric 
gas of pions, or other charged particles. Another example is provided by the Fermi-gas model discussed in 

this paper. The expression for the chenfical potential is (see Section 4 for notation) P-t=t = P - -  \ ";"i -- 3,1~- 

\'k~ + ,,kl:;, and it ix finite when k,, ~ I,',;. i.e. when P;=I is finite. 
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negative definite. Therefore no cancellations between contributions of various modes can 

occur in the chiral limit. The requirement of  matching chiral powers on both sides of  

Eq. (18) gives 3ce = 2+2/3 ,  from which we conclude that ce ) 2/3.  The positive-charge 
contributions to the r.h.s, of the sum rule (17) may contain both positive and negative 

terms, since the sign of  E j+ is not constrained. This means that there can be cancellations 

of  the leading chiral powers of  the positive-charge modes contributing to the sum rule in 

the chiral limit. Matching of the chiral powers on both sides of  Eq. (17) yields therefore 

the inequality 0 ~> 1 - 2a  + 2/3. To this inequality we add side-by-side the previously 

derived equality 0 = 3ce - 2 - 2/3, and obtain c~ ~< 1. In case of  no cancellations ce = 1. 

Combining the above results one gets [29] 

2 /3  ~< ce ~< 1. (29) 

Note that these inequalities are non-trivial, since in the vacuum the corresponding power 

is a = 1/2, which is less than 2/3.  For more details the reader is referred to Ref. [29] .  

Carrying a similar analysis for the neutral pionic excitation in isospin-asymmetric 

medium we find that in the chiral limit it scales the usual way according to Eq. (22),  

i.e. as in the isosymmetric case. This is clear since the medium does not break the third 

component of  isospin. 
We conclude this section with several comments. Firstly, the behavior of  charged 

pionic modes in the chiral limit is radically different when the medium breaks the 

isospin symmetry. For Pt=l < 0 the negative-charge excitation has finite energy in 

the chiral limit, Eq. (24),  and the positive-charge excitation becomes very soft, with 

excitation energy scaling as Eq. (27) (if there is a single mode contributing in the chiral 

limit) or according to Eq. (29) (if there are more modes).  Furthermore, as we will 

show in the model calculation in the following sections, the nature of  this soft mode 

can be quite complicated: it need not be the excitation branch connected to the pion in 

the vacuum, but the spin-isospin sound mode, resulting from collective effects in the 

Fermi sea. 

3.3.  I s o v e c t o r  l im i t  a t  f i n i t e  d e n s i t y  

Now we pass on to the analysis of  Eq. (19),  (20) in the isovector limit m , -  md ~ 0. 
To our knowledge, results of this section are novel. The method is the same as in the 

previous sections, with the obvious difference that now we compare the powers of  

mu - m e  rather than m ,  + ma  on both sides of  the sum rules (19),  (20).  

In isosymmetric medium (-flu - d d ) c  ~ m ,  - m d .  5 Thus, the powers of m ,  - m e  in 
Eq. (19) are matched with 

Ea[; ,-o (9(1) ,  a = 0 , + , - .  (30) 

51n the vacuum we have (fiu - d d ) v a c  ~ m, logmu/#  - m a l o g m a / #  + .... where # is a scale. 
Writing mu/,t = Tff 4 - 6 m / 2  we can expand this quantity for small 6m (and finite ~) to obtain 
(UU --  ~Td)vac ~ (m,, - md) logT'ff / /z  + ( . 9 ( ~ m  2)  ~ ~m.  
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This result is not surprising: since ao is not a Goldstone boson, there is no reason for 
its mass to vanish in the vacuum, or in isosymmetric medium. 

In asymmetric medium the situation is different. Since pl=l = { u t u  - d t d ) c  is large 

in the isovector limit, i.e. does not vanish when m~ - ma ~ 0, also (-flu - - dd )c  is large. 

This is a direct effect of  the asymmetry of the Fermi sea, since the Fermi momenta of  

u and d quarks (or protons and neutrons) are not equal. As a result, the Fermi seas 

of  particles with opposite isospin contribute differently to ('ffu)c and ( -dd)c .  An explicit 

example is provided later on in Eq. (35).  

Repeating the steps of  Section 3.2 we now find that for PI=I < 0 there must exist at 

least one state a + whose excitation energy scales as mu - ma in the isovector limit. If  
there is only one such state, then we find 

(mu  - md)(- f fu  --  -dd)c  ~ O ( m u  - m d ) ,  (31) 
Ea+ - 2p/=l 

[ (a+l - fd lC) ]2  (mu  - m d )  ](-fU - - d d ) c I  3 
= 2p2= l ,.~ O ( m ,  - rod) .  (32) 

Eq. (31 ) shows that there is an exact zero mode in the case of  the strict isovector limit 

mu = md.  Such collective modes have been known to occur in many-body physics [38-  

40].  If  more such states exist, then, in analogy to the case of  pionic excitations (cf. the 

discussion above Eq. (29) ) ,  we find that the excitation energies of these states scale 

as (m, - rod) '~, with 2 /3  ~< o~ ~< I. This result is non-trivial, since in the vacuum the 

corresponding power is ce = 0 < 2/3.  

