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Abstract

A mathematical model to simulate drug delivery from a viscoelastic erodible matrix is presented

in this paper. The drug is initially distributed in the matrix which is in contact with water. The

entrance of water in the material changes the molecular weight and bulk erosion can be developed

depending on how fast is this entrance and how fast degradation occurs. The viscoelastic properties

of the matrix also change in the presence of water as the molecular weight changes. The model is

represented by a system of quasi linear partial differential equations that take into account different

phenomena: the uptake of water, the decreasing of the molecular weight, the viscolestic behaviour, the

dissolution of the solid drug and the delivery of the dissolved drug. Numerical simulations illustrating

the behaviour of the model are included.
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1 Mathematical model

We consider a biodegradable viscoelastic polymeric matrix, Ω ⊆ R
2, with boundary ∂Ω and containing

a limited amount of drug. The matrix enters in contact with water and as the water diffuses into the
matrix, a hydratation process, that modifies the viscoelastic properties of the polymer, takes place. The
molecular weight decreases and the drug starts to dissolve.

In [15] a system that describes the sorption of water, by a loaded erodible matrix and the release of
drug was proposed. However the viscoelastic properties of the matrix were not considered. In this paper
we present a general model, which generalizes the model in [15], by considering the viscoelastic behaviour
of the polymer (see for instance [1],[2], [7],[11], [16], [18]).

We consider a system of partial differential equations (PDE’s) that describe the whole process: the
entrance of water into the polymer and its consumption in the hydrolysis process; the decreasing of the
molecular weight; the evolution of the stress and strain; the dissolution and the diffusion of the dissolved
drug. The system reads






∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ)− kCWM in Ω× (0, T ],

∂M

∂t
= −k̃CWM in Ω× (0, T ],

∂σ

∂t
+

E(M)

µ(M)
σ = −E(M)

∂CW

∂t
in Ω× (0, T ],

∂CS

∂t
= −kdisCSnCAnCWn in Ω× (0, T ],

∂CA

∂t
= ∇ · (D(M)∇CA) + kdisCSnCAnCWn in Ω× (0, T ].

(1)
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In (1) CW , CS and CA represent the concentration of water, solid drug and dissolved drug in the polymeric
matrix, respectively, M is the molecular weight of the polymer and σ is the stress response to the strain
exerted by the water molecules.

The first diffusion-reaction equation of (1) describes the diffusion of water into the matrix and its
consumption in the hydrolysis. In this equation DW represents the diffusion tensor of water in the
polymeric matrix. We consider an isotropic medium where the diffusion tensors are diagonal with equal
diagonal elements. For example, DW = DW I, where I is the 2 × 2 identity matrix. The viscoelastic
opposition to the water entrance is represented by ∇· (Dv∇σ) where Dv is a viscoelastic diffusion tensor.
This term states that the polymer acts as a barrier to the diffusion of water into the polymeric matrix.
The term −kCWM represents the consumption of water in the hydrolysis of the polymer. The molecular
weight loss is represented by −k̃CWM ([3],[5],[6],[8]).

Since the water diffuses into the polymeric matrix the molecules of water react with the polymer and
the bounds between the polymeric chains are broken leading to a decrease in the molecular weight of the
matrix. This process is described by the second equation of (1) ([15]).

We assume that the viscoelastic behaviour of the polymer can be modelled by Maxwell fluid model

∂σ

∂t
+

E

µ
σ = E

∂ǫ

∂t
, (2)

where E represents the Young modulus of the material, µ is its viscosity and ǫ is the strain produced by
the water molecules. We assume that the strain and the concentration of water are proportional, that
is, there exists k1 > 0 such that ǫ = k1CW , where k1 stands for a dimensional constant. This relation is
a linear approximation of ǫ = f(C) established in [8] . As the polymer acts as a barrier to the entrance
of the water, then σ and ǫ are of opposite sign, and a minus sign should be considered in the right hand
side of (2).

