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Abstract

Direct-search methods are a class of popular derivative-free algorithms characterized by
evaluating the objective function using a step size and a number of (polling) directions. When
applied to the minimization of smooth functions, the polling directions are typically taken
from positive spanning sets which in turn must have at least n+1 vectors in an n-dimensional
variable space. In addition, to ensure the global convergence of these algorithms, the positive
spanning sets used throughout the iterations are required to be uniformly non-degenerate in
the sense of having a positive (cosine) measure bounded away from zero.

However, recent numerical results indicated that randomly generating the polling direc-
tions without imposing the positive spanning property can improve the performance of these
methods, especially when the number of directions is chosen considerably less than n+ 1.

In this paper, we analyze direct-search algorithms when the polling directions are prob-
abilistic descent, meaning that with a certain probability at least one of them is of descent
type. Such a framework enjoys almost-sure global convergence. More interestingly, we will
show a global decaying rate of 1/

√
k for the gradient size, with overwhelmingly high proba-

bility, matching the corresponding rate for the deterministic versions of the gradient method
or of direct search. Our analysis helps to understand numerical behavior and the choice of
the number of polling directions.

Keywords: Derivative-free optimization, direct-search methods, polling, positive spanning sets,
probabilistic descent, random directions.

1 Introduction

Minimizing a function without using derivatives has been the subject of recent intensive re-
search, as it poses a number of mathematical and numerical challenges and it appears in various
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applications of optimization [7]. In a simplified way, there are essentially two paradigms or
main approaches to design an algorithm for Derivative-Free Optimization with rigorous (global)
convergence properties. One possibility consists of building models based on sampling (typically
by quadratic interpolation) for use in a trust-region algorithm, where the accuracy of the models
ensures descent for small enough step sizes. The other main possibility is to make use of a num-
ber of directions to ensure descent when the size of the step is relatively small, and direct-search
methods [7, 20] offer a well studied framework to use multiple directions in a single iteration.

If the objective function is smooth (continuously differentiable), it is well known that at least
one of the directions of a positive spanning set (PSS) is descent (and by a PSS we mean a set
of directions that spans Rn with non-negative coefficients). Based on this guarantee of descent,
direct-search methods, at each iteration, evaluate the function along the directions in a PSS (a
process called polling), using a step size parameter that is reduced when none of the directions
leads to some form of decrease. There are a variety of globally convergent methods of this form,
depending essentially on the choice of PSS and on the condition to declare an iteration successful
(simple or sufficient decrease). Coordinate or compass search, for instance, uses the PSS formed
by the 2n coordinate directions. Multiple PSSs can be used in direct search, in a finite number
when accepting new iterates based on simple decrease (see pattern search [27] and generalized
pattern search [3]), or even in an infinite number when accepting new iterates based on sufficient
decrease (see generating set search [20]). In any of these cases, the PSSs in question are required
to be uniformly non-degenerate in the sense of not being close to loose its defining property.
More precisely, their cosine measure is required to be uniformly bounded away from zero, which
in turn implies the existence, in any PSS used in a direct-search iteration, of a descent direction
uniformly bounded away from being orthogonal to the negative gradient.

If the objective function is non-smooth, say only assumed locally Lipschitz continuous, the
polling directions asymptotically used in direct-search run are required, in some normalized form,
to densely cover the unit sphere. Mesh adaptive direct search [4] encompasses a process of dense
generation that leads to global convergence. Such a process can be significantly simplified if
the iterates are only accepted based on a sufficient decrease condition [29]. Anyhow, generating
polling directions densely in the unit sphere naturally led to the use of randomly generated
PSSs [4, 29].

However, one can take the issue of random generation one step further, and ask the question
of whether one can randomly generate a set of directions at each direct-search iteration and use
it for polling, without checking if it is a PSS. Moreover, one knows that a PSS must have at
least n+ 1 elements in Rn, and thus one even questions the need to generate so many directions
and asks how many of them are appropriate to use. We were motivated to address this problem
given the obvious connection to the trust-region methods based on probabilistic models recently
studied in [5], as we will see later in our paper. Simultaneously, we were surprised by the
numerical experiments reported [18] where generating the polling directions free of PSS rules
(and possibly in a number less than n+ 1) was indeed beneficial.

Similarly to the notion of probabilistically fully linear model in [5], we then introduce in
this paper the companion notion of a probabilistically descent set of directions, by requiring at
least one of them to make an acute angle with the negative gradient with a certain probability,
uniformly across all iterations. We then analyze what is direct search capable of delivering
when the set of polling directions is probabilistically descent. Our algorithmic framework is
extremely simple and it can be simplistically reduced here to: at each iteration k, generate a
finite set Dk of polling directions that is probabilistically descent; if a dk ∈ Dk is found such that
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f(xk+αkdk) < f(xk)−ρ(αk), where ρ(αk) = α2
k/2 and αk is the step size, then xk+1 = xk+αkdk

and αk+1 = 2αk, otherwise xk+1 = xk and αk+1 = αk/2. We will then prove that such a scheme
enjoys, with overwhelmingly high probability, a gradient decaying rate of 1/

√
k or, equivalently,

that the number of iterations taken to reach a gradient of size ε is O(ε−2). The rate is global
since no assumption is made on the starting point. For this purpose, we first derive a bound, for
all realizations of the algorithm, on the number of times the set of polling directions is descent.
Such a bound is shown to be a fraction of k when k is larger than the inverse of the square of the
minimum norm gradient up to the k-th iteration. When descent is probabilistically conditioned
to the past, one can then apply a Chernoff type bound to prove that the probability of the
minimum norm gradient decaying with a global rate of 1/

√
k approaches one exponentially.

The analysis is carried out for a more general function ρ with the help of an auxiliary function ϕ
which is a multiple of the identity when ρ(αk) = α2

k/2.
Although such a direct-search framework, where a set of polling directions is independently

randomly generated at each iteration, shares similarities with other randomized algorithmic
approaches, the differences are significant. Random search methods typically generate a single
direction at each iteration, take steps independently of decrease conditions, and update the step
size using some deterministic or probabilistic formula. The generated direction can be first pre-
multiplied by an approximation to the directional derivative along the direction itself [25], and it
was shown in [22] how to frame this technique using the concept of smoothing to lead to global
rates of appropriate order. Methods using multiple points or directions at each iteration, such as
evolution strategies (see [11] for a globally convergent version), typically impose some correlation
among the direction sets from one iteration to another (as in covariance matrix adaptation [19])
and, again, take action and update step sizes independently of decrease conditions.

More related to our work is the contribution of [10], a derivative-free line search method
that uses random searching directions, where at each iteration the step size is defined by a
tolerant nonmonotone backtracking line search that always starts from the unitary step. The
authors proved global convergence with probability one in [10], but no global rate was provided.
In addition, global convergence in [10] is much easier to establish than in our paper, since the
backtracking line search always starts from the unitary step, independently of the previous
iterations, and consequently the step size is little coupled to the history of the computation.

The organization of the paper is the following. First, we recall in Section 2 the main elements
of direct-search methods using PSSs and start a numerical illustration of the issues at stake in
this paper. Then, we introduce in Section 3 the notion of probabilistic descent and show how it
leads direct search to almost sure global convergence. The main result of our paper is presented
in Section 4 where we show that direct search using probabilistic descent conditioned to the past
attains the desired global rate with overwhelmingly high probability. In Section 5 we cover a
number of related issues, among which how to derive in expectation the main result and what
can still be achieved without conditioning to the past. Having already presented our findings,
we then revisit the numerical illustrations with additional insight. Section 6 discusses how to
extend our analysis to other algorithmic contexts, in particular to trust-region methods based
on probabilistic models [5]. The paper is concluded with some final remarks in Section 7.
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2 Direct search based on deterministic descent

In this paper we consider the minimization of a function f : Rn → R, without imposing any
constraints, and assuming that f is smooth, say continuously differentiable. As in [7], we consider
first a quite general direct-search algorithmic framework but without a search step.

Algorithm 2.1 (Direct search) Select x0 ∈ Rn, αmax ∈ (0,∞], α0 ∈ (0, αmax), θ ∈ (0, 1),
γ ∈ [1,∞), and a forcing function ρ : (0,∞)→ (0,∞).

For each iteration k = 0, 1, . . .

Poll step Choose a finite set Dk of non-zero vectors. Start evaluating
f at the polling points {xk + αkd : d ∈ Dk} following a
chosen order. If a poll point xk + αkdk is found such that
f(xk + αkdk) < f(xk)− ρ(αk) then stop polling, set xk+1 =
xk + αkdk, and declare the iteration successful. Otherwise
declare the iteration unsuccessful and set xk+1 = xk.

