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Abstract

Non-linearities in the energy response of gas detectors in the regions of the absorption edges of the detection
medium are well documented. Monte Carlo calculations show that the non-linearity results from di�erences in
e�ciencies for converting absorbed radiation into ionisation for di�erent atomic sub-shells. Energy non-linearity in
germanium-based solid-state detectors in the region of the germanium 11.104-keV K-edge is not well documented,

although a 1% non-linearity has been previously reported in a Ge(Li) detector. This relatively high value is of
practical concern since high-purity germanium (HPGe) is often the detector of choice for a- and X-ray spectrometry
down to a few keV. In this paper, we present the experimental results for the energy response of a HPGe detector in

the 8±15-keV energy region of the germanium K-edge. Within the accuracy of our measurements, we conclude that
there is no measurable non-linearity e�ect in germanium at the K-edge. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

High-Purity Germanium (HPGe) detectors are
widely used in X- and g-ray spectrometry due to their

excellent energy resolution and high detection e�-
ciency. With a thin radiation window of suitable size,
their range of application can be extended over a wide
range Ð from several MeV down to a few keV.

Detailed detector performance, particularly the
energy resolution and linearity, is necessary to precisely
analyse the data. Therefore, over the years both these

performance parameters have been investigated as

instrumental responses evolved to higher levels of pre-

cision. An accurate energy calibration of a radiation
detector especially at the lower end of its operating
range requires a detailed knowledge of its energy line-
arity.

Deviations from linearity in the energy response of
gaseous detectors are well documented (Lamb et al.,
1987; Jahoda and McCammon, 1988; Santos et al.,

1991; dos Santos et al., 1993, 1994; Tsunemi et al.,
1993; Budtz-Jorgensen et al., 1995; Dias et al., 1997).
The quantitative explanation of the discontinuities in

linearity was given in Santos et al. (1991) and Dias et
al. (1997) using a detailed Monte Carlo simulation
model. It was shown that departure from linearity of

the detector energy response occurs at the gas absorp-
tion edges due to di�erences of the energy expended
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by the initially photoionised atom in establishing the
ground state as di�erent shells are excited.

More recently, the energy linearity of silicon detec-
tors at the L- and K-absorption edges in silicon have
been investigated theoretically and experimentally

(Fraser et al., 1994; Torii et al., 1995; Owens et al.,
1996). While an energy discontinuity of 10.2% (13.6
eV) was found in Fraser et al. (1994) and Owens et al.

(1996) at the K-edge in silicon, the value measured in
Torii et al. (1995) was 1.52 2.6 eV. They concluded
that there is no intrinsic non-linearity e�ect in silicon

at the K-edge (Torii et al., 1995).

2. Rationale

Discontinuities at the K-edge in germanium are not

as well documented. Zulliger et al. (1969) reported a
gain non-linearity of 11% over the germanium K-
edge in the response of a Ge(Li) X-ray detector, a
value that would be of practical concern. They

claimed that it could be due either to bias-indepen-
dent charge trapping e�ects in their detector or to an
intrinsic non-linearity e�ect in germanium at the K-

edge (Zulliger et al., 1969). Nevertheless, this value
seems relatively high compared with what was
obtained for silicon detectors. On the other hand,

Fraser et al. (1994) and Owens et al. (1996) intend to
extend their Monte Carlo analysis to include germa-
nium detectors, but results have not yet been pub-
lished to the best of our knowledge.

In an attempt to clarify this situation, we have re-
visited the question of the energy linearity of a HPGe
detector in the vicinity of the K-edge in germanium

with measurements and analysis in the 8±15 keV X-ray
range.

3. Experimental set-up

The detector used in this work was a planar Ortec
GLP HPGe, with a 8 cm2 � 1 cm deep volume and a
thin front contact of less than 0.3 mm. Throughout the

experiment, the detector was biased at ÿ1500 V. The
built-in pre-ampli®er pulses are fed through an Ortec
575A ampli®er, using shaping times of 3 ms, to a 4096-
channel Nucleus MCA. The counting rate in the detec-

tor was maintained below 100 cps in all cases, a rate
su�ciently low to neglect any dead-time and pile-up
e�ects. On the other hand, by maintaining the low

counting rate, any rate e�ects due to the abrupt
increase in the absorption e�ciency at the K-edge were
minimized.

The required X-ray energies were generated by excit-
ing K-¯uorescence lines in selected target elements. A
collimated 241Am source was positioned above the

detector so that the radiation window was not exposed
to direct radiation from the source (Fig. 1). The ¯uor-

escent samples were positioned at 458 to the detector
axis and 1 cm away from the entrance window. A 10-
mm diameter collimator positioned over the 2.54-cm

detector entrance window delimited the scattered and
¯uorescent X-rays. The ¯uorescent samples in the
shape of discs, 3-cm diameter by 1-cm thick, were

selected on the basis of their availability and of the
energies of the Ka and Kb lines. The sample materials
and X-ray energies used to determine the linearity in

the region of interest are tabulated in Table 1.