Based on the results presented for instance in [1], [2], [7], [11], [16] and [18], we assume that the
Young modulus and the viscosity depend on the molecular weight. In fact the Young modulus varies
significantly in a biodegradable polymeric matrix due to the heterogeneous nature of the hydrolysis
reaction that leads to the cleavages of the polymeric chains. As the degradation processes evolves, the
Young modulus decreases ([13]). Moreover a functional relation between the viscosity and the molecular
weight represented by Mark-Houwink equation ([14]) is applied. The expressions used to represent the
behaviours of E(M) and µ(M) are E(M) = E0M

α and µ(M) = µ0M
β where E0, µ0, α and β are constant

([14],[13],[3]).
The evolution in time of the solid drug is described by the fourth equation of (1) where kdis is the

dissolution rate, CSn is the normalized concentration of solid drug in the polymeric matrix, CAn is the
difference between the dissolved drug concentration and its maximum solubility (CAmx), normalized by

CAmx, CWn is the normalized concentration of water (
CW

CWout
). In this last expression CWout is the

concentration of water outside of the polymeric matrix. The evolution of the concentration of dissolved
drug in the matrix is defined by the last equation of (1) where Fick’s law and the dissolution source were
taken into account.

As the degradation occurs the molecular weight decreases and the permeability of the polymer in-
creases. This leads to an increase of the diffusion coefficient ([17]) that can be represented by

D(M) = DAe
k̄

M0−M

M0 ,

where DA is the diffusion coefficient of the drug in the non hydrolyzed polymer, M0 is its initial molecular
weight and k̄ is a positive constant.

System (1) is completed with the initial conditions





CW (0) = 0 in Ω,

σ(0) = σ0 in Ω,

M(0) = M0 in Ω,

CS(0) = CS0 in Ω,

CA(0) = 0 in Ω,

(3)
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where σ0 represents the initial stress of the polymer and CS0 is the initial concentration of solid drug in
the polymeric matrix.

Degradation of the polymeric matrix can be one of the two types: surface and bulk. Surface degra-
dation occurs because degradation is faster than the entrance of water in the system. In this case the
cleavage of polymeric chains occurs mainly in the outermost polymeric layers. Bulk degradation oc-
curs when the degradation is slower than the water uptake. The entire system is rapidly hydrated and
polymeric chains are cleaved through all the polymeric structure ([17]).

In what follows we assume that bulk degradation occurs and that the physical domain is maintained
during all diffusion process. The entrance of water occurs due to the difference of concentrations in the
polymer and in the medium. Then the system (1) and the initial conditions are coupled with the following
boundary condition {

J · η = Ac(CW − CWout) on ∂Ω× (0, T ],

CA = 0 on ∂Ω× (0, T ],
(4)

where J represents the flux defined by J = −DW∇CW −Dv∇σ, η is the unit outward normal to ∂Ω, Ac

is the permeability constant and CWout denotes the water concentration out of the polymeric matrix.
The aim of this paper is to present a numerical method to solve (1), (3) and (4) and to study the

qualitative behaviour of the numerical solution. In Section 2 a stability analysis of the mathematical
model is studied. Implicit-Explicit method (IMEX) is introduced and its convergence is numerically
studied in Secton 3. In Section 4 the qualitative behavior of the solution is analysed. Finally in Section
5 we present some conclusions.

2 Stability analysis

In order to simplify the presentation, we assume in this section that E and µ are constant. We also
assume that the diffusion tensor is only space dependent.

To gain some insight on the stability behaviour of the initial value problem (1),(3) and (4) we study in
what follows the stability of a linearization of (1) for short and long times. For short times we linearize the
system in the neighborhood of the initial state; for large times the system is linearized in the neighborhood
of the steady state solution. Let C̃W , M̃ , C̃A and C̃S be a solution of (1). The linearized system at this
solution can be written in the following form






∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ) − kC̃WM − kM̃CW ,

∂M

∂t
= −kC̃WM − kM̃CW ,

∂σ

∂t
+

E

µ
σ = −E

∂CW

∂t
,

∂CS

∂t
= −K

(
(CAmx − C̃A)C̃WCS − C̃W C̃SCA

+C̃S(CAmx − C̃A)CW

)
,

∂CA

∂t
= ∇ · (D∇CA) +K

(
(CAmx − C̃A)C̃WCS

−C̃W C̃SCA + C̃S(CAmx − C̃A)CW

)
,

(5)

where K =
kdis

CS0CAmxCWout
is a constant.