Step size
update

If the iteration was successful, set αk+1 = min{γαk, αmax}.
Otherwise, set αk+1 = θαk.

End for

An optional search step could be taken, before the poll one, by testing a finite number of
points, looking for an x such that f(x) < f(xk) − ρ(αk). If such an x would be found, then
one would define xk+1 = x, declare the iteration successful, and skip the poll step. However,
ignoring such a search step allows us to focus on the polling mechanism of Algorithm 2.1, which
is the essential part of the algorithm.

2.1 Deterministic descent and positive spanning

The choice of the direction sets Dk in Algorithm 2.1 is a major issue. To guarantee a successful
iteration in a finite number of attempts, it is sufficient that at least one of the directions in Dk

is a descent one. But global convergence to stationary points requires more as we cannot have
all directions in Dk becoming arbitrarily close of being orthogonal to the negative gradient
−∇f(xk) = −gk, and so one must have that

∀k, ∃dk ∈ Dk,
−d>k gk
‖dk‖‖gk‖

≥ κ > 0, (1)

for some κ that does not depend on k.
On the other hand, it is well known [9] (see also [7, 20]) that if D is a PSS, then

∀v ∈ Rn, ∃d ∈ D, d> v

‖d‖ ‖v‖
> 0. (2)

One can then see that condition (1) is easily verified if {Dk} is chosen from a finite number of
PSSs. When passing from a finite to an infinite number of PSSs, some uniform bound must be
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imposed in (2), which essentially amounts to say that the cosine measure of all the Dk is at least
κ, where by the cosine measure [20] of a PSS D with non-zero vectors we mean the positive
quantity

cm(D) = min
v∈Rn\{0}

max
d∈D

d>v

‖d‖‖v‖
.

One observes that imposing cm(Dk) ≥ κ is much stronger than (1), and that it is the lack of
knowledge of the negative gradient that leads us to the imposition of such a condition. Had we
known −gk = −∇f(xk), we would have just required cm(Dk,−gk) ≥ κ, where cm(D, v) is the
cosine measure of D given v, defined by:

cm(D, v) = max
d∈D

d>v

‖d‖‖v‖
.

To avoid an ill-posed definition when gk = 0, we assume by convention that cm(D, v) = 1 when
v = 0.

Condition cm(Dk,−gk) ≥ κ is all one needs to guarantee a successful step for a sufficiently
small step size αk. For completeness we show such a result in Lemma 2.1 below, under Assump-
tions 2.1–2.3, which are assumed here and throughout the paper.

Assumption 2.1 The objective function f is bounded from below and continuously differentiable
in Rn. ∇f is Lipschitz continuous in Rn.

Let then flow > −∞ be a lower bound of f , and ν > 0 be a Lipschitz constant of ∇f .

Assumption 2.2 The forcing function ρ is positive, non-decreasing, and ρ(α) = o(α) when
α→ 0+.

The following function ϕ will make the algebra conveniently more concise. For each t > 0,
let

ϕ(t) = inf

{
α : α > 0,

ρ(α)

α
+

1

2
να ≥ t

}
. (3)

It is clear that ϕ a well defined non-decreasing function. Note that Assumption 2.2 ensures that
ϕ(t) > 0 when t > 0. When ρ(α) = c α2/2, one obtains ϕ(t) = 2t/(c+ ν), which is essentially a
multiple of the identity.

Assumption 2.3 For each k ≥ 0, Dk is a finite set of normalized vectors.

Assumption 2.3 is made for the sake of simplicity, and it is actually enough to assume that
the norms of all the polling directions are uniformly bounded away from zero and infinity.

Lemma 2.1 The k-th iteration in Algorithm 2.1 is successful if

cm(Dk,−gk) ≥ κ and αk < ϕ(κ‖gk‖).

Proof. According to the definition of cm(Dk,−gk), there exists d∗k ∈ Dk satisfying

d∗>k gk = − cm(Dk,−gk)‖d∗k‖‖gk‖ ≤ −κ‖gk‖.
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Thus, by Taylor expansion,

f(xk + αkd
∗
k)− f(xk) ≤ αkd

∗>
k gk +

1

2
να2

k ≤ −καk‖gk‖+
1

2
να2

k. (4)

Using the definition of ϕ, we obtain from αk < ϕ(κ‖gk‖) that

ρ(αk)

αk
+

1

2
ναk < κ‖gk‖.

Hence (4) implies f(xk + αkd
∗
k) < f(xk)− ρ(αk), and thus the k-th iteration is successful. �

2.2 A numerical illustration

A natural question that arises is whether one can gain by generating the vectors in Dk randomly
hoping that (1) will then be satisfied frequently enough. For this purpose we ran Algorithm 2.1
in Matlab for different choices of the polling directions. The test problems were taken from
CUTEr [17] with dimension n = 40. We set αmax = inf, α0 = 1, θ = 0.5, γ = 2, and ρ(α) =
10−3α2. The algorithm terminated when either αk was below a tolerance of 10−10 or a budget
of 2000n function evaluations was exhausted.

Table 1: Relative performance for different sets of polling directions (n = 40).

[I −I] [Q −Q] [Qk −Qk] 2n n+ 1 n/2 n/4 2 1

arglina 3.42 8.44 16.67 10.30 6.01 3.21 1.88 1.00 –

arglinb 20.50 10.35 11.38 7.38 2.81 2.35 1.85 1.00 2.04

broydn3d 4.33 6.55 11.22 6.54 3.59 2.04 1.28 1.00 –

dqrtic 7.16 9.37 19.50 9.10 4.56 2.77 1.70 1.00 –

engval1 10.53 20.89 23.96 11.90 6.48 3.55 2.08 1.00 2.08

freuroth 56.00 6.33 1.33 1.00 1.67 1.33 1.67 1.00 4.00

integreq 16.04 16.29 18.85 12.44 6.76 3.52 2.04 1.00 –

nondquar 6.90 30.23 17.36 7.56 4.23 2.76 1.87 1.00 –

sinquad – – 2.12 1.65 2.01 1.26 1.00 1.55 –

vardim 1.00 3.80 3.30 1.80 2.40 2.30 1.80 1.80 4.30

The first three columns of Table 1 correspond to the following PSS choices of the polling
directions Dk: [I −I] represents the columns of I and −I, where I is the identity matrix of
size n; [Q −Q] means the columns of Q and −Q, where Q is an orthogonal matrix obtained
by the QR decomposition of a random vector, uniformly distributed on the unit sphere of Rn,
generated before the start of the algorithm and then fixed throughout the iterations; [Qk −Qk]
consists of the columns of Qk and −Qk, where Qk is a matrix obtained in the same way as Q
except that it is generated independently at each iteration. In the cases of [I −I] and [Q −Q],
a cyclic polling procedure was applied to accelerate descent, by starting polling at the direction
that led to previous success (if the last iteration was successful) or at the direction right after
the last one used (if the last iteration was unsuccessful). In the remaining columns, Dk consists
of m (m = 2n, n + 1, n/2, n/4, 2, 1) independent random vectors uniformly distributed on the
unit sphere in Rn, independently generated at every iteration.
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We counted the number of function evaluations taken to drive the function value below
flow + ε[f(x0)− flow], where flow is the true minimal value of the objective function f , and ε
is a tolerance set to 10−3. Given a test problem, we present in each row the ratio between the
number of function evaluations taken by the corresponding version and the number of function
evaluations taken by the best version. Because of the random nature of the computations, the
number of function evaluations was obtained by averaging over ten independent runs, except for
the first column. The symbol ‘–’ indicates that the algorithm failed to solve the problem to the
required precision at least once in the ten runs.

When Dk is randomly generated on the unit sphere (columns m = 2n, n+ 1, n/2, n/4, 2, 1 in
Table 1), the vectors in Dk do not form a PSS when m ≤ n, and are not guaranteed to do so
when m > n. However, we can see clearly from Table 1 that randomly generating the polling
directions in this way performed evidently better, despite the fact that their use is not covered
by the classical theory of direct search. This evidence motivates us to establish the convergence
theory of Algorithm 2.1 when the polling directions are randomly generated.

3 Probabilistic descent and global convergence

From now on, we suppose that the polling directions in Algorithm 2.1 are not defined determin-
istically but generated by a random process {Dk}. Due to the randomness of {Dk}, the iterates
and stepsizes are also random processes (and we denote the random iterates by {Xk}). The
realizations of {Dk} and {Xk} are {Dk} and {xk}, respectively. We notice, however, that the
starting point x0 (and thus the initial function value f(x0)) and the initial stepsize α0 are not
random.