4. Experimental results and analysis

The non-linearity in the electronic chain was deter-
mined by using a BNC-PB4 high precision pulse gen-
erator directed into the test port of the detector pre-

ampli®er. The pulse amplitudes versus channel number
were ®tted to two straight lines, one below and one
above the channel corresponding to 11.104 keV. The

values of the ordinates of each line extrapolated to the
channel of interest di�ered by less than 0.03%.

Typical pulse±height distributions obtained for
di�erent target samples are shown in Fig. 2. As can be

seen, the low energy tail due to incomplete charge col-
lection resulting from events with charge lost to the
electrode is negligible at the germanium K-edge. The

pulse±height distributions were ®tted with a gaussian
superimposed on a linear background using the Grid
Least Squares ®t method (Bevington, 1969) and their

centroid-peak positions were determined.

System stability and the uncertainty in the measured

Table 1

The sample materials and characteristic radiation lines

Element line X-ray energy (keV)

Cu Ka 8.041

Zn Ka 8.631

Cu Kb 8.904

Ga Ka 9.244

Zn Kb 9.571

Ge Ka 9.876

Ga Kb 10.263

As Ka 10.532

Ge Kb 10.981

Se Ka 11.210

As Kb 11.725

Br Ka 11.907

Se Kb 12.495

Br Kb 13.290

Rb Ka 13.375

Sr Ka 14.142
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centroid-peak position were determined by monitoring

the characteristic radiation of zinc and strontium
throughout the data acquisition period. In this manner
the centroid position uncertainty was determined to be

between 0.2 and 0.4 channels for X-ray energies below
and above the germanium K-edge.
In Fig. 3(a), we have ploted the Ka and Kb peak cen-

troids as a function of energy together with a least-
squares ®t of straight lines to each set of data below
and above the germanium K-edge threshold. In

Fig. 3(b), ampli®cation around the K-edge is shown.
To determine whether any energy discontinuity was

present, we extrapolated each straight line to the

energy region corresponding to the germanium K-edge
threshold (11.104 keV). The measured discontinuity

based on this method was determined to be 324 eV,
i.e., less than 0.1%. This value is low enough to be of
little practical concern, taking into account the pre-

cision of the instrumentation, and it leads us to con-
clude that there is no intrinsic non-linearity e�ect in
germanium at the K-edge.

The w2 analysis was performed for the two straight-
line ®ts to the data set below and above the K-edge

and also for a single straight-line ®t to all data points.

The variance for the centroid positions has taken into
account the centroid position uncertainty as well as the
uncertainty of 1 eV in the considered value for the X-
ray energies.

The w2 values obtained for the ®ttings to the two
straight lines were 9.0 and 7.6, respectively, while the
w2 value obtained for the ®tting to a single straight line

was 20.6. These values correspond to con®dence levels
of 25% and 20% for the two straight lines, respect-
ively, and 14% for the single line ®tting.

5. Conclusions

An explanation for K- and L-edge discontinuities
measured in gas detectors is supported by Monte

Carlo simulations. There, it was shown that the e�-
ciency for converting absorbed X-ray energy into ionis-
ation is lower for atomic sub-shells with higher
binding energies. When a new photoionisation channel

becomes energetically accessible, the subsequent de-ex-
citation cascade of the photoionised atom results in a

Fig. 1. Schematic of the detector and the source/holder geometry.

Fig. 2. Pulse±height distribution of the ¯uorescent X-ray spectrum from As and Se.
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greater number of electron vacancies in the outermost

sub-shells. A measurable amount of the absorbed

energy can be expended in establishing the ground

state of the ion with the additional vacancies. At still

higher energies, the energy dissipated in establishing

the cascade vacancies is a smaller fraction of the total

energy transferred to photoelectrons, and approximate

energy linearity is restored.

As our results indicate, the situation for a solid crys-

talline detector is obviously more complicated and col-

lective e�ects, beyond the scope of this paper, may

well dominate the energy absorption process. In ad-

Fig. 3. (a) The least square ®ts to the data. (b) The least square ®ts to the data in the region of the K-edge in germanium.
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dition, there is presently no supporting Monte Carlo
simulation for the de-excitation processes in germa-

nium. Our experimental result indicates that the non-
linearity in energy response at the K-edge in germa-
nium, if any, is negligible for applications to a- and X-

ray spectrometry.
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