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Abstract

The stabilized jellium model is the simplest model which yields realistic results for the physical properties of simple
metals. For the surface properties, its single input is the valence-electron density, which is described by the density
parameter r

�
. We remark that the surface energy and the work function as a function of r

�
, within that model, are

reasonably approximated by power laws and compare that behaviour with similar descriptions found in the literature
and with experiment. We also present a simple relationship between the surface energy and the bulk modulus, which is
well "tted by the power !�

�
of the density parameter (when the e!ective valence is taken to be zH"1). Another simple

relationship between the work function and the bulk modulus is shown. � 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The stabilized jellium model [1] has been suc-
cessfully applied to understand the physics of surfa-
ces [2], slabs [3] and clusters [4] of simple metals.
This model has been recently reviewed in Ref. [5].
The surface properties of stabilized jellium are

independent of the valence z. They are determined
only by the average valence electron density in the
bulk n� "3/(4�r�

�
), with r

�
the density parameter or

Seitz radius.

The surface energy � and the work function
= can be obtained from Lang}Kohn type [6]
calculations for the planar surface of stabilized jel-
lium [2], in the local density approximation for
exchange and correlation. Within that approach,
the surface energy and the work function depend
continuously on r

�
in a non-analytical way. How-

ever, we remark here that both results are well
approximated by r

�
-power laws. We compare ours

with similar power law descriptions found in the
literature (some of them having a theoretical justi"-
cation), and with experiment.
Sixteen simple or sp-bonded metals are con-

sidered: Be (r
�
"1.87), Al (r

�
"2.07), Ga (r

�
"2.19),

Sn (r
�
"2.22), Pb (r

�
"2.30), In (r

�
"2.41), Tl

(r
�
"2.48), Mg (r

�
"2.65), Li (r

�
"3.24), Ca
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Fig. 1. Surface energy � as a function of the density parameter
r
�
. The black circles represent Lang}Kohn results, within the

stabilized jellium model, for di!erent simple metals (Be, Al, Ga,
Sn, Pb, In, Tl, Mg, Li, Ca, Sr, Ba, Na, K, Rb, and Cs in ascending
order of r

�
). The solid line represents the power function of

r
�
which better describes those results: �"6937�r����

�
. The

dashed line shows the best power !�
�
"t (�"5709�r����

�
). The

black triangles are experimental surface energies taken from
Ref. [13].

(r
�
"3.27), Sr (r

�
"3.57), Ba (r

�
"3.71), Na

(r
�
"3.93), K (r

�
"4.86), Rb (r

�
"5.20), and Cs

(r
�
"5.62). The r

�
values are all given in bohr.

The stabilized jellium model with e!ective val-
ence zH"1 predicts also the realistic bulk moduli
B for all simple metals, which are well "tted by
a r����

�
law [7]. We remark that the adimensional

ratio Br
�
/�, within that model, is nearly constant

for the range of metallic densities. The same hap-
pens with the adimensional ratio Br�

�
/=.

2. Results

The stabilized jellium surface energy � (in
erg/cm�) as a function of the density parameter r

�
is

represented in Fig. 1. Our calculations for the 16
simple metals are well described by the function
�"6937�r����

�
obtained by a least-squares "t

(solid line). This result should be compared with
similar "ts made by other authors. For example,
some ab initio calculations [8] have been "tted by
�&r��

�
, a result which may be understood on the

basis of Miedema's model of metal cohesion [9].
On the other hand, the law �&r����

�
has ap-

peared several times in the literature being present-
ed as a kind of empirical law (see, for example, Ref.
[10]). A theoretical justi"cation, based on zero-
point energy of plasmons, has been given in Ref.
[11], but received strong criticism [12]. The power
!�

�
of the density parameter (�"5709�r����

�
) is

displayed in Fig. 1 by the dashed line, showing that
it also gives a good account of our results.
We have obtained �"8134�r���	

�
(not dis-

played in the "gure) as the best "t to the experi-
mental data taken from Ref. [13].
Recently, in Ref. [14], experimental and theoret-

ical surface energies of simple and transition metals
have been systematically examined and the case has
been made to describe them by �&r�


�
, where r

�
is

the e!ective density parameter of Ref. [15]. This
r
�

correlates with r
�
although not in a simple,

analytical way.
Fig. 2 shows separately the four contributions to

the stabilized jellium surface energy: exchange-
correlation (�

��
), pseudopotential correction

(�
�����	

), electrostatic (�
��
), and non-interacting kin-

etic (�

��
). The best "ts which we have obtained (not

displayed in the "gure) for those contributions are:
�
��

"3.001�10
�r���

�

, �
�����	

"2.584�10��r����
�

,
�
��

"1.160�10
�r�
��
�

, and �

��

"!1.554�
10��r����

�
. We recall that in the ordinary jellium

model, the exchange and kinetic contributions are
given by �

�
&r����

�
and �


��
&r�
��

�
[16].

