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Inverse mass expansion of the one-loop effective action
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Abstract

A method is described for the development of the one-loop effective action expansion as an asymptotic series in inverse
powers of the fermion mass. The method is based on the Schwinger–DeWitt proper-time technique, which allows for loop
particles with nondegenerate masses. The case withSU(2)× SU(2) as the symmetry group is considered. The obtained novel
series generalizes the well-known Schwinger–DeWitt inverse mass expansion for equal masses, and is chiral invariant at each
order. We calculate the asymptotic coefficients up to the fifth order and clarify their relationship with the standard Seeley–DeWitt
coefficients. 2001 Elsevier Science B.V. All rights reserved.

Quite often in physics one has to extract the dominant contribution of the short distance effects on the
large distance behavior. This is the case where usually effective field theories (EFT) come into play [1]. Chiral
perturbation theory (CHPT) in QCD is a typical example [2]. It is an effective theory approach in which the low-
energy QCD Lagrangian is constructed as a combined derivative and light quark mass expansion. The expansions
for the effective action accumulate the most important features of the short distance physics, i.e., for instance, the
quantum fluctuations of the light particles (pions) in CHPT, or the low-energy effects resulting from the presence
of heavy particles in the fundamental theory [3]. Other examples are given by models of the Nambu–Jona-Lasinio
(NJL) type [4] where the action of the respective low-energy EFT results from bosonization of the quark–antiquark
interaction [5]. In all the above cases and in many others arises the necessity of calculating the determinant of the
positive definite elliptic operator which governs quadratic fluctuations of quantum fields in the presence of a definite
background and which contains in compact form all information about the one-loop contribution of quantum fields.
This determinant may be defined using the Schwinger proper-time representation [6,7] in terms of its heat kernel.
The heat kernel admits at this stage an asymptotic expansion in powers of proper-time with coefficients which are
known as Seeley–DeWitt coefficients [7,8]. In this way one can finally arrive at the expansion for the effective
action at large distances. It is a very powerful method which is known as the background field method [9] and
which allows the construction of the low-energy EFT action in the single-closed-loop approximation, when the
underlying high energy theory (which in particular might be an EFT of some fundamental theory) is known. Many
aspects of this approach in relation to chiral gauge theories are reviewed in [10].
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In a recent study [11] of the low-energy structure of the NJL model with the linear realization of explicitly
brokenSU(2)× SU(2) chiral symmetry on the basis of the Schwinger–DeWitt proper-time formalism we came to
the necessity of performing systematic resummations inside the proper-time expansion. These resummations occur
when the one loop diagrams of the proper-time Green’s function involve particles with different but still comparable
masses. There we have obtained the first three terms in the asymptotic expansion of the corresponding heat kernel,
however, at that time we could not suggest the general resummation procedure without which the method cannot be
considered as complete. The aim of this Letter is to present a general method for the construction of the heat kernel
asymptotic expansion for such nondegenerate cases. The algorithm for resummations, Eq. (23), is formulated on
a purely algebraic basis and is completely novel. It leads us to an expansion which can be classified as a series
in inverse powers of mass with coefficient functions generalizing the standard Seeley–DeWitt coefficients. Let us
clarify this place. The incorporation of nontrivial mass matrices in the heat kernel expansion is by no means a new,
or unsolved problem. It has been considered in detail, for example, in [3]. However, without the resummation
procedure the result cannot be cast in a chiral invariant form. We consider this symmetry property of asymptotic
coefficients to be a crucial condition on any generalization of the Schwinger–DeWitt result, which as it is well
known fulfills this requirement. The resummations come into play only after performing fully the integrations over
the proper time. It is important to note that in our approach at no instance do we recur to the proper-time expansion.
We do not expand in powers of proper-time the mass dependent part of the heat kernel, for example, by absorbing
the mass term in the background fields. It is this feature which makes our approach differ essentially from the
ones (see, for example, [12,13]) where authors study the proper-time asymptotics of heat kernels with arbitrary
matrix-valued scalar potentials, and thus nontrivial mass matrices in particular.