For small times the concentration of water and dissolved drug is very small so we consider

C̃W = 0, C̃A = 0, C̃S = CS0, M̃ = M0. (6)

For large times, that is when the matrix is practically degraded and the drug released, we assume

M̃ = 0, C̃W = CWout, C̃S = 0, C̃A = 0. (7)

Solution (6) defines the state of the system as t → 0. So for small times, the stability of system (1) is
obtained studying the stability of (5) and (4) when (6) is considered. When t → +∞, the solution of
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system (1) approaches the steady solution (7). In fact, phenomenologically, the molecular weight decreases
and vanishes, the concentration of water goes to the equilibrium, that is CWout, the concentrations of
solid and dissolved drug inside of the polymeric matrix vanish.

Stability for short times: To study the stability of (4) and (5), we consider the difference of two
solutions, which we represent by the same notations CW , σ, M, CS , CA. In this case we have





∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ)

−kM0CW in Ω× (0, T ],
∂M

∂t
= −kM0CW in Ω× (0, T ],

∂σ

∂t
+

E

µ
σ = −E

∂CW

∂t
in Ω× (0, T ],

∂CS

∂t
= −

kdis
CWout

CW in Ω× (0, T ],

∂CA

∂t
= ∇ · (D∇CA) +

kdis
CWout

CW in Ω× (0, T ],

(8)

where T > 0 is fixed, with the boundary conditions
{
J · η = AcCW on ∂Ω× (0, T ],

CA = 0 on ∂Ω× (0, T ].
(9)

In what follows we use the energy method to analyze (8) and (9) complemented with the initial
condition 




CW (0) = CW0 in Ω,

σ(0) = σ0 in Ω,

M(0) = M0 in Ω,

CS(0) = CS0 in Ω,

CA(0) = CA0 in Ω.

(10)

From the third equation of (8) we easily get

σ =
E2

µ

∫ t

0

e−
E
µ
(t−s)CW (s)ds − ECW + ECW (0)e−

E
µ
t

+ σ(0)e−
E
µ
t, t ≥ 0, (11)

and using this equality in the first equation of (8) we obtain for CW the following equation

∂CW

∂t
= ∇ · (D1∇CW ) +

∫ t

0

e−
E
µ
(t−s)∇ · (D2∇CW (s))ds− kM0CW

+Ee−
E
µ
t∇.(Dv∇CW (0)) + e−

E
µ
t∇.(Dv∇σ(0)),

(12)

where

D1 = DW − EDv, D2 =
E2

µ
Dv. (13)

We assume that, in (13), DW , Dv and D are 2 × 2 diagonal matrices and E and µ are such that the
entries of D1 and D2 are positive and satisfy the following conditions:

D1,jj ≥ Dmin, D2,jj , Dv,jj ≤ Dmax, Djj ≥ D0, for j = 1, 2. (14)

Let V = H1(Ω) ×
(
L2(Ω)

)2

× H1
0 (Ω) and let (CW ,M,CS , CA) ∈ V be such that

∂CW

∂t
,
∂M

∂t
,
∂CS

∂t
,

∂CA

∂t
∈ L2(Ω) and that (10) holds. Then multiplying scalarly the equations in (8) by test functions,

where the first and the third equations are replaced by (12), we have
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



(∂CW

∂t
, v1

)
= −(D1∇CW ,∇v1)−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇v1)ds

−(AcCW , v1)∂Ω − kM0(CW , v1) + e−
E
µ
tE(∇ · (Dv∇CW (0)), v1)

+e−
E
µ
t(∇ · (Dv∇σ(0)), v1), ∀v1 ∈ H1(Ω),(∂M

∂t
, v2

)
= −k(M0CW , v2), ∀v2 ∈ L2(Ω),

(∂CS

∂t
, v3

)
= −

kdis
CWout

(CW , v3), ∀v3 ∈ L2(Ω),
(∂CA

∂t
, v4

)
= −(D∇CA,∇v4)

+
kdis

CWout
(CW , v4), ∀v4 ∈ H1

0 (Ω).

(15)

In (15) the same notation is used to represent the usual inner products in L2(Ω) and
(
L2(Ω)

)2

.

We establish in what follows an estimate for the energy functional

E(t) = ECM (t) +

∫ t

0

(∥∥∥∇CW (s)
∥∥∥
2

+
∥∥∥∇CA(s)

∥∥∥
2
)
ds, t ∈ [0, T ], (16)

with

ECM (t) =
∥∥∥CW (t)

∥∥∥
2

+
∥∥∥M(t)

∥∥∥
2

+
∥∥∥CS(t)

∥∥∥
2

+
∥∥∥CA(t)

∥∥∥
2

, (17)

where the same notation ‖.‖ was used to represent the norm induced by the usual inner products in

L2(Ω) and
(
L2(Ω)

)2

.