3.1 Probabilistic descent

The following concept of probabilistically descent sets of polling directions is critical to our
analysis. We use it to describe the quality of the random polling directions in Algorithm 2.1.
Recalling that gk = ∇f(xk), let Gk be the random variable corresponding to gk.

Definition 3.1 The sequence {Dk} in Algorithm 2.1 is said to be p-probabilistically κ-descent
if

P (cm(D0,−G0) ≥ κ) ≥ p

and, for each k ≥ 1,
P (cm(Dk,−Gk) ≥ κ | D0, . . . ,Dk−1) ≥ p. (5)

Definition 3.1 requires the cosine measure cm(Dk,−Gk) to be favorable in a probabilistic
sense rather than deterministically. We will see that the role of probabilistically descent sets
in the analysis of direct search (based on probabilistic descent) is similar to that of positive
spanning sets in the theory of deterministic direct search.

Definition 3.1 is inspired by the definition of probabilistically fully linear models [5]. Inequal-
ity (5) involves the notion of conditional probability (see [26, Chapter II]) and says essentially
that the probability of the event {cm(Dk,−Gk) ≥ κ} is not smaller than p, no matter what hap-
pened with D0, . . . ,Dk−1. It is stronger than assuming merely that P (cm(Dk,−Gk) ≥ κ) ≥ p.

The analysis in this paper would still hold even if a search step is included in the algorithm
and possibly taken. The analysis would consider Dk defined at all iterations even if the poll step
is skipped.
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3.2 Global convergence

The global convergence analysis of direct search based on probabilistic descent follows what
was done in [5] for trust-region methods based on probabilistic models, and is no more than a
reorganization of the arguments there now applied to direct search when no search step is taken.

It is well known that αk → 0 in deterministic direct search (based on sufficient decrease as
in Algorithm 2.1), no matter how the polling directions are defined [20]. A similar result can be
derived by applying exactly the same argument to a realization of direct search now based on
probabilistic descent.

Lemma 3.1 For each realization of Algorithm 2.1, limk→∞ αk = 0.

For each k ≥ 0, we now define Yk as the indicator function of the event

{the k-th iteration is successful} .

Furthermore, Zk will be the indicator function of the event

{cm(Dk,−Gk) ≥ κ} , (6)

where, again, κ is a positive constant and independent of the iteration counter. The Bernoulli
processes {Yk} and {Zk} will play a major role in our analysis. Their realizations are denoted
by {yk} and {zk}. Notice, then, that Lemma 2.1 can be restated as follows: given a realization
of Algorithm 2.1 and k ≥ 0, if αk < ϕ(κ‖gk‖), then yk ≥ zk.

Lemmas 2.1 and 3.1 lead to a critical observation presented below as Lemma 3.2. We observe
that such a result holds without any assumption on the probabilistic behavior of {Dk}.

Lemma 3.2 For the stochastic processes {Gk} and {Zk}, where Gk = ∇f(Xk) and Zk is the
indicator of the event (6), it holds that{

lim inf
k→∞

‖Gk‖ > 0

}
⊂

{ ∞∑
k=0

[Zk ln γ + (1− Zk) ln θ] = −∞

}
. (7)

Proof. Consider a realization of Algorithm 2.1 for which lim infk→∞ ‖gk‖ is not zero but a
positive number ε. There exists a positive integer k0 such that for each k ≥ k0 it holds ‖gk‖ ≥ ε/2
and αk < ϕ(κε/2) (because αk → 0 and ϕ(κε/2) > 0), and consequently αk < ϕ(κ‖gk‖). Hence
we can obtain from Lemma 2.1 that yk ≥ zk. Additionally, we can assume that k0 is large
enough to ensure αk ≤ γ−1αmax for each k ≥ k0. Then the stepsize update of Algorithm 2.1
gives us

αk = αk0

k−1∏
l=k0

(
γylθ1−yl

)
≥ αk0

k−1∏
l=k0

(
γzlθ1−zl

)
for all k ≥ k0. This leads to

∏∞
l=0

(
γzlθ1−zl

)
= 0, since αk0 > 0 and αk → 0. Taking logarithms,

we conclude that
∞∑
l=0

[
zl ln γ + (1− zl) ln θ

]
= −∞,

which completes the proof. �
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If {Dk} is p0-probabilistically κ-descent, with

p0 =
ln θ

ln(γ−1θ)
, (8)

then similar to [5, Theorem 4.2], it can be checked that the random process{
k∑
l=0

[
Zl ln γ + (1− Zl) ln θ

]}
is a submartingale with bounded increments. Hence the event on the right-hand side of (7) has
probability zero (see [5, Theorem 4.1]). Thereby we obtain the confirmation of global conver-
gence of probabilistic direct search provided below.

Theorem 3.1 If {Dk} is p0-probabilistically κ-descent in Algorithm 2.1, then

P
(

lim inf
k→∞

‖Gk‖ = 0

)
= 1.

We point out that this lim inf-type global convergence result is also implied by our global
rate theory of Section 4, under a slightly stronger assumption (see Proposition 5.1).

4 Global rate for direct search based on probabilistic descent

For measuring the global rate of decay of the gradient, we consider the gradient g̃k with minimum
norm among g0, g1, . . . , gk, and use G̃k to represent the corresponding random variable. Given
a positive number ε, we define kε as the smallest integer k such that ‖gk‖ ≤ ε, and denote the
corresponding random variable by Kε. It is easy to check that kε ≤ k if and only if ‖g̃k‖ ≤ ε.

In the deterministic case, one either looks at the global decaying rate of ‖g̃k‖ or one counts the
number of iterations (a worst case complexity bound) needed to drive the norm of the gradient
below a given tolerance ε > 0. When ρ(α) is a positive multiple of α2, it can be shown [28] that
the global rate is of the order of 1/

√
k and that the worst case complexity bound in number of

iterations is of the order of ε−2. Since the algorithms are now probabilistic, what interests us
are lower bounds, as close as possible to one, on the probabilities P(‖G̃k‖ ≤ O(1/

√
k)) (global

rate) and P(Kε ≤ O(ε−2)) (worst case complexity bound).
Our analysis is carried out in two major steps. In Subsection 4.1, we will concentrate on the

intrinsic mechanisms of Algorithm 2.1, without assuming any probabilistic property about the
polling directions {Dk}, establishing a bound on

∑k−1
l=0 zl for all realizations of the algorithm. In

Subsection 4.2, we will see how this property can be used to relate P(‖G̃k‖ ≤ ε) to the lower tail of
the random variable

∑k−1
l=0 Zl. We will concentrate on the probabilistic behavior of Algorithm 2.1,

using a Chernoff bound for the lower tail of
∑k−1

l=0 Zl when {Dk} is probabilistically descent, and
then prove the desirable lower bounds on P(‖G̃k‖ ≤ ε) and P(Kε ≤ k).

In order to achieve our goal, we henceforth make an additional assumption on the forcing
function ρ as follows.

Assumption 4.1 There exist constants θ̄ and γ̄ satisfying 0 < θ̄ < 1 ≤ γ̄ such that, for each
α > 0,

ρ(θα) ≤ θ̄ρ(α), ρ(γα) ≤ γ̄ρ(α).

Such an assumption is not restrictive as it holds in particular for the classical forcing functions
of the form ρ(α) = c αq, with c > 0 and q > 1.
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4.1 Analysis of step size behavior and number of iterations with descent

The goal of this subsection is to establish a bound on
∑k−1

l=0 zl in terms of k and ‖g̃k‖ for an
arbitrary realization of Algorithm 2.1, as presented in Lemma 4.2. To do this, we first show the
boundedness of

∑∞
k=0 ρ(αk).

Lemma 4.1 For each realization of Algorithm 2.1,

∞∑
k=0

ρ(αk) ≤
γ̄

1− θ̄
[
ρ
(
γ−1α0

)
+ (f0 − flow)

]
.

Proof. Consider a realization of Algorithm 2.1. We assume that there are infinitely many
successful iterations as it is trivial to adapt the argument otherwise.

Let ki be the index of the i-th successful iteration (i ≥ 1). Define k0 = −1 and α−1 = γ−1α0

for convenience. Let us rewrite
∑∞

k=0 ρ(αk) as

∞∑
k=0

ρ(αk) =
∞∑
i=0

ki+1∑
k=ki+1

ρ(αk), (9)

and study first
∑ki+1

k=ki+1 ρ(αk). According to Algorithm 2.1 and the definition of ki, it holds{
αk+1 ≤ γαk, k = ki,

αk+1 = θαk, k = ki + 1, . . . , ki+1 − 1,

which gives
αk ≤ γθk−ki−1αki , k = ki + 1, . . . , ki+1.

