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Abstract

We use proper-time regularizations to define the one-loop fermion determinant in the form suggested by Gasser and
Leutwyler some years ago. We show how to obtain the polynomial by which this definition of Indet D needs to be modified
in order to arrive at the fermion determinant whose modulus is invariant under chira transformations. As an example it is
shown how the fundamental symmetries associated with the NJL model are preserved in a consistent way. © 2000 Elsevier

Science B.V. All rights reserved.

1. Introduction

In the path-integral formulation of quantum the-
ory the effective action involves, after integration
over the fermionic fields, the functional determinant
of the differential Dirac operator D in the presence
of externa sources. The central object in the calcula
tion of the effective action is aways the quantity
Indet D. We start with the definition

1 =dT
IndetD=—-—-| —

T,A2)Tr(e 0
2 ), 7 ( )Tr( )

—fd4XP(U,a,0',7T), (1)

which allows the Schwinger proper-time method to
be applied to fermions, involving the square of the
operator D. Here D = y;D has been introduced in
[1], D is the Dirac operator in the presence of
external vector (v,), axial-vector (a,), scdar (o)

and pseudoscalar (7r) sources. This definition of
IndetD allows to treat the real and imaginary parts
of IndetD on equal footing, as opposite to the D'D
definition. The polynomial P(v,a,0,7), which de-
pends only on the externa fields, is fixed by requir-
ing the modulus of the fermion determinant to be
invariant under chira transformations. It has been
worked out in the context of a renormalizable theory
[1]. The present work represents an extension of the
results of [1] to the case of non-renormalizable mod-
els and in particular to incorporate explicitly the
process of dynamical chiral symmetry breaking of
the Nambu—Jona-Lasinio (NJL) model [2]. As an
aternative method one can use the integral represen-
tation of the complex power for the pseudo differen-
tial operator [3]. In the latter case an unambiguous
definition of the determinant of the Dirac operator is
obtained. The determinant is shown to be vector
gauge invariant and to yield the correct axial and
scale anomalies.
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We consider a class of regularization schemes
(proper-time regularizations) which can be incorpo-
rated in this expression through the kernel p(T, A2).
These regularizations allow to shift in loop momenta.
A typica example is the proper-time cutoff where
the kernel p(T, A?) is equal to

})(T,AZ)=@(T—%). (2)

Another choice for the kernel can be the covariant
Pauli-Villars cutoff [4]

D(T,A?) =1— (1+TA2)e ™, (3)

which leads to the well-known effective potential of
the NJL mode! [2]. The result is?®

m? GA?
V(m>=z(1‘ o )

2

N,
+—2 m*In 1+—2
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2

—A%ln{1+ F

l- (4

Both of the kernels (2) and (3) have been used in
many papers, for example, see papers [6,7] and [8]
correspondingly. A wide set of possibilities for the
kernel p(T, A?) have been considered in the papers
[9,10].

The counterterms P(v,a,0,7) in formula (1) can
be fixed from the transformation properties of
Indet D. We consider here the case of chira gauge
theories with the SU(2), X SU(2)g X U(1),, chira
symmetry. Explicitly, let D be equa to

D=y“(i8u+vﬂ+aﬂy5)—0'+iy5ﬂ', (5)

I =g = =
where v, =v,7, 8, =a,1, T=7%, o=0%,, T,

=), [r,7]=2i¢ym., 1=123 The corre

! See, for instance, [5] and references in it.

sponding chiral transformations of the external fields
are given by

SUM=3Ma+i[a,UM]+i[B,aM], (6)
8aﬂ=auﬁ+i[a,an]+i[ﬁ,u”], (7)
so=i[ac ]~ ), (8)
dm=i[la,m]+{B,0}. (9)

Here a = a;7, is the infinitesimal transformation
generated by the vector currents and 8= B;7, is a
chiral transformation. The transformation law of
IndetD in this case is known explicitly [11]:

i
S8IndetD =

(4:\‘:)2 fd“xTrf( p0), (10)

where
wBuv 4 2i
\Q=8 a UaBU;LV—’—gVaaBVMaV—’—?{UaB’aMaV}
8i 4
Ty Al T 38858,3,

. (11)

The field strength tensor v, associated with v, is
defined as

Vo =90, — U, — i[uﬂ,uv] (12)
and V, a, stands for
V.a,=4qa,—i[y,.a] (13)

Our am now is to calculate the polynomial
P(v,a,0,7) in the framework of a nonrenormaliz-
able approach. Let usnotethat P(v,a,0,7) is unique
up to a chiraly invariant polynomia. One can al-
ways choose P in such a manner that the determi-
nant is not modified if the external fields a, and =
are switched off. In paper [1] it has been shown how
to do this for renormalizable theories. There are two
essential differencesin our case. The first oneis that
we have to use a regularization with finite cutoff A.
The ¢-function technique used in [1] is not good for
that because it does not lead to the correct descrip-
tion of the spontaneous chira symmetry breaking
phenomena. The second one is also related to the
cutoff dependence of the result. As we shall show,
the polynomial P(v,a,0,7) gets now systematically
contributions from the terms which would vanish in
the limit A — o, This fact renders its evaluation
rather technical.
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2. Counterterms and symmetry

To illustrate our consideration we shall discuss
the NJL model with the SU(2), X SU(2); chira
symmetry. We use the model version with only the
scalar-scalar and pseudoscalar-pseudoscalar type of
four quark interactions. Integrating out the quark
fields one obtains the action of the model in terms of
scalar o X 1 and pseudoscalar 7= 7' collective
mesonic degrees of freedom

o+m)’+ 2
( )

S = —ilndet D — [d*x G (14)
The Dirac operator D is given by
D=iy",—m—o+iym, (15)

where m denotes the constituent quark mass gener-
ated in the process of spontaneous chiral symmetry
breaking. Now in order to be able to derive the
polynomial P(o,m), it is crucial to perform the
symmetry transformations in the broken phase. In the
phase with broken chira symmetry the transforma-
tions (8) and (9) become

—{B.7}, (16)
T(577'=i[oz,77]+{,B,(T+m} (17)

for the considered isospin content of scalar and
pseudoscalar. Note that if one would first derive
P(o,m7) in the symmetric phase and then perform
the shift o — (o + m), it would be necessary to
calculate all orders of the proper-time expansion. All
of them would contribute as a factor with a certain
power m to a fixed order in the fields. Therefore by
constructing the symmetry transformations in the
broken phase (16), (17), one achieves a resummation
of an infinite number of terms of the symmetric
phase.