Theorem 1 Let (CW ,M,CS , CA) ∈ V be a solution of the variational problem (15). Then

E(t) ≤
1

min
{
1, 2(Dmin − ǫ21), 2D0

}
( µ

4Eǫ22

(
E2

∥∥∥∇ · (Dv∇CW (0))
∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

+ ECM (0)
)
ect (18)

where ǫ1 6= 0 satisfies

Dmin − ǫ21 > 0, (19)

and

c =
max

{
D2

maxµ

4ǫ2
1
E

, 2ǫ23

(
k2M2

0 + 2
k2

dis

C2

Wout

)
+ 4ǫ22 − 2kM0,

1
2ǫ2

3

}

min
{
1, 2(Dmin − ǫ21), 2D0

} (20)

being ǫ2, ǫ3 6= 0 arbitrary constants.

Proof: Taking in (15) v1 = CW , v2 = M, v3 = CS and v4 = CA, we easily obtain from the first
equation

1

2

d

dt

∥∥∥CW

∥∥∥
2

= −(D1∇CW ,∇CW )

−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇CW )ds

−Ac

∥∥∥CW

∥∥∥
2

∂Ω
+ e−

E
µ
tE(∇ · (Dv∇CW (0)), CW ) (21)

+e−
E
µ
t(∇ · (Dv∇σ(0)), CW )− kM0

∥∥∥CW

∥∥∥
2

,
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where ‖.‖∂Ω denotes the usual norm in L2(∂Ω). The remaining three equations of (15) lead to

1

2

d

dt

∥∥∥M
∥∥∥
2

= −kM0(CW ,M),

1

2

d

dt

∥∥∥CS

∥∥∥
2

= −
kdis

CWout
(CW , CS),

and

1

2

d

dt

∥∥∥CA

∥∥∥
2

= −(D∇CA,∇CA) +
kdis

CWout
(CW , CA).

For any non zero constants ǫ1, ǫ2 and ǫ3 we have the following inequalities

−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇CW )ds ≤ ǫ21

∥∥∥∇CW

∥∥∥
2

+
D2

maxµ

8ǫ21E

∫ t

0

∥∥∥∇CW (s)
∥∥∥
2

ds,

+e−
E
µ
tE(∇ · (Dv∇CW (0)), CW ) + e−

E
µ
t(∇ · (Dv∇σ(0)), CW )

≤
1

4ǫ22
e−2E

µ
t
(
E2

∥∥∥∇ · (Dv∇CW (0))
∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

+ 2ǫ22

∥∥∥Cw

∥∥∥
2

,

kM0(CW ,M) ≤ k2M2
0 ǫ

2
3

∥∥∥CW

∥∥∥
2

+
1

4ǫ23

∥∥∥M
∥∥∥
2

,

kdis
CWout

(CW , CS) ≤
k2dis

C2
Wout

ǫ23

∥∥∥CW

∥∥∥
2

+
1

4ǫ23

∥∥∥CS

∥∥∥
2

,

kdis
CWout

(CW , CA) ≤
k2dis

C2
Wout

ǫ23

∥∥∥CW

∥∥∥
2

+
1

4ǫ23

∥∥∥CA

∥∥∥
2

.

Summing up the preceeding three equations we obtain

d

dt
ECM + 2(Dmin − ǫ21)

∥∥∥∇CW

∥∥∥
2

+ 2D0

∥∥∥∇CA

∥∥∥
2

≤
D2

maxµ

4ǫ21E

∫ t

0

∥∥∥∇CW (s)
∥∥∥
2

ds

+
(
2ǫ23

(
k2M2

0 + 2
k2dis

C2
Wout

)
+ 4ǫ22 − 2kM0

)∥∥∥CW

∥∥∥
2

+
1

2ǫ23

(∥∥∥M
∥∥∥
2

+
∥∥∥CS

∥∥∥
2

+
∥∥∥CA

∥∥∥
2)

+
1

2ǫ22
e−2E

µ
t
(
E2

∥∥∥∇ · (Dv∇CW (0))
∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

,

where ECM is defined in (17). If we fix ǫ1 satisfying (19) then

E(t) ≤ c

∫ t

0

E(s)ds+
1

min
{
1, 2(Dmin − ǫ21), 2D0

}
( µ

4Eǫ22

(
E2

∥∥∥∇ · (Dv∇CW (0))
∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

+ ECM (0)
)
,
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where c is defined by (20). Finally by using Gronwall’s Lemma we obtain (18).