Hence, by the monotonicity of ρ and Assumption 4.1, we have

ρ(αk) ≤ γ̄θ̄k−ki−1ρ(αki), k = ki + 1, . . . , ki+1.

Thus
ki+1∑

k=ki+1

ρ(αk) ≤
γ̄

1− θ̄
ρ(αki). (10)

Inequalities (9) and (10) imply

∞∑
k=0

ρ(αk) ≤
γ̄

1− θ̄

∞∑
i=0

ρ(αki). (11)

Inequality (11) is sufficient to conclude the proof because

αk0 = γ−1α0 and

∞∑
i=1

ρ(αki) ≤ f(x0)− flow,

according to the definition of ki. �

The bound on the sum of the series is denoted by

β =
γ̄

1− θ̄
[
ρ
(
γ−1α0

)
+ f(x0)− flow

]
and used next to bound the number of iterations with descent.

10



Lemma 4.2 Given a realization of Algorithm 2.1 and a positive integer k,

k−1∑
l=0

zl ≤
β

ρ (min {γ−1α0, ϕ (κ ‖g̃k‖)})
+ p0k.

Proof. Consider a realization of Algorithm 2.1. For each l ∈ {0, 1, . . . , k − 1}, define

vl =

{
1 if αl < min

{
γ−1α0, ϕ(κ‖g̃k‖)

}
,

0 otherwise.
(12)

A key observation for proving the lemma is

zl ≤ (1− vl) + vlyl. (13)

When vl = 0, inequality (13) is trivial; when vl = 1, Lemma 2.1 implies that yl ≥ zl (since
‖g̃k‖ ≤ ‖g̃k−1‖ ≤ ‖g̃l‖), and hence inequality (13) holds. It suffices then to separately prove

k−1∑
l=0

(1− vl) ≤
β

ρ(min {γ−1α0, ϕ(κ‖g̃k‖)})
(14)

and
k−1∑
l=0

vlyl ≤ p0k. (15)

Because of Lemma 4.1, inequality (14) is justified by the fact that

1− vl ≤
ρ(αl)

ρ(min {γ−1α0, ϕ(κ‖g̃k‖)})
,

which in turn is guaranteed by the definition (12) and the monotonicity of ρ.
Now consider inequality (15). If vl = 0 for all l ∈ {0, 1, . . . , k − 1}, then (15) holds. Consider

then that vl = 1 for some l ∈ {0, 1, . . . , k − 1}. Let l̄ be the largest one of such integers. Then

k−1∑
l=0

vlyl =

l̄∑
l=0

vlyl. (16)

Let us estimate the sum on the right-hand side. For each l ∈
{

0, 1, . . . , l̄
}

, Algorithm 2.1 together
with the definitions of vl and yl give{

αl+1 = min{γαl, αmax} = γαl if vlyl = 1,

αl+1 ≥ θαl if vlyl = 0,

which implies

αl̄+1 ≥ α0

l̄∏
l=0

(
γvlylθ1−vlyl

)
. (17)

11



On the other hand, since vl̄ = 1, we have αl̄ ≤ γ−1α0, and hence αl̄+1 ≤ α0. Consequently, by
taking logarithms, one can obtain from inequality (17) that

0 ≥ ln(γθ−1)

l̄∑
l=0

vlyl + (l̄ + 1) ln θ,

which leads to
l̄∑
l=0

vlyl ≤
ln θ

ln (γ−1θ)
(l̄ + 1) = p0(l̄ + 1) ≤ p0k (18)

since ln(γ−1θ) < 0. Inequality (15) is then obtained by combining inequalities (16) and (18). �

Lemma 4.2 allows us to generalize the worst case complexity of deterministic direct search [28]
for more general forcing functions when γ > 1. As we prove such a result we gain also momentum
for the derivation of the global rates for direct search based on probabilistic descent.

Proposition 4.1 Assume that γ > 1 and consider a realization of Algorithm 2.1. If, for each
k ≥ 0,

cm(Dk,−gk) ≥ κ (19)

and
ε ≤ γ

κα0
ρ(γ−1α0) +

να0

2κγ
, (20)

then

kε ≤
β

(1− p0)ρ[ϕ(κε)]
.

Proof. By the definition of kε, we have ‖g̃kε−1‖ ≥ ε. Therefore, from Lemma 4.2 (which
holds also with ‖g̃k‖ replaced by ‖g̃k−1‖) and the monotonicity of ρ and ϕ, we obtain

kε−1∑
l=0

zl ≤
β

ρ (min {γ−1α0, ϕ(κε)})
+ p0kε. (21)

According to (19), zk = 1 for each k ≥ 0. By the definition of ϕ, inequality (20) implies

ϕ(κε) ≤ ϕ

[
ρ(γ−1α0)

γ−1α0
+
ν

2
γ−1α0

]
≤ γ−1α0. (22)

Hence (21) reduces to

kε ≤
β

ρ [ϕ(κε)]
+ p0kε.

Since γ > 1, one has, from (8), p0 < 1, and the proof is completed. �
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4.2 Global rate (with conditioning to the past)

In this subsection, we will study the probability P(‖G̃k‖ ≤ ε) (and equivalently, P(Kε ≤ k))
with the help of Lemma 4.2. First we present a universal lower bound for this probability, which
holds without any assumptions on the probabilistic behavior of {Dk} (Lemma 4.3). Using this
bound, we prove that P(‖G̃k‖ ≤ O(1/

√
k)) and P(Kε ≤ O(ε−2)) are overwhelmingly high when

ρ(α) = c α2/2 (Corollaries 4.1 and 4.2), which will be given as special cases of the results for
general forcing functions (Theorems 4.1 and 4.2).

Lemma 4.3 If

ε ≤ γ

κα0
ρ(γ−1α0) +

να0

2κγ
, (23)

then

P
(
‖G̃k‖ ≤ ε

)
≥ 1− πk

(
β

kρ[ϕ(κε)]
+ p0

)
, (24)

where πk(λ) = P
(∑k−1

l=0 Zl ≤ λk
)

.

Proof. According to Lemma 4.2 and the monotonicity of ρ and ϕ, we have

{
‖G̃k‖ ≥ ε

}
⊂

{
k−1∑
l=0

Zl ≤
β

ρ(min {γ−1α0, ϕ(κε)})
+ p0k

}
. (25)

Again, as in (22), by the definition of ϕ, inequality (23) implies ϕ(κε) ≤ γ−1α0. Thus we
rewrite (25) as {

‖G̃k‖ ≥ ε
}
⊂

{
k−1∑
l=0

Zl ≤
β

ρ[ϕ(κε)]
+ p0k

}
,

which gives us inequality (24) according to the definition of πk. �

This lemma enables us to lower bound P(‖G̃k‖ ≤ ε) by just focusing on the function πk,
which is a classical object in probability theory. Various lower bounds can then be established
under different assumptions on {Dk}.

Given the assumption that {Dk} is p-probabilistically κ-descent, Definition 3.1 implies that

P(Z0 = 1) ≥ p and P (Zk = 1 | Z0, . . . , Zk−1) ≥ p (k ≥ 1). (26)

It is known that the lower tail of
∑k−1

l=0 Zl obeys a Chernoff type bound, even when conditioning
to the past replaces the more traditional assumption of independence of the Zk’s (see, for
instance, [15, Problem 1.7] and [13, Lemma 1.18]). We present such a bound in Lemma 4.4 below
and give a proof in Appendix A, where it can be seen the role of the concept of probabilistic
descent.

Lemma 4.4 Suppose that {Dk} is p-probabilistically κ-descent and λ ∈ (0, p). Then

πk(λ) ≤ exp

[
−(p− λ)2

2p
k

]
. (27)
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Now we are ready to present the main results of this section. In these results we will assume
that {Dk} is p-probabilistically κ-descent with p > p0, which cannot be fulfilled unless γ > 1
(since p0 = 1 if γ = 1).

Theorem 4.1 Suppose that {Dk} is p-probabilistically κ-descent with p > p0 and that

k ≥ (1 + δ)β

(p− p0)ρ[ϕ(κε)]
, (28)

for some positive number δ, and where ε satisfies

ε ≤ γ

κα0
ρ(γ−1α0) +

να0

2κγ
. (29)

Then

P
(
‖G̃k‖ ≤ ε

)
≥ 1− exp

[
−(p− p0)2δ2

2p(1 + δ)2
k

]
. (30)

Proof. According to Lemma 4.3 and the monotonicity of πk,

P
(
‖G̃k‖ ≤ ε

)
≥ 1− πk

(
β

kρ[ϕ(κε)]
+ p0

)
≥ 1− πk

(
p− p0

1 + δ
+ p0

)
.