3.4.  C o m m e n t s  

We end the formal part of  this paper with several comments. We stress again that 
the sum rules of  Section 3 are valid for arbitrary values of the current quark masses, 

not necessarily in the chiral or isovector limit, and for arbitrary densities. All kinds of 

intermediate states contribute to the sum rules: quasiparticles (poles), which can come 

in multiple branches, 2p-2h continuum, etc. 

Another remark concerns the sign of the excitation energy of  a mode. As already 

noticed in Refs. [29,31],  the charged excitation may have negative excitation energy. 

Note, however, that this does not mean that the system is unstable. This is because 
charged excitations change the isospin of  the system. Suppose we request the state ]C) 

to be the ground state of matter with isospin c o n s t r a i n e d  to the value 13. A charged 
excitation in the sum rules involves isospin 13 i 1. Thus, its isospin is outside the 
constrained value, and even if the energy of the mode is lower than the energy of  ]C), 
it does not mean instability of  ]C). As a corollary, we notice that states of  negative 
excitation energy cannot be the soft modes of Eq. (27) in the chiral limit. We conclude 
this from Eq. (27).  Since the quark condensate is negative, we get (for media with 
negative isospin density) that E~+ > 0. 
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In the remaining parts of  this paper we are going to illustrate in detail the general 

results discussed above by a model calculation. We will consider quark matter in the 

Nambu-Jona-Lasinio model [32].  This model acquired great popularity in recent years 

as a framework for calculations of  meson and baryon properties, also in the nuclear 

medium [ 18-27] described as a Fermi gas of  quarks. Although the description of  the 

nuclear medium by a Fermi gas of  quarks is certainly not realistic (unless, perhaps, 

at very high densities where nucleons deconfine), the model is well suited for our 

theoretical purpose: it is consistent with the constraints of  chiral symmetry. Therefore it 

complies to the current-algebra relations, and the sum rules of  Section 3 hold. 

The Lagrangian of  the SU(2)  ® SU(2)  Nambu-Jona-Lasinio model is 

£ = cT( i~-  .L4)q + - ~  ((cTq) 2 + (Oy5'raq) 2) -+- - ~  ((~'raq) 2 + (cTiysq) 2) 

Goj 2 Gp ( ( g l y ~ q )  2 + ( g l y s y ~ q ) 2 )  _ - ' ~ (  gTY~,q) , (33) 
2 

where q is the quark field, .L4 is the quark mass matrix, and the G's denote the coupling 

constants in the various channels. Using the usual technique of  the Hartree approximation 

one arrives at self-consistency equations for the values of the scalar-isoscalar field S, 

the neutral component of  the scalar-isovector field 8, the time component of  the neutral 

vector-isovector field p, and the time component of the vector-isoscalar field w: 

S =  m ,  + ma G~(-ffu + rid), 6 = mu - md Gao(-ffu - rid), 
2 2 

p =  2Gp(u+u - d+d) ,  oJ = Go,(u+u + d+d) .  (34) 

For the numerical study in the examples below we use the following two parameter 

sets, fixed by meson properties in the vacuum: 

(I) G~ = 7.55 GeV -2, Ga0 = 5.41 GeV -2, Gp = 7.09 GeV -2, 

A = 750 MeV, mu = 2.52 MeV, md = 4.52 MeV, 

(II)  G,~ = 4.35 GeV -2, Ga0 = 3.34 GeV -2, Gp = 12.4 GeV -2, 

A = 954 MeV, mu = 1.03 MeV, md = 3.03 MeV. 

The value of  Go~ and the ~o field are not relevant, since we will look for excitations 

carrying no baryon number. Parameter set (I) has been used in Ref. [41] to fit the 
mesonic properties: m~, F~, mp -- 765 MeV, 6 and m n = 519 MeV. This fits four 

parameters out of  original six. The remaining two parameters are chosen in such a way 
that S = 361 MeV, and the current quark masses md and rn, are arbitrarily split by 

2 MeV. Parameter set (II)  also fits m~, F~, m n and S = 361 MeV, but not mp. It uses 

6 Note that in this fit the p meson lies just above the qq production threshold, hence the fit is somewhat 
problematic. However, this issue is not of much relevance for our illustrative application of the model. 
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a much larger value for Gp. Such larger values are needed if one wishes to fit the all 

zr-zr scattering length [42].  Following Ref. [41],  we regularize the model using the 

sharp three-momentum cut-off. Our results do not qualitatively depend on the choice of  

the regulator, since the constraints of current algebra are satisfied. The three-momentum 

cut-off obeys these requirements, in particular it leads to correct Ward identities [ 18]. 

The scalar and vector densities of the u and d quarks are equal to 

f d3k (O(ku - [ k  I) - O ( A - I k l ) ) ,  
M. 