The energy estimate (18) leads to the uniqueness of solution of the variational problem (15) and (10).
It enables also to conclude the stability of such solution in bounded time intervals. These results hold
provided that the initial data are smooth enough.

Stability for large times : To analyze the stability of the initial boundary value problem (1),(3) and (4)
for large times we consider system (5), that arise from the linearization of system (1) in the neighborhood
of the steady solution defined by (7). That is, we study the stability of the initial boundary value problem





∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ) − kCWoutM in Ω× (0, T ],

∂M

∂t
= −kCWoutM in Ω× (0, T ],

∂σ

∂t
+

E

µ
σ = −E

∂CW

∂t
in Ω× (0, T ],

∂CS

∂t
= −

kdis
CS0

CS in Ω× (0, T ],

∂CA

∂t
= ∇ · (D∇CA) +

kdis
CS0

CS in Ω× (0, T ],

(22)

where T > 0 is fixed, with initial conditions





CW (0) = CW,∞ in Ω,

σ(0) = σ∞ in Ω,

M(0) = M∞ in Ω,

CS(0) = CS∞ in Ω,

CA(0) = CA,∞ in Ω,

(23)

and boundary conditions (9).
From the third equation of (22) we easily get an expression for the stress σ analogous to (11). Replacing

then that expression in the first equation of (22) we obtain





∂CW

∂t
= ∇ · (D1∇CW ) +

∫ t

0

e−
E
µ
(t−s)∇ · (D2∇CW (s))ds

−kCWoutM + Ee−
E
µ
t∇.(Dv∇CW (0))

+e−
E
µ
t∇.(Dv∇σ(0)) in Ω× (0, T ],

∂M

∂t
= −kCWoutM in Ω× (0, T ],

∂CS

∂t
= −

kdis
CS0

CS in Ω× (0, T ],

∂CA

∂t
= ∇ · (D∇CA) +

kdis
CS0

CS in Ω× (0, T ],

(24)

where D1 and D2 are given by (13). The original initial boundary value problem (22), (9) and (23) is
then replaced by (24), completed with (23) and (9).

In what follows we consider the weak formulation of (24), (23) and (9) defined by the variational
problem:
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Find (CW ,M,CS , CA) ∈ V such that
∂CW

∂t
,
∂M

∂t
,
∂CS

∂t
,
∂CA

∂t
∈ L2(Ω), and (23) holds and






(∂CW

∂t
, v1

)
= −(D1∇CW ,∇v1)−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇v1)ds

−(AcCW , v1)∂Ω − kCWout(M, v1)

+Ee−
E
µ
t(∇ · (Dv∇CW (0)), v1)

+e−
E
µ
t(∇ · (Dv∇σ(0)), v1), ∀v1 ∈ H1(Ω),(∂M

∂t
, v2

)
= −kCWout(M, v2), ∀v2 ∈ L2(Ω),

(∂CS

∂t
, v3

)
= −

kdis
CS0

(CS , v3), ∀v3 ∈ L2(Ω),
(∂CA

∂t
, v4

)
= −(D∇CA,∇v4)

+
kdis
CS0

(CS , v4), ∀v4 ∈ H1
0 (Ω).

(25)

Following the proof of Theorem 1 it can be established an upper bound for E(t) analogous to the one
defined by (16).

Theorem 2 If (CW ,M,CS , CA) ∈ V is a solution of the variational problem (25), then

E(t) ≤
1

min
{
1, 2(Dmin − ǫ21), 2D0

}
(
ECM (0)

+
µ

4Eǫ22

(
E2

∥∥∥∇ · (Dv∇CW (0))
∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2))

ec̄t, t ≥ 0,

where ǫ1 is fixed by (19),

c̄ =
max

{
µD2

max

4ǫ2
1
E

, 2kCWout

(
kCWout

4ǫ2
2

− 1
)
, 2kdis

CS0

(
kdis

CS0
ǫ23 − 1

)
, 1
2ǫ2

3

, 6ǫ22

}

min
{
1, 2(Dmin − ǫ21), 2D0

} ,

and ǫ2, ǫ3 are arbitrary nonzero constant.