Let us now examine the work function.
Fig. 3 shows the work function (in eV) as predicted
by the stabilized jellium model. The best density
scaling law ="6.756�r���	

�
is indicated by the

solid line. As a consequence �r�
�
/=&r����

�
is al-

most independent of the density.
The power !�

�
of the density parameter was

obtained in a recent theoretical study of the work
function [17] on the basis of Brodie's de"nition
[18]. We have also tried this power: the dashed line
in Fig. 3, representing the best "t ="6.077�
r����
�

, does not reproduce well our values, namely
for the lowest densities.
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Fig. 2. Surface energy � for di!erent simple metals as predicted
by the stabilized jellium model (same as the solid line in Fig. 1)
and its decomposition in four contributions: exchange-correla-
tion �

��
, pseudopotential correction �

�����	
, electrostatic �

��
,

and non-interacting kinetic �

��
.

Fig. 3. Work function= as a function of the density parameter
r
�
. The black circles represent Lang}Kohn results, within the

stabilized jellium model, for di!erent simple metals. The solid
line represents the power function of r

�
which better describes

those results:="6.756�r���	
�

. The dashed line shows the best
power !�

�
"t (="6.077�r����

�
). The black triangles are ex-

perimental work functions taken from Ref. [19].

We have obtained ="7.937�r���
�

(not dis-
played in the "gure) as the best "t to the experi-
mental data (polycrystalline samples) taken from
Ref. [16].
The stabilized jellium model with e!ective val-

ence zH"1 describes correctly the real dependence
of the bulk moduli (or the inverse compressibilities)
upon r

�
. Within that model, the bulk moduli are

well "tted by B&r����
�

[7]. Similar simple power
laws can be found in the literature for other kinds of
materials. For example, in Refs. [20,21] it is shown
that the bulk modulus in covalent materials de-
pends only on the nearest neighbours separation d:
B&d����.
It is interesting to relate the bulk and surface

problems, analyzing the adimensional ratios Br
�
/�

and Br�
�
/=. From Fig. 4, we observe that Br

�
/� is

nearly constant, approximately equal to 9. This

result agrees with earlier empirical observations
that the ratio of the surface energy to the bulk
modulus depends only weakly on the material
[22,23]. A justi"cation for the validity of Br

�
/�K

constant has been given in Ref. [24] using density
functional theory in the Thomas}Fermi}Dirac}
WeizsaK cker approach. On the other hand, the ratio
Br�

�
/=, also displayed in Fig. 4, is remarkably close

to 0.143 for all simple metals.

3. Conclusions

In the stabilized jellium model, treated in the
framework of Lang}Kohn method using the local
density approximation, the surface energy and
work function are complicated functions of the
density parameter r

�
.

We have shown here that these functions can be
well approximated, in the range of metallic
densities, by power laws (respectively &r����

�
and
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Fig. 4. Adimensional ratios Br
�
/� and Br�

�
/= for the simple

metals as predicted by the stabilized jellium model, where B is
the bulk modulus (calculated with e!ective valence zH"1),
r
�
the density parameter, � the surface energy, and= the work

function.

&r���	
�

). These relationships, although not exact,
are useful to describe the gross trends of surface
properties. Of course, they fail outside the range of
densities of real metals. For instance, for r

�
)1.6

both the surface energy and the work function have
maxima.
Since the bulk modulus, in the same model, has

also been found to follow a simple power law (with
exponent !�

�
), it is possible to combine bulk and

surface properties in a way that it is independent of
the density. The dimensionless ratios Br

�
/� and

Br�
�
/= have been found to be approximately con-

stant. Theoretical explanations for these simple re-
sults are being investigated.
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