(flu) = 2Nc (277.) 3 

f d3k (O(kd - Ikl) - O(A - Ikl)), Md 
(-dd}= 2Nc (2~-) 3 V / ~  

M 2 + 

d3k 0 k d3k 0 k - 

where A is the sharp three-momentum cut-off, and k. and ka are the u and d quark 

Fermi momenta, and O is the step function. We have introduced scalar self-energies of  

u and d quarks, given by 

M, = S + (3, Md = S - 8. (36) 

Self-consistency requires that the quark propagators be evaluated with mean-fields (34):  

S~I,I= P - Yo (+ 2 + w) - Mu/d + iesgn(tXu#l - Po), (37) 

where/x~, and/xa are the chemical potentials of the u and d quarks. 

5. Mean fields in medium 

We introduce the x and y variables, 

P8 Pu + Pd P~ x = - - - ,  y - (38) 
Po NcPo Pu + Pa' 

where Po = 0.17 fm -3 is the nuclear saturation density, pe is the baryon number density, 
and P./a are the quark densities. The variable y measures the isospin asymmetry of the 

medium. In symmetric medium y = ½, and in pure neutron matter Pa = 2p.  and y = 3" 

The isospin density of  the system can be written as pt=l = ½(P, - P a )  = NcPoX( ½ - y ) .  
In our study we fix the x and y variables, hence we examine properties of quark matter 

at a given baryon density and isospin asymmetry. 
The first task is to find the mean fields by solving Eqs. (34).  For the field p, which 

couples to the isospin current, we get immediately p = 4Gppl=l = 4GpNcPoX(½ - y).  
The values of  S and 8 are determined by solving numerically the first two of  Eqs. (34).  
Results for Mu, Ma and - g p  are displayed in Fig. 1. For isosymmetric matter (top 
row) M, is practically equal to Ma, and the small splitting is caused by the current 
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Fig .  1. The quark scalar self-energies, M j  ( so l id  line) and Mu (dashed line), and the vector self-energy o f  

the d quark, l p  (dotted line) plotted us functions o f  x = PB/PO for several values o f  y.  The top plots are 
for y = 1 / 2  (isosymmetric matter), the middle plots are for y = 2 / 3  (pure neutron matter), and the bottom 
plots are for y = 1 (pure d-quark matter). The plots on the left (right) are for parameter set 1 ( I I ) .  

quark mass difference, ma - m, = 2 MeV. For y = ~ (middle row) and x in the range 
1 to 4 we find that M,, is greater than Ma by 10-20 MeV. At maximum asymmetry 

(bottom row) the u quark is heavier than the d quark by 100-200 MeV. There is a 
1. the d quarks are more abundant, simple physical argument why Mu > Md at y above 3" 

and it is energetically preferable for the system to make them lighter. 7 
We note that the field S has a large value of  the order (.9(1) if the chiral symmetry 

is broken. Otherwise it is of  the order O ( m ,  + md). The field 6 is large only if 

( -~u-  rid> ~ O ( 1 ) ,  which occurs in isospin-asymmetric medium. In isosymmetric 
medium (~u - ffd) ~ O ( m ,  - ma), and 6 is small, of the order O ( m ,  - ma). 

6. Meson propagators  in medium 

As explained in Appendix A, only excitations "at rest" enter the sum rules. Further- 
more, we shall only consider the charged meson propagators, since the interesting effects 

take place for that case. 
In the case of  no vector-isovector interactions (i.e. Gp = 0 ) ,  the one-quark-loop 

inverse pion propagator acquires a simple form 1 - G~,J~, where 

7 No te  that although the values of constituent quark masses in the t w o  lower  r o w s  o f  F ig .  1 decrease with 
density, in the strict sense it does not mean chiral restoration. This is because chiral symmetry cannot be 
restored when isospin is broken. Indeed, if Q3[C) 4: O, then by charge algebra [ Q ~ ,  Q s ] I C )  4: O, h e n c e  w e  

cannot restore chiral symmetry, in which case w e  w o u l d  have  a~ lc )  = O, a = 1,2, 3. 



174 W. Broniowski, B. Hiller~Nuclear Physics A 643 (1998) 161-188 

J~.(q)=-iTr f dnk k (-~-~)475S~( + ½ q ) y s S d ( k -  l q). (39) 

In the presence of vector-isovector interactions there is a complication due to the well- 
known mechanism of mixing of rr and the longitudinal component of the A j meson. In 
that case in order to find excitation energies one has to find zeros of the determinant of 
the inverse rr-Al propagator matrix, D~. (see, e.g., Ref. [ 18] for details concerning this 
problem). The explicit form of the determinant is given in Eq. (B.4). 