From Theorem 2 we conclude the uniqueness of the solution of (25) and (23) and its stability for
bounded time intervals, provided that the initial data are smooth enough.

As the model is nonlinear we carried out a stability analysis based on a local linearization in the
neighborhood of the steady state solutions for short and large times. The stability in both cases was
established under the positiveness of the diagonal entries of D1 defined in (13). This is a central issue
meaning that the Fickian diffusion must dominate the non Fickian one. Due to the interpretation of
viscoelasticity that we propose - as representing a barrier to the penetration of water - such assumption
is physically sound.

3 Numerical method

In this section we introduce a Implicit-Explicit finite difference method to solve (1), (3), (4). Let Ω be
the square (0, L)× (0, L), where L represents the thickness of the polymer. We fix h > 0 and we define
in Ω the grid

Ωh =
{
(xi, yj), i, j = 0, . . . , N, x0, y0 = 0, xN , yN = L,

xi − xi−1 = h, yj − yj−1 = h, i, j = 1, . . . , N
}
.

By Ωh and ∂Ωh we represent the mesh nodes of Ωh that are in Ω and on the boundary ∂Ω, respectively.
Let uh and vh be grid functions defined in Ωh. To discretize the spatial derivatives we introduce the
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second order finite difference operator

D∗

x

(
a(vh)D−xuh

)
(xi, yj) =

1

h

(
a(Ah,xvh(xi+1, yj))D−xuh(xi+1, yj)− a(Ah,xvh(xi, yj))D−xuh(xi, yj)

)
,

where D−x denotes the backward finite difference operator with respect to the x-variable and Ah,x is the
following average operator

Ah,xvh(xℓ, yj) =
1

2

(
vh(xℓ, yj) + vh(xℓ−1, yj)

)
.

The finite difference operator D∗

y

(
b(vh)D−yuh

)
(xi, yj) is defined analogously considering the backward

finite difference operator with respect to the y-variable, D−y, and the average operator Ah,y. If B is a
diagonal matrix with entries a and b we use the following notation

∇∗

h.
(
B(vh)∇huh

)
= D∗

x

(
a(vh)D−xuh

)
+D∗

y

(
b(vh)D−yuh

)
.

In [0, T ] we consider the following time grid
{
tn, n = 0, . . . ,M∆t, t0 = 0, tM∆t

= T, tn − tn−1 = ∆t, n = 1, . . . ,M∆t

}
.

By D−t we denote the backward finite difference operator with respect to the variable t. Let pnh(xi, yj)
stands for an approximation of p(xi, yj , tn).

To solve numerically the initial boundary value problem (1), (3), (4) we consider the IMEX method
defined by 




D−tC
n+1
W,h = ∇∗

h.
(
DW∇hC

n+1
W,h

)
+∇∗

h.
(
Dv∇hσ

n
h

)
− kCn

W,hM
n
h inΩh,

D−tM
n+1
h = −kCn+1

W,hM
n
h inΩh,

D−tσ
n+1
h +

E0(M
n+1
h )α

µ0(M
n+1
h )β

σn
h = −E0(M

n+1
h )αD−tC

n+1
W,h in Ωh,

D−tC
n+1
S,h = −

kdis
CS0CAmxCWout

Cn
S,h(CAmx − Cn

A,h)C
n+1
W,h inΩh,

D−tC
n+1
A,h = ∇∗

h.
(
D(Mn+1

h )∇hC
n+1
A,h

)

+ kdis

CS0CAmxCWout
Cn+1

S,h

(
CAmx − Cn

A,h

)
Cn+1

W,h inΩh,

(26)

for n = 0, . . . ,M∆t − 1, 




C0
W,h = 0 inΩh,

σ0
h = σ(0) inΩh,

M0
h = M(0) inΩh,

C0
S,h = CS(0) inΩh,

C0
A,h = 0 inΩh,

(27)

and 



Jn+1
h .η = Ac(C

n+1
W,h − CWout) on ∂Ωh,

Cn+1
A,h = 0 on ∂Ωh,

(28)

where
Jn+1
h = −DWDηC

n+1
W,h −DvDησ

n
h ,

and Dη is the boundary operator

Dηvh(xi, yj) =





−Dxvh(x0, yj), i = 0,
D−xvh(xN , yj), i = N,
−Dyvh(xi, y0), j = 0,
D−yvh(xi, yN), j = N,

for (xi, yj) ∈ ∂Ωh.
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Table 1: Parameter values used in the numerical simulation