Then inequality (30) follows directly from Lemma 4.4. �

Theorem 4.1 reveals that, when ε is an arbitrary number but small enough to verify (29)
and the iteration counter satisfies (28) for some positive number δ, the norm of the gradient is
below ε with overwhelmingly high probability. Note that ε is related to k through (28). In fact,
if ρ ◦ ϕ is invertible (which is true when the forcing function is a multiple of αq with q > 1),
then, for any positive integer k, sufficiently large to satisfy (28) and (29) all together, one can
set

ε =
1

κ
(ρ ◦ ϕ)−1

(
(1 + δ)β

p− p0

1

k

)
, (31)

and what we have in (30) can then be read as (since ε and k satisfy the assumptions of Theo-
rem 4.1)

P
(
‖G̃k‖ ≤ κ−1(ρ ◦ ϕ)−1(O(1/k))

)
≥ 1− exp(−Ck),

with C a positive constant.
A particular case is when the forcing function is a multiple of the square of the step size

ρ(α) =
1

2
c α2,

where it is easy to check that

ϕ(t) =
2t

c+ ν
.

One can then obtain the global rate ‖G̃k‖ ≤ O(1/
√
k) with overwhelmingly high probability,

matching [28] for deterministic direct search, as it is shown below in Corollary 4.1, which is just
an application of Theorem 4.1 for this particular forcing function. For simplicity, we will set
δ = 1.

14



Corollary 4.1 Suppose that {Dk} is p-probabilistically κ-descent with p > p0, ρ(α) = c α2/2,
and

k ≥ 4γ2β

c(p− p0)α2
0

. (32)

Then

P

(
‖G̃k‖ ≤

(
β

1
2 (c+ ν)

c
1
2 (p− p0)

1
2κ

)
1√
k

)
≥ 1− exp

[
−(p− p0)2

8p
k

]
. (33)

Proof. As in (31), with δ = 1, let

ε =
1

κ
(ρ ◦ ϕ)−1

(
2β

p− p0

1

k

)
. (34)

Then, by straightforward calculations, we have

ε =

(
β

1
2 (c+ ν)

c
1
2 (p− p0)

1
2κ

)
1√
k
. (35)

Moreover, inequality (32) gives us

ε ≤ β
1
2 (c+ ν)

c
1
2 (p− p0)

1
2κ

(
4γ2β

c(p− p0)α2
0

)− 1
2

=
(c+ ν)α0

2κγ
. (36)

Definition (34) and inequality (36) guarantee that k and ε satisfy (28) and (29) for ρ(α) = c α2/2
and δ = 1. Hence we can plug (35) into (30) yielding (33). �

Based on Lemmas 4.3 and 4.4 (or directly on Theorem 4.1), one can lower bound P(Kε ≤ k)
and arrive at a worst case complexity result.

Theorem 4.2 Suppose that {Dk} is p-probabilistically κ-descent with p > p0 and

ε ≤ γ

κα0
ρ(γ−1α0) +

να0

2κγ
.

Then, for each δ > 0,

P
(
Kε ≤

⌈
(1 + δ)β

(p− p0)ρ[ϕ(κε)]

⌉)
≥ 1− exp

[
− β(p− p0)δ2

2p(1 + δ)ρ[ϕ(κε)]

]
. (37)

Proof. Letting

k =

⌈
(1 + δ)β

(p− p0)ρ[ϕ(κε)]

⌉
we have P(Kε ≤ k) = P(‖G̃k‖ ≤ ε) and then inequality (37) follows from Theorem 4.1 as

k ≥ (1 + δ)β

(p− p0)ρ[ϕ(κε)]
.

�
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Since ρ(α) = o(α) (from the definition of the forcing function ρ) and ϕ(κε) ≤ 2ν−1κε
(from definition (3) of ϕ), it holds that the lower bound in (37) goes to one faster than 1 −
exp(−ε−1). Hence, we conclude from Theorem 4.2 that direct search based on probabilistic
descent exhibits a worst case complexity bound in number of iterations of the order of 1/ρ[ϕ(κε)]
with overwhelmingly high probability, matching Proposition 4.1 for deterministic direct search.
To see this effect more clearly, we present in Corollary 4.2 the particularization of Theorem 4.2
when ρ(α) = c α2/2, taking δ = 1 as in Corollary 4.1. The worst case complexity bound is then
of the order of 1/ε2 with overwhelmingly high probability, matching [28] for deterministic direct
search. The same matching happens when ρ(α) is a power of α with exponent q, where the

bound is O(ε
− q

min{q−1,1} ).

Corollary 4.2 Suppose that {Dk} is p-probabilistically κ-descent with p > p0, ρ(α) = c α2/2,
and

ε ≤ (c+ ν)α0

2κγ
.

Then

P
(
Kε ≤

⌈
β(c+ ν)2

c(p− p0)κ2
ε−2

⌉)
≥ 1− exp

[
−β(p− p0)(c+ ν)2

8cpκ2
ε−2

]
. (38)

It is important to understand how the worst case complexity bound (38) depends on the
dimension n of the problem. For this purpose, we first need to make explicit the dependence
on n of the constant in Kε ≤ dβ(c + ν)2/[c(p − p0)κ2]ε−2e which can only come from p and κ
and is related to the choice of Dk.

One can choose Dk as m directions uniformly independently distributed on the unit sphere,
with m independent of n, in which case p is a constant larger than p0 and κ = τ/

√
n for some

constant τ > 0 (both p and τ are totally determined by γ and θ without dependence on m or n;
see Corollary B.1 in Appendix B and the remarks after it). In such a case, from Corollary 4.2,

P
(
Kε ≤

⌈
β(c+ ν)2

c(p− p0)τ2

(
nε−2

)⌉)
≥ 1− exp

[
−β(p− p0)(c+ ν)2

8cpκ2
ε−2

]
.

To derive a worst case complexity bound in terms of the number of function evaluations, one
just needs then to see that each iteration of Algorithm 2.1 costs at most m function evaluations.
Thus, if Kf

ε represents the number of function evaluations within Kε iterations, we obtain

P
(
Kf
ε ≤

⌈
β(c+ ν)2

c(p− p0)τ2

(
nε−2

)⌉
m

)
≥ 1− exp

[
−β(p− p0)(c+ ν)2

8cpκ2
ε−2

]
. (39)

The worst case complexity bound is then O(mnε−2) with overwhelmingly high probability, which
is clearly better than the corresponding bound O(n2ε−2) for deterministic direct search [28] if
m is chosen an order of magnitude smaller than n.

4.3 High probability iteration complexity

Given a confidence level P , the following theorem presents an explicit bound for the number
of iterations which can guarantee that ‖G̃k‖ ≤ ε holds with probability at least P . Bounds
of this type are interesting in practice and have been considered in the theoretical analysis of
probabilistic algorithms (see, for instance, [23, 24]).
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Theorem 4.3 Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then for any

ε ≤ γ

κα0
ρ(γ−1α0) +

να0

2κγ

and P ∈ (0, 1), it holds P(‖G̃k‖ ≤ ε) ≥ P whenever

k ≥ 3β

2(p− p0)ρ[ϕ(κε)]
− 3p ln(1− P )

(p− p0)2
. (40)

Proof. By Theorem 4.1, P(‖G̃k‖ ≤ ε) ≥ P is achieved when

k ≥ max

{
(1 + δ)β

(p− p0)ρ[ϕ(κε)]
,−2p(1 + δ)2 ln(1− P )

δ2(p− p0)2

}
(41)

for some positive number δ. Hence it suffices to show that the right-hand side of (40) is bigger
than that of (41) for properly chosen δ. For simplicity, denote

c1 =
β

(p− p0)ρ[ϕ(κε)]
, c2 = −2p ln(1− P )

(p− p0)2
.

Let us consider the positive number δ such that

(1 + δ)c1 =
(1 + δ)2

δ2
c2.

It is easy to check that

δ =
1

2c1

(
c2 +

√
c2

2 + 4c1c2

)
≤ 1

2
+

3c2

2c1
.

Thus

max

{
(1 + δ)c1,

(1 + δ)2

δ2
c2

}
= (1 + δ)c1 ≤

3

2
(c1 + c2),

which completes the proof. �

5 Discussion and extensions

5.1 Establishing global convergence from global rate

It is interesting to notice that Theorem 4.1 implies a form of global convergence of direct search
based on probabilistic descent, as we mentioned at the end of Subsection 3.2.