It is worthwhile to look at the analytic structure of Dr,  or equivalently, J~.~,, in the 
variable q0. The matter state I C) consists of the Fermi seas of d and u quarks, with 
kd > k,, as well as of the Dirac sea occupied down to the cut-off A. A positive-charge 
Fermi sea excitation moves a quark from the occupied d level to an unoccupied u level. 
Pauli blocking allows this when 

p + ~ + M ] - ~ d + M ~  < q o < P + ~ u  2 + M  2 - V / ~ u  2+M~.  (40) 

Thus, within these boundaries D~(qo) possesses a cut. The cuts associated with the 
Dirac sea are within the boundaries 

p -  ~ + M  2 -  v / A Z + M ~ < q o  < P -  ~ + M u  2 - ~ k ~ + M  2, 

p + v / ~ ,  2 + M ~ + ~ z z + M ~ < q o < p + ~ + M  2 + V  ~ + M  2. (41) 

In the a0 channel we proceed analogously. We define 

Jaoao( q) = -iTr / d4k 
S , ( k  ÷ l q )Sd(k  -- ½q). (42) 

For the c a s e  Gp = 0 the inverse charged ao-meson propagator is 1 - GaoJao,,o. For finite 
Gp there occurs mixing between the a0 meson and the longitudinal component of the p 
meson. This mixing is proportional to the mean field 8, hence it is small, of the order 
of O ( m ,  - ma) in isosymmetric medium. The stated behavior can be promptly seen 
from Eq. (B.8). If the medium is asymmetric, then the mean field 6 is large, and such 
is the ao-p mixing. The explicit form of the appropriate determinant, Da 0, is given in 
Eq. (B.9). The location of the cuts of D,, 0 is of course the same as in the pion case. 

7. Mesons in symmetric  matter 

Fig. 1 shows the results of the numerical calculation of the charged pion excitation in 
symmetric matter. In Fig. 2a we show the position of the charged pion excitation at rest 
(usually called the in-medium pion mass) as a function of baryon density. The behavior 
is the expected one [22], with the pion mass increasing slowly with the baryon density 
up to about x -~ 2. Above this point chiral symmetry is restored, i.e. S ,.-, O(mu + ma), 
(cf. the upper left Fig. 1 ) and the pion mass grows more rapidly. 

Fig. 2b shows the anatomy of the in-medium GMOR sum rule (9). We note that up 
to x = 2 practically all of the sum rule is saturated by the charged pion poles. At larger 
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Fig. 2. Charged pion in isosymmetric matter (y = 1/2), parameter set 1. (a) Charged pion excitation energy 
plotted as function of x. (b) The contribution of the pion poles to sum rule (9): the solid line shows the 
contribution of 7r + (which equals to the contribution of 7r-), the dash-dotted line shows the combined 
contribution of the two poles. 

x some small (a few per cent) strength is carried by the cuts (cf. Eqs. (40) ,  (41 ) ) .  

We have verified for all other cases shown in this paper that the sum of all pole and cut 

contributions to the sum rules adds up to 100%. This serves as a check of the numerical 

calculations. 

The case of the charged a0 excitation is displayed in Fig. 3. This excitation emerges 

as a bound state from the q~ continuum at x _ 0.6. Its mass decreases with the baryon 

density up to x -~ 2.5, and then starts growing (Fig. 3a). The contributions to the sum 

rule (19) are shown in Fig. 3b. We can see, especially at lower values of x, that the 

pole contribution fall short of saturating the sum rule. Continuum contributions carry 

about 50% at x = 1 and about 15% at x > 3. 

8. Mesons in asymmetric matter 

In this section we come to the central part of our paper. We will show that in our 

model the sum rules from Section 3 are, for the case of isospin asymmetric medium, 

satisfied in a non-trivial way. This involves a collective state, specific for asymmetric 

medium. As explained in e.g. Refs. [43,44] in the framework of conventional nuclear 

physics, it is possible for the pion propagator in neutron matter to have an additional 

pole at very low excitation energies. Such an excitation is known as the spin-isospin 
sound. We will show that this phenomenon occurs in our model. 

The existence of collective modes in our model is related to the presence of the Fermi 

sea cut (40) .  Fig. 4 shows the real part of the determinant D~ for y = ~ (pure neutron 
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Fig. 3. Charged a0 meson in isosymmetric matter (y = 1/2). (a) The excitation energy plotted as function of 
x. (b) The contribution of the a0 poles to sum rule (12): the solid line shows the contribution of a~ (which 

equals to the contribution of a~7, the dash-dotted line shows the combined contribution of the two poles. 

matter) and two sample parameter choices, plotted as a function of the energy variable 

qO in the region of the Fermi sea cut. Let us first look at the solid line, corresponding to 
parameters with a large coupling constant Gao. The presence of the cut manifests itself 
by the two cusps. The imaginary part of D= is non-zero in the region between the two 
cusps, and vanishes outside. We notice that a zero of D= exists in the vicinity of the 
cut, indicated in the figure by a blob. This zero, at qO = 23 MeV, corresponds to the 
energy of the spin-isospin sound mode. The dashed line, corresponding to lower Ga0, 

also has cusps, but no zero of D= exists. This can be understood as follows: the cut 
region is wider and the function at the cusps acquires higher and lower values as the 