Parameter (unit) Value Parameter (unit) Value

DA (mm2/s) 5.94× 10−2 E0 (Pa) 10−3

Dv (mol/(mm.s.Pa)) 2× 10−2 µ0 (Pa.s) 10−1

DW (mm2/s) 4.61× 10−2 kdis (mol/(mm3.s)) 4.6× 10−2

k (1/s) 10−2 M0 (Da) 8.3× 10−2

k̃ (mm3/(s.mol)) 10−2 k1 (mm3/mol) 1
σ0 (Pa) 5× 10−2 CWout (mol/mm3) 5.55× 10−1

CAmx (mol/mm3) 2.184× 10−2 Ac (mm/s) 10−2

CS0 (mol/mm3) 288.42× 10−2 α 2× 10−1

β 7× 10−1 L (mm) 1
∆t 10−4 h 10−2

Table 2: Errors and convergence orders for the concentration of water and dissolved drug

h Error(CW ) pw Error(CA) pa

0.01 3.23× 10−5 1.38 5.29× 10−10 1.08
0.005 1.24× 10−5 1.35 2.50× 10−10 1.30
0.004 9.17× 10−6 2.01 1.87× 10−10 1.61
0.002 2.28× 10−6 6.13× 10−11

4 Qualitative behaviour of the model

In this section we illustrate the influence of the parameters on the behaviour of the model. The values of
the parameters are presented in Table 1 and some of them were obtained from [15].

We start by analyzing numerically the convergence properties of the numerical scheme. Table 2
contains the errors for CW and CA at time T = 0.001 defined by,

Error(C) = ||Cn
h − C

n

h ||L2(Ωh) =




∑

P∈Ωh

q1(P )(Cn
h (P )− C

n

h(P ))2




1/2

,

where q1(P ) = h2 on Ωh, q1(P ) = h2

2 on ∂Ωh−Ch and q1(P ) = h2

4 on Ch, with Ch = {(xi, yj) : i, j = 0, N},

using a reference solution C
n

h obtained with a fine grid defined by ∆t = 10−5 and h = 0.001. In the same
table we also present estimations for the convergence orders, using the following formula

p =
ln
(

Errorh1
(C)

Errorh2
(C)

)

ln
(

h1

h2

) ,

where h1 and h2 represent two consecutive step sizes. The results suggest the convergence of the IMEX
method (26)-(28) with second convergence rate in space.

Let the mass of water and drug, inside the matrix, be defined by

Mi(t) =

∫

Ω

Ci(t)dxdy,

where i = W,A, for t ∈ [0, T ]. A numerical approximation for Mi(t) is computed with the trapezoidal
rule.

In Figure 1 we plot the dependence on the viscoelastic diffusion coefficient Dv of the mass of water
inside the polymeric matrix. In this figure as well as in the following the time is measured in seconds. We
observe that the polymer acts as a barrier to the entrance of water. In other words, the non Fickian flux
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Figure 1: Influence of Dv on the mass of the water inside the polymeric matrix.

−Dv∇σ decreases the Fickian flux, −DW∇CW . According to this description an increase in Dv leads to
a increase of MW .

The influence of the Young modulus E on MW is presented in Figure 2 (left), near t = 2. It is well
known that the crosslink density of the polymer is proportional to the Young modulus E. Consequently
as this constant increases the resistance of the polymer to the entrance of water also increases leading to
a decreasing of the mass of water.
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Figure 2: Mass of water for different E’s (left); concentration of dissolved drug CA for different k (right).

The influence of the polymer degradation rate, k, is presented in Figure 2 (right). As expected, if the
degradation rate increases, then the delivery rate of the dissolved drug also increases.

The behaviour of the mass of dissolved drug is presented in Figure 3, for different thickness of the
polymer. We observe that the maximum value of the mass of dissolved drug in thinner polymers is
lower and less time is required to achieve this maximum. The amount of dissolved drug results from a
balance between the dissolution process and the release of drug. The instant when the maximum occurs,
represents the time when the delivery process dominates the dissolution process.
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Figure 3: Mass of dissolved drug inside the polymer with L = 0.1 (left) and L = 0.5 (right).