Proposition 5.1 Suppose that {Dk} is p-probabilistically κ-descent with p > p0. Then

P
(

inf
k≥0
‖Gk‖ = 0

)
= 1.
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Proof. We prove the result by contradiction. Suppose that

P
(

inf
k≥0
‖Gk‖ > 0

)
> 0.

Then there exists a positive constant ε > 0 satisfying (29) and

P
(

inf
k≥0
‖Gk‖ ≥ ε

)
> 0. (42)

But Theorem 4.1 implies that

lim
l→∞

P
(
‖G̃l‖ ≥ ε

)
= 0,

which then contradicts (42), because P(‖G̃l‖ ≥ ε) ≥ P (infk≥0 ‖Gk‖ ≥ ε) for each l ≥ 0. �

If we assume for all realizations of Algorithm 2.1 that the iterates never arrive at a sta-
tionary point in a finite number of iterations, then the events {lim infk→∞ ‖Gk‖ = 0} and
{infk≥0 ‖Gk‖ = 0} are identical. Thus, in such a case, Proposition 5.1 reveals that

P
(

lim inf
k→∞

‖Gk‖ = 0

)
= 1,

if {Dk} is p-probabilistically κ-descent with p > p0.

5.2 The behavior of expected minimum norm gradient

In this subsection we study how E(‖G̃k‖) behaves with the iteration counter k. For simplicity,
we consider the special case of the forcing function ρ(α) = c α2/2.

Proposition 5.2 Suppose {Dk} is p-probabilistically κ-descent with p > p0, ρ(α) = c α2/2, and

k ≥ 4γ2β

c(p− p0)α2
0

.

Then
E
(
‖G̃k‖

)
≤ c3k

− 1
2 + ‖g0‖ exp (−c4k) ,

where

c3 =
β

1
2 (c+ ν)

c
1
2 (p− p0)

1
2κ
, c4 =

(p− p0)2

8p
.

Proof. Let us define a random variable Hk as

Hk =

{
c3k
− 1

2 if ‖G̃k‖ ≤ c3k
− 1

2 ,

‖g0‖ otherwise.

Then ‖G̃k‖ ≤ Hk, and hence

E
(
‖G̃k‖

)
≤ E (Hk) ≤ c3k

− 1
2 + ‖g0‖P

(
‖G̃k‖ > c3k

− 1
2

)
.
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Therefore it suffices to notice

P
(
‖G̃k‖ > c3k

− 1
2

)
≤ exp(−c4k),

which is a straightforward application of Corollary 4.1. �

In deterministic direct search, when a forcing function ρ(α) = c α2/2 is used, ‖g̃k‖ decays

with O(k−
1
2 ) when k tends to infinity [28]. Proposition 5.2 shows that E(‖G̃k‖) behaves in a

similar way in direct search based on probabilistic search.

5.3 Global rate (without conditioning to the past)

Assuming that {Dk} is p-probabilistically κ-descent as defined in Definition 3.1, we obtained the
Chernoff-type bound (27) for πk, and then established the worst case complexity of Algorithm 2.1
when p > p0. As mentioned before, inequality (5) in Definition 3.1 is stronger than the one
without conditioning to the past. A natural question is then to see what can be obtained if
we weaken this requirement by not conditioning to the past. It turns out that we can still
establish some lower bound for P(‖G̃k‖ ≤ ε), but much weaker than inequality (30) obtained in
Theorem 4.1 and in particular not approaching one.

Proposition 5.3 If
P (cm(Dk,−Gk) ≥ κ) ≥ p (43)

for each k ≥ 0 and

ε ≤ γ

κα0
ρ(γ−1α0) +

να0

2κγ
,

then

P
(
‖G̃k‖ ≤ ε

)
≥ p− p0

1− p0
− β

(1− p0)kρ[ϕ(κε)]
.

Proof. Due to Lemma 4.3, it suffices to show that

πk

(
β

kρ[ϕ(κε)]
+ p0

)
≤ (1− p) + β/(kρ[ϕ(κε)])

1− p0
. (44)

Let us study πk(λ). According to (43) and to the definition of Zk,

P (Zk = 1) ≥ p

for each k ≥ 0. Hence

πk(λ) = P

(
k−1∑
l=0

Zl ≤ λk

)
≤

E
(∑k−1

l=0 (1− Zl)
)

k − λk
≤ k − pk

k − λk
=

1− p
1− λ

.

Thus

πk

(
β

kρ[ϕ(κε)]
+ p0

)
≤ 1− p

(1− p0)− β/(kρ[ϕ(κε)])
. (45)

If β/(kρ[ϕ(κε)]) ≤ p−p0, then (44) follows from (45) and the fact that a/b ≤ (a+ c)/(b+ c) for
0 < a ≤ b and c ≥ 0. If β/(kρ[ϕ(κε)]) > p− p0, then (44) is trivial since πk(λ) ≤ 1. �
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5.4 A more detailed look at the numerical experiments

An understanding of what is at stake in the global analysis of direct search based on probabilistic
descent allows us to revisit the numerical experiments of Subsection 2.2 with additional insight.
Remember that we tested Algorithm 2.1 by choosing Dk as m independent random vectors
uniformly distributed on the unit sphere in Rn. In such a case, the almost-sure global convergence
of Algorithm 2.1 is guaranteed as long as m > log2[1− (ln θ)/(ln γ)], as it can be concluded from
Theorem 3.1 (see Corollary B.1 in Appendix B). For example, when γ = 2 and θ = 0.5, the
algorithm converges with probability 1 when m ≥ 2, even if such values of m are much smaller
than the number of elements of the positive spanning sets with smallest cardinality in Rn, which
is n+ 1 (41 in the case tested in Subsection 2.2).

We point out here that our theory is applicable only if γ > 1. Moreover, for deterministic
direct search based on positive spanning sets (PSSs), setting γ = 1 tends to lead to better
numerical performance (see, for instance, [8]). In this sense, the experiment in Subsection 2.2 is
biased in favor of direct search based on probabilistic descent. To be fairer, we designed a new
experiment by keeping γ = 1 when the sets of polling directions are guaranteed PSSs (which
is true for the versions corresponding to [I −I], [Q −Q], and [Qk −Qk]), while setting γ > 1
for direct search based on probabilistic descent. All the other parameters were selected as in
Subsection 2.2.

In the case of direct search based on probabilistic descent, we pick now γ = 2 and γ = 1.1 as
illustrations, and as for the cardinality m of Dk we simply take the smallest integers satisfying
m > log2[1 − (ln θ)/(ln γ)], which are 2 and 4 respectively. Table 2 presents the results of the
redesigned experiment with n = 40. Table 3 shows what happened for n = 100. The data is
organized in the same way as in Table 1.

We can see from the tables that direct search based on probabilistic descent still outperforms
(for these problems) the direct-search versions using PSSs, even though the difference is not so
considerable as in Table 1. We note that such an effect is even more visible when the dimension
is higher (n = 100), which is somehow in agreement with the fact that (39) reveals a worst
case complexity in function evaluations of O(mnε−2), which is more favorable than O(n2ε−2)
for deterministic direct search based on PSSs when m is significantly smaller than n.

Table 2: Relative performance for different sets of polling directions (n = 40).

[I −I] [Q −Q] [Qk −Qk] 2 (γ = 2) 4 (γ = 1.1)

arglina 1.00 3.17 37.19 5.86 6.73

arglinb 34.12 5.34 32.56 1.00 2.02

broydn3d 1.00 1.91 5.96 2.04 3.47

dqrtic 1.18 1.36 28.32 1.00 1.48

engval1 1.05 1.00 16.44 2.29 2.89

freuroth 17.74 7.39 7.48 1.35 1.00

integreq 1.54 1.49 5.36 1.00 1.34

nondquar 1.00 2.82 8.02 1.37 1.73

sinquad – 1.26 – 1.00 –

vardim 20.31 11.02 2.97 1.00 1.84
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Table 3: Relative performance for different sets of polling directions (n = 100).