0.06 

0.04 

0.02 

-0.02 

-0.04 

0.005 0.01 0.015 0.0211.025 0.03 

q 0 [GeV] 

Fig. 4. The real part of the pion determinant for Gao = 4 . 7  G e V  - 2  (dashed line) and Gao = 9.4 GeV -2 
(solid line), plotted as a function of qO for 3' = 2. Other parameters are G,z = 11.7 GeV -2, A = 619 MeV, 
and mu = md = 5.7 MeV. For large values of Ga o a zero of the inverse pion propagator is induced in the 
vicinity of the du, denoted by a blob. This indicates the presence of the "spin-isospin sound". 
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splitting of  the scalar self-energies Mu and Md is larger (cf. Eq. (40) ) .  This splitting is 

proportional to the mean field 6, which increases with Gao, and with asymmetry y. Thus 

we have a critical behavior: above some critical values of  asymmetry y and coupling G~ o 

the spin-isospin mode emerges. We denote it by 77s. In the example shown in Fig. 4 the 
excitation energy of  77s is lower than the left boundary of  the cut. We find that this is the 

case for small values of  the vector-isovector coupling constant Gp. At  sufficiently large 

values of  Gp the collective mode emerges at energies larger than the right boundary of 

the Fermi cut. In any case, the collective state lies very close to the Fermi sea cut, with 

excitation energy of  the order of  10 MeV. 

In addition to the collective mode 77s, there exist the usual two charged pion branches, 

77+ and 7r-,  with excitation energies of  the order of  m~-. These branches connect to the 

vacuum pion as the baryon density is lowered. Thus, depending on parameters and the 

value of  y, we have, in our model, two or three branches of  the charged pion excitations. 

For the charged ao channel the situation is similar: for appropriate parameters and 
1 Y > 3, a collective mode ao s appears in addition to the usual a + and a 0 modes. 

9. S u m  rules  in a s y m m e t r i c  m e d i u m  

In this section we show the results of  our numerical study. For the case of  pionic 

excitations these results have been already reported in Ref. [31 ] (for the slightly dif- 

ferent parameter cases with mu = m~). Fig. 5 shows the results for the 77 channel for 

the parameter set ( I ) .  Fig. 5a shows the excitation energies of the usual branches, 

77+ and 77-, and Fig. 5b shows the excitation energy of the collective 77s mode. The 

dashed-dotted lines show the boundaries of  the Fermi-sea cut, (40).  The collective mode 

emerges from the cut at a low value of  the baryon density. Its excitation energy is posi- 

tive for x between 0.6 and 3.4, and negative otherwise. In Fig. 5c we show the relative 

contributions from the poles to the in-medium GMOR sum rule, Eq. (9),  and the total 

contribution from the three poles, indicated by the dash-dotted line. The poles practically 

saturate the sum rule, leaving 1-2% for the cuts at large values of  x. The contribution 

of  77s to the sum rule (9) is of  the order of  a few per cent. Its sign follows the sign of  

the excitation energy in Fig. 5c, as is apparent from Eq. (9).  Fig. 5d shows the relative 

contribution of  the poles to the sum rule (13),  and the total pole contribution, indicated 

by the dash-dotted line. We note that this sum rule is saturated by the pole at the 99.9% 

level - the cut contributions turn out to be very small. At larger value of  x the collective 

77s mode dominates over the other modes, and for x > 3 it practically saturates the 
sum rule. We note that the sign of  the contributions is associated with the charge of  the 
excitation, as is clear from Eq. (13).  

Fig. 6 shows the result of  a formal study of  the chiral limit, m,, + md - - +  O. For fixed 
values of  y = 2 and x = 2 we lower the value of  

ITltt q- In d 
i f - -  phys__  p h y s '  (43) 

///u t / n  d 
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Fig. 5. Properties of charged pion excitations for y = ~ and parameter set (I), plotted as a function of baryon 
density. (a) Excitation energies of ~+ and ~'- .  (b) Excitation energy of 7r s (dotted line) and the boundaries 
of the Fermi sea cut (dot-dashed line). (c) The relative contribution of rr +, ~ -  and ~'s to the in-medium 
GMOR sum rule (9), and the total contribution from the three poles (dot-dashed line). (d) The relative 
contribution of 7r +, ~ -  and ~'s to the sum rule (13). The total contribution from the three poles (dot-dashed 
line) practically saturates the sum rule. 

where  here the superscript  "phys"  denotes  the values f rom the parameter  set ( I ) .  Fig. 6a 

shows that as the value o f  ce is decreased,  the excitat ion o f  the modes  go down.  The  

exci ta t ion energies  o f  7r + and ~--  modes  go to finite values at ce ~ 0, and the exci tat ion 

energy of  7rs goes  to 0. Hence  ~ s  is the chiral soft mode  of  Eq.  (27) .  Figs. 6b,c show 

that in the chiral l imit  o f  ce ---, 0 the ~ s  saturates the sum rules (9 ) ,  (13 ) .  However ,  
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Fig. 6. Study of the chiral limit for x = 2 and y = 2. Convention for line the same as in Fig. 5. (a) Excitation 
energies, (b) relative contributions to the sum rule (9), and (c) relative contributions to the sum rule (13), 
plotted functions of or, Eq. (43). The spin-isospin sound mode ~r s is the chiral soft mode of Eq. (27). 

this happens at very low values of ce, around In ce = - 4  or - 5 .  Such values of ce would 

correspond to the vacuum value of the pion mass of the order of 15 MeV. This indicates 

that from the point of view of the sum rules we are quite far away from the chiral limit 

with the physical values of current quark masses, i.e. with a = 1. 