Under global chiral transformations the change in
the Dirac operator D = ;D is given by

30 = [B.a]+{B.Bys). (18)

Therefore, to get the related polynomial P(o,7) for
this case one has to integrate the equality

8IndetD =0, (19)

where Indet D is defined according to Eq. (1). The
variation of P(o,7) has to cancel the symmetry
breaking part coming from the proper-time integral.
In this way one gets

6P (o ,m) =F Z Rtr( Bysan.1), (20)

T n=0

where tr represents trace in interna space. In the
case under consideration it includes summations over
flavour, colour and Lorentz indexes: tr = trtr tr, .
One can see that P(o,7) is not invariant under
chira transformations, picking up the contribution
which is linear in 8. The functions R, represent the
integrals which appear in the result of the asymptotic
expansion of the heat kernel

Ry= — [ (T, A%)d[T" e ]
0

- f:dTr“—Z[mZT— (n—1)]e T"p(T, A2).

(21)

These integrals yield the following expression for R,
n! A

o e =

This result corresponds to the kernel (3). For the case
of p(T,A?) being equal to (2) one gets

2
t 2y1-n m
R,=(A%) exp(—ﬁ). (23)
In renormalizable theory the terms R, with n>2
vanish in the limit A — «. The same is aso true if
one applies the ¢-function regularization. This prop-
erty of renormalizable models extremely simplifies
the problem. In non-renormalizable models al of R,
terms contribute to the result.

The coefficients a,, = a,(x, x) are the coincidence
limit of the Seeley — DeWitt coefficients [9]. For our
illustration we shall need the first four of them

=1 a=-Q a=3Q°+:Q,, +5F?
3= —3Q°— %({Q.Qu) + Q) — 5w
+ 56| Fuaia Qu] — w(2{F%.Q} + F,, QF,,)
%FaaF;LBB 1%0Fua:BFna:B
—&{Fu Fuviaa) T %F° (24)
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Some comments are in order here. First, we ded in
this case with the linear realization of chiral symme-
try. It means that we have for D? the following
representation

D*=VV*+n’+Q, (25)
where
V.=9+A, A =7, (26)
Q=(c?+2mo) + iyt o

—2(m+o)iysm+ 3w 2. (27)

Second, we wrote the coefficients (24) directly in
Minkowski space. In this way one should understand
summations over repeated Lorentz indexes to be
implicit. We have used the following designations

=[V..%] = %ysdm = nysdm+ [y, oy ]w?,
(28)
F2=F,F*, F®=F,F"F,, (29)
Qp,: [VIJ,’Q]’ F,u,y;V: [VI/’F[LV]' (30)

One has to calculate traces tr( Bysa,) and inte-
grate Eq. (20). The first three non-zero contributions
are given by

tr( Bysay) = 4iN. 672, (31)

tr( Bysa,)
= 4iN3[4(4,7) — 2mom? — o %a? - 3ar?],
(32)

tr( Bysaz) = 4|N65[i0( 211)2 - %nz(aua)z
—éﬂ'z(aﬂw)z— %(aﬂwz)z
—3(oc+m)d,od,m?+ 5wt
+3(o?+ 2m0')[3172(0'2+2m0')
+274— (8M77)2] — ittt
—2m0'172—0'2772—§774]. (33)

Let us note that the last four terms from a, (see Eq.
(24)) do not contribute to tr( Bysa,).

:Zcoll 327 2

) N

On the other side, the first term in formula (1)
contributes to the Lagrangian of collective fields as

1) — _

Z Jntr(@n. 1), (34)

where

o

dT ,
= [ e TR(T AR,

n=012,....
(35)
We have from (34)

2{(0'2+2m(r+3172)30

coll —

(2m)

8(a.0) + ()

+4m2172—(0'2+2m0'+172)2]J1+...}.
(36)

Using the identity

mtJ,+(2—n)J, , =R, ;, n=123,... (37)

one can see, for instance, how symmetry breaking
terms proportional to 72 are compensated in this
expression by the contribution from (31). A fully
chiral symmetric Lagrangian is therefore obtained at
each order of the proper time expansion.

3. Conclusions

We used the one-loop fermion determinant in the
form suggested by Gasser and Leutwyler some years
ago [1] to extend it to be applicable to non-renormal-
izable models. In this way the real and imaginary
parts of IndetD can be calculated with the same
input. One obtains the correct description of the
chiral anomaly when regularization is switched off.
However it is necessary to correct the real part of
IndetD by the polynomia P(v,a,0,7) to get the
chiral invariant result for this case. We have shown
how to get the chiral symmetry restoring polynomial
P(v,a,0,7). The simplest way to do this is to
calculate in the phase with broken chiral symmetry,
rewriting the symmetry transformations especially
for this case. The result is an extension of the form
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presented in the paper [1], to incorporate explicitly
the process of dynamical chiral symmetry breaking
of the NJL model.

For smplicity we have considered the NJL model
without vector and axial-vector degrees of freedom.
However, the result can be easily extended to the
more general case.
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