Our starting point for calculations is the modulus of the functional fermion determinant for the one-loop effective
action, given by the proper-time integral

(1)W [Y ] = − ln |detD| = 1
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which can always be regularized by using, for example, the Pauli–Villars cutoff [14] incorporated through the
kernelρ(T ,Λ2). We do not need the explicit form ofρ(T ,Λ2) in the following. The calculation will be performed
in Euclidean space. The elliptic operatorD†D has the form:

(2)D†D =m2 +B, B = −∂2 + Y,

whereY is a matrix-valued function of scalar and pseudoscalar background fields. In the most general case the
mass termm2 does not commute withY . The first step is the evaluation of the heat kernel in a fictitious Hilbert
space. We shall use here the formalism developed by Fujikawa [15]. As a result we have
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whereA= B − 2ip∂/
√
T and tr is trace on the internal space. To simplify our consideration and make ideas more

transparent let us choose theSU(2)×SU(2) group as a group of chiral transformations acting on background fields.
In this case the most general expression for the square of the mass matrix is a sum
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with τ0 = 1, τi , (i = 1,2,3) being the Pauli matrices for isospin. Since[m2, Y ] �= 0, we shall use the following
operator identity, which is well-known in quantum mechanics, to factorize the mass matrix from the heat kernel
in Eq. (3):

(5)tr
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)= tr
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[
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Herefn(T ,A) is equal to
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whereA(s)= esMτ3Ae−sMτ3. If one takes into account the permutation property of the trace operation in Eq. (5),
the expressions forfn(T ,A) can be simplified. We find in this way
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For the functionsc(i)j (T ) we have
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Now one can integrate over momentum in Eq. (3), which is a standard procedure [10]. Up to total derivatives,
which can be omitted in the effective action, we obtain the expansion
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where the last term,̃f3(T ,B), contains the additional contributions of order∼ T 3, coming fromf4(T ,A):
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Let us replace in Eq. (17) the operatorB by its expression in terms ofY (see Eq. (2)). The result is
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∫
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The last step is to integrate over the proper-timeT in Eq. (19). The integrals overT can be reduced to
combinations of some set of elementary integralsJn(µ

2)
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wheren is integer. Our task now is to find the algorithm which will automatically give a chiral invariant grouping
for the background fields as well as the mass dependent coefficients before them. To this end, it is necessary to
reorganize the asymptotic series, given by Eq. (19), in the form

(22)W [Y ] =
∫

d4x

32π2

∞∑
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Ii−1 tr(ai),

where 2Ii ≡ Ji(K − M) + Ji(K + M). The necessary resummations inside the starting expansion (19) are
determined by the recursion relations

(23)Ji(K −M)− Ji(K +M)=
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]
.

One can prove this useful identity for any integeri, calculating the first order derivative inM in both sides of
this equation. Passing from Eq. (19) to Eq. (22) corresponds to choosingJi(K −M)+ Ji(K +M) as the mass
dependent factor in the asymptotic expansion, instead ofJi(µ

2) in the standard case of the Schwinger–DeWitt
series. The differenceJi(K −M)− Ji(K +M) can be always expressed through the infinite sum ofIn with n > i,
as it follows from Eq. (23). As a result of these manipulations one can find the coefficientsai in Eq. (22). The first
five of them are equal to
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At this stage it can be verified that if the operatorD†D is defined to transform in the adjoint representation
δ(D†D) = i[ω,D†D], the coefficient functionsai are invariant under the global infinitesimal chiral transforma-
tions with parametersω = α + γ5β . This property extremely simplifies calculations, since it gives an alternative
way to obtainai . Indeed, to find coefficient functions in Eq. (22) one can simply integrate the equationδai = 0,
using the corresponding Seeley–DeWitt coefficient as a starting point and constructing the necessary counterterms
in such a way as to satisfy the aforementioned equation.

The present result is in agreement with the standard Schwinger–DeWitt expansion, whenM = 0. For the case
with M �= 0 our formula (22) is a new asymptotic series which can be used to construct the low-energy EFT
action when the local vertices are induced by one-loop diagrams involving particles with different masses. It is a
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direct extension of the DeWitt WKB expansion constructed on the basis of the Schwinger proper-time method.
Our approach can be used for a wide range of interesting applications, such as, for instance, the operator-product
expansion [16], or derivative expansions [17], or heat-kernel one-loop renormalizations [18]. It is not difficult to
extend our method to the cases with more complicated symmetry groups. For instance, in the sequel to this Letter
we have already obtained asymptotic coefficientsai in the case ofSU(3)×SU(3) chiral symmetry group [19]. The
other direction for development is to include minimal coupling of the loop particles to gauge fields.
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