In order to better illustrate this point we show in Fig. 7 how the excitation ener- 

gies of various modes approach the chiral limit. Following Ref. [29] let us introduce 

d im(X)  = limm__.0 (log X / l o g  ~ ) ,  which we call the chiral dimension of quantity X. In 

the chiral limit a quantity X has some scaling with a power of ~ = mu + md. The 

function d im(X)  extracts this power (for instance in the vacuum dim(m~) = 1/2) .  The 

dotted line in Fig. 7 shows the chiral dimension of the excitation energy of ~'s, which 

tends to 1 in the chiral limit, according to Eq. (27).  The chiral dimensions of ~-+ and 

~-- go to 0 in the chiral limit. The solid line in the middle of the plot is for 7r + or ~-- 

in symmetric matter, y = ½. In that case, according to Eq. (22),  the chiral dimension 

1 in the chiral limit. goes to 
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Figs. 8 and 9 show the results for the parameter set ( I I ) ,  also for y = ~ as in the case 

discussed above. The qualitative difference between the present and the former case is 

that now the spin- isospin sound mode Its has negative excitation energy for all values 

of x. Therefore, in the chiral limit, it is the ~'+ mode, not ~rs, which becomes the chiral 

soft mode of  Eq. (27)  (see Fig. 9) .  

Now we pass to the discussion of  the a0 channel, which is done for the parameter 

2 Fig. 10a shows the excitation energies of  the a~- and a o set ( I )  only, and for y = 5" 

branches. After emerging from the qO continuum their energies first decrease until 

x ~ 3, and then start increasing. The collective mode a s emerges from the cut at 

x ~ 0.75 (Fig.  l l b ) .  Its excitation energy is negative and small, less than 3 MeV. 

Figs. 10c,d show the relative contributions to the sum rules (12)  and (14) .  We note 

that the a s mode plays a major role in sum rule (12) ,  and completely dominates sum 

rule (14) .  

Fig. 1 l shows the isovector limit for the a0 channel. In this case 

m u - m d 
phys" ( 4 4 )  

a -  muphy s - r o d  

We can see that the a s mode is the isovector soft mode of Eq. (31 ). Its excitation energy 

drops linearly to 0 as ~ is decreased (Fig. l l a ) ,  and the sum rules are completely 

saturated by the a s mode in the isovector limit of c~ ~ 0. 

10. Concluding remarks 

There are several messages which follow from our calculation. Firstly, we note that 

in order to satisfy the current-algebraic sum rules it is necessary to include all modes,  

in particular the spin- isospin  sounds. Certainly, a nuclear system is a very complicated 

object, and even our simple model, treated at the l p - l h  level, has revealed a rich 
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Fig. 8. Same as Fig. 5 for parameter set (II) .  

structure of the excitation spectrum. The power of the current-algebraic sum rules relies 
in the fact that they relate in a non-trivial way the properties of these excitations to the 
quark condensate and the isospin density. 

One may ask the following general questions: How far are we in a nuclear system 
from the strict chiral limit (mu + m d  ---4 0 )  and the strict isovector limit (mu - md --+ O) 

in the real world, i.e. in a dense nuclear system, and with the physical values of 
mu and rod. The results shown in Figs. 7 and 11 indicate, that in moderately dense 
isospin-asymmetric systems we are far away from the chiral limit, and very close to the 
isovector limit. From Fig. 7 we find that the ~s  mode excitation energy scales linearly 
with m ,  + md starting from m~r --~ ~ 1 3 9  MeV ~ 7 MeV, much lower than the 
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Fig. 9. Same as Fig. 6 for parameter set (II). The ~-+ mode is the chiral soft mode of Eq. (27). 

physical value. On the other hand, Fig. 10a shows that the excitation energy of the a0 s 

mode scales linearly with mu - md already at physical value, corresponding to ~r = 0. 

Another comment is relevant for application of  effective chiral Lagrangians to nuclear 

systems. In this approach one basically assumes that there is one pion quasiparticle in a 

nuclear medium, albeit with modified properties compared to the vacuum. In our model 

we find additional branches. Since they contribute largely to the sum rules, they cannot 

be neglected. In an effective model they should be included as additional degrees of  
freedom. 