[I −I] [Q −Q] [Qk −Qk] 2 (γ = 2) 4 (γ = 1.1)

arglina 1.00 3.86 105.50 5.86 7.58

arglinb 138.28 107.32 106.23 1.00 1.99

broydn3d 1.00 2.57 12.07 1.92 3.21

dqrtic 3.01 3.25 – 1.00 1.46

engval1 1.04 1.00 43.00 2.06 2.84

freuroth 31.94 17.72 12.42 1.36 1.00

integreq 1.83 1.66 13.46 1.00 1.22

nondquar 1.18 2.83 23.15 1.00 1.17

sinquad – – – – –

vardim 112.22 19.72 8.04 1.00 2.36

6 Other algorithmic contexts

Our analysis is wide enough to be carried out to other algorithmic contexts where no derivatives
are used and some randomization is applied to probabilistically induce descent. In particular,
it will also render a global rate of 1/

√
k with overwhelmingly high probability for trust-region

methods based on probabilistic models [5]. We recall that Lemma 4.2 is the key result leading
to the global rate results in Subsection 4.2. Lemma 4.2 was based only on the two following
elements about a realization of Algorithm 2.1:

1. if the k-th iteration is successful, then f(xk) − f(xk+1) ≥ ρ(αk) (in which case αk is
increased), and

2. if cm(Dk,−gk) ≥ κ and αk < ϕ(κ‖gk‖), then the k-th iteration is successful (Lemma 2.1).

One can easily identify similar elements in a realization of the trust-region algorithm proposed
in [5, Algorithm 3.1]. In fact, using the notations in [5] and denoting

K = {k ∈ N : ρk ≥ η1 and ‖gk‖ ≥ η2δk} , (46)

one can find positive constants µ1 and µ2 such that:

1. if k ∈ K, then f(xk)− f(xk+1) ≥ µ1δ
2
k and δk is increased (by [5, Algorithm 3.1]), and

2. if mk is (κeg, κef )-fully linear and δk < µ2‖gk‖, then k ∈ K (by [5, Lemma 3.2]).

One sees that δk and K play the same roles as αk and the set of successful iterations in our
paper. Based on these facts, one can first follow Lemma 4.1 to obtain a uniform upper bound
µ3 for

∑∞
k=0 δ

2
k, and then prove that (κeg, κef )-fully linear models appear at most

µ3

min
{
γ−2δ2

0 , µ
2
2‖g̃k‖2

} +
k

2
(47)
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times in the first k iterations, a conclusion similar to Lemma 4.2. It is then straightforward
to mimic the analysis in Subsection 4.2, and prove a 1/

√
k rate for the gradient (with over-

whelmingly high probability) if the random models are probabilistically fully linear (see [5,
Definition 3.2]).

7 Concluding remarks

We introduced a new proof technique for establishing global rates or worst case complexity
bounds for randomized algorithms where the choice of the new iterate depends on a decrease
condition and where the quality of the object (directions, models) used for descent is favorable
with a certain probability. The proof technique separates the counting of the number of iterations
that descent holds from the probabilistic properties of such a number.

In the theory of direct search for smooth functions, the polling directions are typically re-
quired to be uniformly non-degenerated positive spanning sets. However, numerical observation
suggests that the performance of direct search can be improved by instead randomly generating
the polling directions. To understand this phenomenon, we proposed the concept of probabilis-
tically descent sets of directions and studied direct search based upon it. An argument inspired
by [5] shows that direct search (Algorithm 2.1) converges almost surely if the sets of polling
directions are p0-probabilistically κ-descent for some κ > 0, where p0 = (ln θ)/[ln(γ−1θ)], γ and
θ being the expanding and contracting parameters of the step size. But more insightfully, we
established in this paper the global rate and worst case complexity of direct search when the
sets of polling directions are p-probabilistically κ-descent for some p > p0 and κ > 0. It was
proved that in such a situation direct search enjoys the global rate and worst case complexity
of deterministic direct search with overwhelmingly high probability. In particular, when the
forcing function is ρ(α) = c α2/2 (c > 0), the norm of the gradient is driven under O(1/

√
k)

in k iterations with a probability that tends to 1 exponentially when k → ∞, or equivalently,
the norm is below ε in O(ε−2) iterations with a probability that tends to 1 exponentially when
ε → 0. Based on these conclusions, we also showed that the expected minimum norm gradient
decays with a rate of 1/

√
k, which matches the behavior of the gradient norm in deterministic

direct search or steepest descent.
A more precise output of this paper is then a worst case complexity bound of O(mnε−2), in

terms of functions evaluations, for this class of methods when m is the number of (independently
uniformly distributed) random directions used for polling. As said above, such a bound does
not hold deterministically but under a probability approaching 1 exponentially when ε → 0,
but this is still clearly better than O(n2ε−2) (known for deterministic direct search) in a serial
environment where m is chosen significantly smaller than n.

Open issues

When we were finishing this paper, Professor Nick Trefethen brought to our attention the possi-
bility of setting Dk = {d,−d}, where d is a random vector independent of the previous iterations
and uniformly distributed on the unit sphere of Rn. Given a unit vector v ∈ Rn and a number
κ ∈ [0, 1], it is easy to see that the event {cm(Dk, v) ≥ κ} is the union of {d>v ≥ κ} and
{−d>v ≥ κ}, whose intersection has probability zero, and therefore

P
(

cm(Dk, v) ≥ κ
)

= P
(
d>v ≥ κ

)
+ P

(
− d>v ≥ κ

)
= 2%,
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% being the probability of {d>v ≥ κ}. By the same argument as in the proof of Proposi-
tion B.1, one then sees that {Dk} defined in this way is 2%-probabilistically κ-descent. Given
any constants γ and θ satisfying 0 < θ < 1 < γ, we can pick κ > 0 sufficiently small so that
2% > (ln θ)/[ln(γ−1θ)], and then Algorithm 2.1 conforms to the theory presented in Subsec-
tion 3.2 and Section 4. Moreover, the set {d,−d} turns out to be optimal among all the sets D
consisting of 2 random vectors uniformly distributed on the unit sphere, in the sense that it
maximizes the probability P

(
cm(D, v) ≥ κ

)
for each κ ∈ [0, 1]. In fact, if D = {d1, d2} with d1

and d2 uniformly distributed on the unit sphere, then

P
(

cm(D, v) ≥ κ
)

= 2%− P
(
{d>1 v ≥ κ} ∩ {d>2 v ≥ κ}

)
≤ 2%,

and the maximal value 2% is attained when D = {d,−d} as already discussed. We tested the
set {d,−d} numerically (with γ = 2 and θ = 1/2), and it performed even better than the set
of 2 independent vectors uniformly distributed on the unit sphere (yet the difference was not
substantial), which illustrates again our theory of direct search based on probabilistic descent.
It remains to know how to define D so that it maximizes P

(
cm(D, v) ≥ κ

)
for each κ ∈ [0, 1],

provided that D consists of m > 2 random vectors uniformly distributed on the unit sphere, but
this is out of the scope of the paper.

A number of other issues remain also to be investigated related to how known properties
of deterministic direct search extend to probabilistic descent. For instance, one knows that
in some convex instances [12] the worst case complexity bound of deterministic direct search
can be improved to the order of 1/ε (corresponding to a global rate of 1/k). One also knows
that some deterministic direct-search methods exhibit an r-linear rate of local convergence [14].
Finally, extending our results to the presence of constraints and/or non-smoothness may be also
of interest.

A Proof of Lemma 4.4

Proof. The result can be proved by standard techniques of large deviations. Let t be an
arbitrary positive number. By Markov’s Inequality,

πk(λ) = P

(
exp

(
−t

k−1∑
l=0

Zl

)
≥ exp(−tλk)

)
≤ exp (tλk)E

(
k−1∏
l=0

e−tZl

)
. (48)

Now let us study E(
∏k−1
l=0 e−tZl). By Properties G∗ and K∗ of Shiryaev [26, page 216], we

have

E

(
k−1∏
l=0

e−tZl

)
= E

(
E
(
e−tZk−1 | Z0, Z1, . . . , Zk−2

) k−2∏
l=0

e−tZl

)
. (49)

According to (26) and the fact that the function re−t + (1− r) is monotonically decreasing in r,
it holds (with p̄ = P (Zk−1 = 1 | Z0, Z1, . . . , Zk−2) ≥ p)

E
(
e−tZk−1 | Z0, Z1, . . . , Zk−2

)
= p̄e−t + (1− p̄) ≤ pe−t + (1− p) ≤ exp

(
pe−t − p

)
,

which implies, from equality (49), that

E

(
k−1∏
l=0

e−tZl

)
≤ exp

(
pe−t − p

)
E

(
k−2∏
l=0

e−tZl

)
.
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By recursively iterating the above estimation, we finally arrive at

E

(
k−1∏
l=0

e−tZl

)
≤ exp

[
k(pe−t − p)

]
.