In Figure 4 the mass of water inside the polymer, for different values of L, is plotted. In the thicker
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polymer more time is required for the mass to reach the steady state. We also observe that the value of
the steady state in the polymer with L = 0.1 is 0.0555 while in the polymer with L = 0.5 is 0.2769.
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Figure 4: Mass of water inside the polymer with L = 0.1 (left) and L = 0.5 (right).
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Figure 5: Concentration of water for different times.

Figure 5 illustrates the behavior of the concentration of water into the polymeric matrix at different
times. We observe that the concentration increases as time increases and the behavior is homogeneous
since the diffusion coefficient is constant.

The concentration of solid drug and dissolved drug, respectively, at different times are shown in
Figures 6 and 7. Te regions where the concentration of water is higher, correspond to regions where the
concentration of solid drug is lower. We also note that when the concentration of solid drug decreases,
the concentration of dissolved drug increases.

5 Conclusions

In this paper we describe a process of sorption of a solvent by a biodegradable polymeric matrix, when
bulk erosion occurs, and the simultaneous release of a drug. The stability analysis of the mathematical
model was studied. Numerical results that highlight the whole process are presented. These results are
physically sound. The influence of the crosslinking density of the polymer is shown to delay the drug
release. In fact a larger Young modulus exerts a larger opposition to the solvent penetration. Bulk
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Figure 6: Concentration of solid drug for different times.
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Figure 7: Concentration of dissolved drug for different times.
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erosion which is governed by the degradation rate speeds up the release of drug. The dependence on the
dimensions of the matrix is also illustrated.
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Oliveira I 115-126 (2014).

[4] F. Radu, M. Bause, P.Knaber, G.Lee, W. Friess, Modeling drug release from collagen matrices
Journal of Pharmaceutical Sciences 91 964-972 (2002).

[5] E. Azhdari, J.A. Ferreira, P. de Oliveira, P.M. da Silva, Drug delivery from an ocular
implant into the vitreous chamber of the eye, Proceedings of the 13th International Conference on
Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, Editors: I.
Hamilton and J. Vigo-Aguiar I 185–195 (2013).

[6] E. Azhdari, J. A. Ferreira, P. de Oliveira, P. M. da Silva, Diffusion, viscoelasticity and ero-
sion: analytical study and medical applications, J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.025
(2014).

[7] S. Baruah, N. Laskar, Relation between molecular weight and viscosity for Polydispersed Pol(n-
docosyl acrylate), Polym. J. 28 893–895 (1996).

[8] J.A. Ferreira, M. Grassi, E. Gudiño, P. de Oliveira, A 3D model for mechanistic control
drug release, SIAM J. Appl. Math. 74 620-633 (2014).

[9] A.Gopferich, R. Langer, Modeling of polymer erosion, Macromolecules 26 4105–4112 (1993).

[10] A. Gopferich, Mechanisms of polymer degradation and erosion, Biomaterials 17 103–114 (1996).

[11] A. Izuka, H. Winter, T. Hashimoto, Molecular weight dependence of viscoelasticity of poly-
caprolactone critical gels, Macromolecules 25 2422–2428 (1992).

[12] S. Luo, D. T. Grubba and A. N. Netravali, The effect of molecular weight on the lamellar
structure, thermal and mechanical properties of poly (hydroxybutyrate-co-hydroxyvalerates), Polymer
43 4159–4166 (2002).

[13] Y. Wang, X. Han, J. Pan, C. Sinka, An entropy spring model for the Young’s modulus change
of biodegradable polymers during biodegradation, J. Mech. Behav. Biomed. 3 14–21 (2010).

14



[14] S. Luo, D. Grubba, and A. Netravali, The effect of molecular weight on the lamellar structure,
thermal and mechanical properties of poly (hydroxybutyrate-co-hydroxyvalerates), Polymer 43 4159–
4166 (2002).

[15] S. N. Rothstein, W. J. Federspiel, S. R. Little, A unified mathematical model for the predic-
tion of controlled release from surface and bulk eroding polymer matrices, Biomaterials 30 1657–1664
(2009).

[16] T. Rushing, R. Hester, Intrinsic viscosity dependence on polymer molecular weight and fluid
temperature, J. Appl. Polym. Sci. 89 2831-2835 (2003).
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