The final remark concerns strangeness. Although in this paper we have worked for 
simplicity with two flavors, extension to three flavors is straightforward. In fact, one 

can make a simple "translation" of  the sum rules of Section 3 to the case of  any flavor. 
For example, changing the d (or u) quark to s we obtain the case of  charged (neutral) 
kaons. This is simply the replacement of  /-spin by U or V spins. Note that nuclear 

matter is asymmetric with respect to U and V spins, therefore kaonic excitations on 
top of  nuclear matter are parallel to the case of charged pionic excitation on top of  
isospin-asymmetric matter. We note that recently the authors of  Ref. [ 45 ] discussed the 
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Fig. 10. Properties of charged a0 excitations for y = ~ and parameter set (I), plotted as a function of baryon 

density. (a) Excitation energies of a + and a o .  (b) Excitation energy of a s (dotted line) and the boundaries 
of the Fermi sea cut (dot-dashed line). (c) The relative contribution of a +, a o and a s to the sum rule (12), 
and the total contribution from the three poles (dot-dashed line). (d) The relative contribution of a +, a o 
(indistinguishable from 0) and a s to the sum rule (14). The contribution of a s saturates the sum rule. 

k a o n i c  e x c i t a t i o n s  in the  F e r m i  gas  o f  quarks  in the  N a m b u - J o n a - L a s i n i o  m o d e l .  

A p p e n d i x  A .  D e r i v a t i o n  o f  s u m  r u l e s  i n  m e d i u m  

In this  a p p e n d i x  w e  e x p l a i n  the  der ivat ion  o f  s u m  rules  ( 8 ) - ( 1 4 ) .  A l t h o u g h  the  

t e c h n i q u e  is  very  w e l l  k n o w n ,  w e  b e l i e v e  it is  w o r t h w h i l e  to r e m i n d  it in s o m e  greater  
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detail in order to point out the differences between the derivation in the vacuum and in a 

medium. The first step in deriving the sum rules is to sandwich both sides of Eqs. ( 4 ) -  

(7)  by the medium state IC). On the r.h.s, this leads to a "known" quantity involving 
in-medium condensates (Cl~u(O)IC) = <-~u)c and (-dd)c. Next, one inserts a complete 
set of  intermediate states Ik, j )  between the current operators on the l.h.s. These states 
are eigenstates of  the momentum operator, ,~, and of the Hamiltonian H = f d3xT-£(x). 
They can be labeled by additional quantum numbers, e.g. isospin. The medium state is 
also an eigenstate o f / 9  and H: 

 lC> =PcIC) ,  HlC) =£cIk ,  j) .  ( A . 1 )  

For matter of  a large volume V the quantities Pc and £c are proportional to V. It is 
convenient to measure the momentum and the energy of intermediate states relative to 
the state ]C), i.e. 

? l k , j >  = (k  + P c ) I k , j > ,  HIk , j>  = ( E j ( k )  + Ec)  Ik, j>. (A.2) 
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Quantities k and Ej (k)  form a Lorentz four-vector. Thus the Lorentz-invariant mea- 
sure of integration is d3k/12Ej(k)l, and the unit operator can be decomposed as fol- 
lows: [29] 8 

Z [  d3k Ik, j)(k,j[. (A.3) 
1 = - - J  (27r)32]Ej(k)l 

.1 

We illustrate the method on Eq. (7). We rewrite the l.h.s., insert the unit operator (A.3), 
express the charges by time components of currents, shift the coordinates of the currents 
with the translation operator, and use Eq. (A.2): 

[ Q - ,  [Q+, 7~QCD(0) ] ] = (2~)3 21E¢(k) I 
.1 

× ((CIQ+lk,j)(k, jl [Q-, ~ ( o ) ]  IC> - <cI [ Q - ,  7-t(O)][k,j)(k,jlQ+lC)) 

/ d3k /d3y/d3x 
= Z .  (2~-)3 21Ej(k)l 

J 

× ((ClJg(y)lk, j)(k, jl[Jo(X),Tt(O)][C ) 
-(C[[ Jo (Y), 7-((0) ][k, j)(k,  j[J+ (x)[C}) 

/ , .  
= ~. (27r)B21Ej(k)l 

J 

× ((Cleipc'YJ~(O)e-i(k+Pc)'Ylk, j)(k,jlei(k+~°c)X[Jo(O),7-[(O)]e-ipc'XlC ) 

_ ( C l e i p c Y [ J o ( O ) , 7 - L ( O ) ] e - i ( k + p c )  y • . i(k+pc " lk, j)(k,Jle )'xJ~(O)e-'pc'XlC)) 

= Z /  d3k I ~3(k) 
• 21Ej(--k- O) 

J 

× (<CIJJ(O)lk=O,j><k=O, jl[Jo(O)(O),f£x~(O)]lC> 

-(Cl[Jo(O)(O),/d3xT-t(O)llk=O,j)(k=O, jlJ~ (O)lC)) 

1 (Ei(k=O)(CiJ+(O)lk=O,j)(k=O,j]jo(O)lC) 
= ~ 21Ej(k : 0)[ 

.1 

+ Ej(k = O)(CbJo(O)lk = O, j>(k = O, jlJ~(O)lC)) 
1 1 

= ~ ~sgnEj- [<j-fJo(O)lC>l 2 + ~_, ~sgnEi+ I < j + l J ~ ( O ) [ C > l  2 . 
.j ~ .j, 

In the last line we have decomposed the sum over indices j into the sum over positive 
and negative isospin excitations. We have introduced the short-hand notation Ij +} and 

8 The measure of integration is the same as for example in the case of phonon excitations on top of a solid• 
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[J-) for such excitations with relative momentum k = 0, and denoted their excitation 

energies by Ei+ and Ej-. This completes the derivation of the sum rule (12). With all 
other sum rules the steps are exactly the same as described above. 