Inequality (48) can then be rewritten as

πk(λ) ≤ exp
[
k(tλ+ pe−t − p)

]
, (50)

which holds for all t > 0. Let us select t = ln(λ−1p). Then we have

tλ+ pe−t − p = λ ln(λ−1p) + λ− p = − 1

2ξ
(λ− p)2 (λ < ξ < p),

the second equality coming from Taylor expansion of the function λ 7→ λ ln(λ−1p) +λ− p at the
point p. Thus, we conclude from inequality (50) that

πk(λ) ≤ exp

[
−(λ− p)2

2p
k

]
.

�

B A practical implementation of probabilistic descent sets

In the numerical experiments of Subsection 2.2, we chose Dk as m independent random vectors
uniformly distributed on the unit sphere in Rn. Now we prove that the polling directions
defined in this way are probabilistic descent as defined in Definition 3.1. Moreover, we will
present practical estimations for p and κ (see Proposition B.1 below).

We assume throughout this section that the polling sets are mutually independent and that
for each k ≥ 0,

Dk = {d1, . . . , dm} ,

where d1, . . . , dm are independent random vectors uniformly distributed on the unit sphere. In
computations, d1, . . . , dm can be obtained by normalizing independent random vectors from the
n-dimensional standard normal distribution [21].

We need two lemmas to deal with the probabilities involved in Definition 3.1. The first
one is a corollary of Fubini’s Theorem [6, Page 42]. A similar conclusion can be found in [16,
Example 5.1.5].

Lemma B.1 ([6, page 148]) If U and V are independent random variables, then for a random
variable defined by h(U, V ), where h is a non-negative function, it holds

E (h(U, V ) | V ) = h̄(V ),

where
h̄(v) = E (h(U, v)) .

The second one is a bound on a probability that will be used later.
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Lemma B.2 Given v ∈ Rn and τ ∈ [0,
√
n], it holds

P
(

cm(Dk, v) ≥ τ√
n

)
≥ 1−

(
1

2
+

τ√
2π

)m
. (51)

Proof. If v = 0, then cm(Dk, v) ≡ 1 by definition, and there is nothing to prove. Hence
we suppose that v is nonzero (and, without loss of generality, normalized). When n = 1,
inequality (51) is also trivial. Therefore we assume n ≥ 2. According to the implementation of
Dk, we have

P
(

cm(Dk, v) ≥ τ√
n

)
= 1−

[
1− P

(
d>v ≥ τ√

n

)]m
,

with d being a random vector uniformly distributed on the unit sphere. To establish the desired
lower bound for this probability, we study the function

%(κ) = P
(
d>v ≥ κ

)
, κ ∈ [0, 1],

and it suffices to prove that

%(κ) ≥ 1

2
− κ
√

n

2π
. (52)

Since the distribution of d is uniform on the unit sphere, %(κ) is proportional to the area A
of the spherical cap {

d ∈ Rn : ‖d‖ = 1 and d>v ≥ κ
}

of unit radius and height
h = 1− κ.

Recalling the area formula for spherical caps, we have

A =
1

2
An I

(
2h− h2,

n− 1

2
,

1

2

)
=

1

2
An I

(
1− κ2,

n− 1

2
,

1

2

)
,

where An is the area of the unit sphere in Rn, and I is the regularized incomplete Beta function [1]
defined by

I (u, a, b) =
1

B(a, b)

∫ u

0
ta−1(1− t)b−1dt, (53)

with B being the Beta function. Hence

%(κ) =
1

2
I

(
1− κ2,

n− 1

2
,

1

2

)
. (54)

When n = 2, by plugging (53) into (54), calculating the integral, and noticing B(1
2 ,

1
2) = π,

we have

%(κ) =
1

2
I

(
1− κ2,

1

2
,

1

2

)
=

1

π
arcsin

√
1− κ2 =

1

2
− 1

π
arcsinκ ≥ 1

2
− κ

2
,
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and therefore inequality (52) is true. To prove (52) in the situation of n ≥ 3, we examine
definition (53) and find that

I (u, a, b) = 1− 1

B(a, b)

∫ 1

u
ta−1(1− t)b−1dt

≥ 1− 1

B(a, b)

∫ 1

u
(1− t)b−1dt

= 1− (1− u)b

bB(a, b)

when a ≥ 1. Hence, using equation (54), we obtain

%(κ) ≥ 1

2
− κ

B(n−1
2 , 1

2)

when n ≥ 3. Thus we can arrive at inequality (52) as long as

B

(
n− 1

2
,
1

2

)
≥
√

2π

n
. (55)

Inequality (55) is justified by the facts

B

(
n− 1

2
,
1

2

)
=

Γ(n−1
2 ) Γ(1

2)

Γ(n2 )
=

Γ(n−1
2 )

Γ(n2 )

√
π,

and

Γ
(n

2

)
≤
[
Γ

(
n− 1

2

)
Γ

(
n+ 1

2

)] 1
2

=

√
n− 1

2
Γ

(
n− 1

2

)
,

the second of which is because Γ is log-convex, meaning that ln Γ is convex [2, Theorem 2.1]. �

Now we present the main result of this section. It concludes under the assumptions in this
appendix that {Dk} is probabilistically descent and it introduces easy-to-use estimations for p
and κ.

Proposition B.1 Given τ ∈ [0,
√
n], {Dk} is p-probabilistically (τ/

√
n)-descent with

p ≤ 1−
(

1

2
+

τ√
2π

)m
. (56)

Proof. According to Definition 3.1, we need to prove that

P
(

cm (D0,−G0) ≥ τ√
n

)
≥ p, (57)

and

P
(

cm (Dk,−Gk) ≥
τ√
n

∣∣∣ D0, . . . ,Dk−1

)
≥ p (58)

for each k ≥ 1, with p satisfying (56). Inequality (57) follows directly from Lemma B.2, since
G0 ≡ ∇f(x0). In the following we will show how to obtain (58) from Lemmas B.1 and B.2.
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Let us fix k ≥ 1. For any sets D0, . . . , Dk−1, Dk of polling directions, define

h(D0, . . . , Dk−1, Dk) =

{
1 if cm(Dk,−gk) ≥ τ√

n
,

0 else,

where gk ≡ gk(D0, . . . , Dk−1) is totally defined given D0, . . . , Dk−1. Then h is a well defined
function of D0, . . . , Dk−1, Dk. Moreover,

P
(

cm(Dk,−Gk) ≥
τ√
n

∣∣∣ D0, . . . ,Dk−1

)
= E

(
h(D0, . . . ,Dk−1,Dk)

∣∣∣ D0, . . . ,Dk−1

)
.

Due to the independence of the sets of polling directions, we know from Lemma B.1 (with
U = Dk and V = (D0, . . . ,Dk−1)) that

E
(
h(D0, . . . ,Dk−1,Dk)

∣∣∣ D0, . . . ,Dk−1

)
= h̄(D0, . . . ,Dk−1),

with

h̄(D0, . . . , Dk−1) = E (h(D0, . . . , Dk−1,Dk)) = P
(

cm(Dk,−gk) ≥
τ√
n

)
≥ p,

the last inequality coming from Lemma B.2. Hence (58) holds, and the proof is completed. �

Proposition B.1 enables us to derive a bound for m that ensures global convergence and a
global rate to Algorithm 2.1.

Corollary B.1 If

m > log2

(
1− ln θ

ln γ

)
, (59)

then {Dk} is p-probabilistic τ/
√
n-descent for some constants p > p0 and τ > 0 that are totally

determined by γ and θ.

Proof. Let m0 be the minimal integer that satisfies

m0 > log2

(
1− ln θ

ln γ

)
. (60)

Then m ≥ m0. Given inequality (60), we have

1−
(

1

2

)m0

> 1−
(

1− ln θ

ln γ

)−1

= p0.

Thus, there exists a sufficiently small positive constant τ such that

1−
(

1

2
+

τ√
2π

)m0

> p0.

Let

p = 1−
(

1

2
+

τ√
2π

)m0

. (61)
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Then

p ≤ 1−
(

1

2
+

τ√
2π

)m
, (62)

and it is easy to check that both τ and p can be totally determined by γ and θ. The proof is
concluded by applying Proposition B.1. �

We notice that the constants p and τ in Corollary B.1 are totally determined by γ and θ
without dependence on m or n, and that the bound (59) for m is also totally determined by
γ and θ. These observations are important for us to understand how the problem dimension
influences the global rate and worst case complexity bound (see the discussion at the end of
Subsection 4.2).

According to Corollary B.1, when m satisfies the bound (59), all of our theory is applicable
to Algorithm 2.1 under the assumptions in this appendix. For example, when γ = 2 and θ = 0.5,
taking m = 2 can guarantee that Algorithm 2.1 enjoys the global convergence and global rate
by us established, no matter how large the problem is (see Subsection 5.4).
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