Appendix B. Charged meson propagators in medium 

The quark bubble for a meson channel is defined as 

d4 k 
grr,(q) = - i T r  ~-T~)4rsu(~ + ½q)-#Sa(k - ½q), (B .1 )  

where T = y0Fty0 [41]. We use F = ~'5 in the pion vertex, which allows to get rid of 

factors of i in Ward identities below. For the considered case of q = 0 the 7r-Al mixing 

involves the time components of the axial propagator, J~A,, and the mixed propagator, 

J0~A ~ . The determinant of the inverse 7r-A1 propagator is equal to 

D~r(q °) = (1 - G,~J~r,r(q°))(1 +GpJ~A~A~(qO)) +GcrGp(J°~Az(q°)) 2. (B.2) 

The signs follow the convention for signs of the coupling constants in Eq. (33). The 

following Ward identities hold among the bubble functions [41]: 

( qo - P)  J~AIA1 ( qO) = 2SjOAI ( qO) + 2(utu _ did), 

(qo - P)J°A~ (qO) = 2SJ~(qO) + 2(flu + d d ) ,  (B.3) 

where p and S are defined in Eq. (34). These identities follow from the general 

requirements of chiral symmetry [41]. They can be explicitly verified to hold with 

our choice of the three-momentum regulator. Using Eqs. (B.3), (34) we can rewrite 

Eq. (B.2) as 

qo {mu + md (2(mu_+__md)SG-~lGp l)  
D~(qo) - qo - P 2 ~  + k, qo(qo - P) 

[ 2S-(muq-md).l ) (B.4) × G,rJ~r~(qo)- 2S " 

This form is convenient, since it involves only one bubble function, J ~ ,  which has the 

explicit form 

A 
f d3k ( P -  qo) + 2r3Mu/v/k2 + M2 

J~(qo) =4No (2rr)3 ( P -  qo) 2 +2(pTqo-~--~=M~-+4S6 
ku 

+ (u  --+ d, p --. - p ,  6 ~ -6 ,  qo --* -qo) .  (B.5) 

The zeros of D~(qo) correspond to poles of the mixed charged 7r-A1 propagator. The 
pole contributions to sum rules (9), (13) are explicitly given by the expression 
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sEn<Ej+)  I<j+IJ~.01c>l 2 -  mu -t-rnd [SJ, r~r(qo) -GTr l (S  - (mu + md)/2)] q°=E) 4- 
' qo -- P -dD-~-~-o)/~qo " 

(B .6 )  

In the ao-p channel  we obtain, i f  full analogy to Eqs. ( B . 2 ) - ( B . 6 ) ,  

Dao(q °) = (1 - GaoJaoao(q°))(1 + GpJ~pp(q°)) + GaoGp(J~aop(q°)) 2. (B .7)  

Through  the use o f  Ward identities 

(qo - p)3~pp(q °) = 28fiaop(q °) + 2(u tu - d t d ) ,  

( qo - p) ~op( q °) = 26Jaoao ( q °) + 2(~u  - dd),  (B .8 )  

where  p and ao are def ined in Eq. (34 ) ,  we can rewrite Eq.  (B .7)  as 

D ao (qo) - - -  
qo f mu--md + (2(mu_--md)t3G~olGp _ 1) 

qo - P [. 2~ \ qo( qo - P) 

x [GaoJaoao(qo) -2(3-(mu-md)]~ } ' 

where  J~oao is expl ici t ly  g iven by 

(B .9)  

A 

f d k ( P - q o )  +2SM. /v / -~+M2u 
Ja°a°( q°) =4Nc ( 2~)3 ( p _  qo)2 + 2 ( p _  qo) v / ~  + M2 + 4S6 

ku 

+ ( u  ~ d,  p - - ~  - p ,  ~ ~ - 6 ,  qo --~ - q o ) .  (B . IO)  

The zeros  o f  D~ 0 (q0) cor respond to poles  o f  the mixed  charged a o - p  propagator.  The  

pole  contr ibut ions to the sum rules (14)  are explici t ly obtained f rom the express ion 

sgn(E/-~ )[<j+lJo~lC>l 2 

_ m , - - m d  [(3Jaooo(qo)--G~o'(~3--(mu--md)/2) ] q°:EJ ~ 

qo - P dDao ( qo) /dqo " 
(B .11)  
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