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1 Introduction

The great advances in computational mathematics over
the last half century, driven by profound developments
in numerical methods along with remarkable progresses
in the field of high performance computing, are playing
a major role in the scientific and engineering innovation.

Partial differential equations arise in the mathemat-
ical modelling of many physical, chemical and biological
phenomena in a wide and diverse range of subject ar-
eas such as fluid dynamics, electromagnetism, material
science, medical imaging. Very frequently is either im-
possible or impracticable to find closed form solutions
to the equations under consideration and it is crucial to
obtain numerical approximations to the unknown ana-
lytical solution.

When assigned with the task of solving numerically a
partial differential equation, the first question one faces
is tho choose an adequate method.

The demand for finding accurate numerical models
for physical phenomena around complex geometries are
making high order methods very attractive for practi-
cal applications. Among the possible choices, the dis-
continuous Galerkin (DG) finite element method, which
ensures geometric flexibility and supports high order lo-
cally adapted resolution, appears to offer most of the
desired properties.

The DG finite element method appeared in the lit-
erature back to 1973 in [16], as a proposal to solve the
steady-state neutron transport equation. The first con-
vergence analysis results were presented in 1974, in [13]
and improved later for example in [12], [14] and [15].
The extension to nonlinear scalar conservation laws was
achieved in late 1980’s ([4]). Important progresses, namely
the development of adaptive solution techniques and the
extension to multidimensional cases and to unstructured
grids, took place in the next two decades (see e.g. [5],
[11]). Since the years 2000 there has been an explosion
in activities and DG methods become widely used for
solving a large range of problems, for example, electro-
magnetic wave’s propagation ([8]), or fluid flow in porous
media ([17]).

Being capable of producing highly accurate numer-
ical solutions, DG methods gather many desirable fea-
tures over the finite differences, finite volume and finite
element methods, when used to derive spacial discretiza-
tions. The widely used finite differences, on top of being
simple, lead to very efficient schemes in many problems.
However they are not suitable to handle complex geome-
tries. The finite volume method, uses an element based
approach and ensures geometric flexibility. Moreover it
is locally conservative. The main drawback of the finite
volume method is its limitation for achieve high-order ac-
curacy on general unstructured grids. The need to solve
geometrically complex large scale problems with higher-
order convergence, justifies the huge interest in the flex-
ibility offered by the finite element schemes, which is
the natural choice in many problems. However, the basis
functions are globally defined and consequently it is not
straightforward to deal for instance with hanging nodes.
While the mass matrix is sparse and typically well condi-
tioned, finding, for instance, a steady state solution im-
plies to solve a system that involves the global mass ma-
trix. In addition, the finite element method is less natural
when compared with finite volume method to deal with
conservation laws, where there is a flow in specific direc-
tions. Discontinuous Galerkin methods fulfill the need
of geometrical flexibility and locally adapted resolution.
Some other features include local mass conservation, pos-
sible definition on unstructured meshes, hp-adaptivity
with locally varying polynomial degrees.

There is likewise a wide variety of methods for the in-
tegration in time. For example, we can mention the fully
explicit leap-frog method ([1]), or the classes of implicit
and explicit Runge-Kutta type methods (e.g. [3],[10]),
which reflect a method-of-lines approach with the time
and space separately discretized. Explicit time-stepping
schemes are computationally very effective. Neverthe-
less, those methods are only conditionally stable. If an
explicit time integrator is considered, the maximum time
step size allowed is related with the smallest elements
of the spatial mesh. Locally refined meshes often ob-
struct the efficiency for the simulation of time-dependent
phenomena, because of the stringent stability constraint
caused by the existence of some small elements in the
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spatial mesh. This could be the case when the problem
involves modelling small structures with complex shapes
and consequently a very fine mesh is needed at some
spatial locations. As an example we mention the use of
Maxwell’s equation to model the electromegnetic wave’s
propagation in the human retina described in [2] and
[18]. Simulating the full complexity of the retina, in par-
ticular taking into account the variation of the size and
shape of each structure, demands the use of a spatial
mesh which reflects that level of detail. This is remark-
ably limitative for the choice of the time step in the case
of explicit time-stepping schemes.

By taking smaller time-steps precisely where the small-
est elements are located, local time-stepping methods
([9]) become a possible approach. Another interesting
choice, is to consider locally implicit time-schemes ([6]).
Here we highlight another alternative, which is to con-
sider the DG method in time. In contrast to explicit
Runge-Kutta methods, the DG in time is uncondition-
ally stable ([7]). This idea suggests the use of DG meth-
ods in a space-time approach, giving a framework for
high-order accurate methods. In this technique, time is
considered as an extra dimension and it is treated in a
similar fashion as the spatial coordinates.

The advantages of DG methods include their flexi-
bility on the choice of meshes and thus their capacity to
handle complicated geometries, their potential for error
control and mesh adaptation, their possible definition
on unstructured meshes. The possibility of parallel im-
plementation attenuates the major drawbacks which are
high memory requirements and computational cost.

In spite of the theoretical developments, which en-
courage the use of high order finite element methods,
the range of polynomial degrees used in finite element
computations for practical applications and in commer-
cial codes is usually rather small. In many cases, this fact
is due to computational efficiency rather than any theo-
retical issue. The search of efficient solvers for the linear
systems originated from the DG finite element approach
is nowadays a trend of utmost importance.

In what follows we will briefly discuss the formula-
tion of the DG finite element method for linear wave
problems. We will also summarise the theoretical con-
vergence properties to give an appreciation of what can
be expected in terms of accuracy of the schemes.

2 The continuous setting

Let Ω be an open, bounded, Lipschitz domain in Rd,
d ≥ 1, and let T > 0 be a finite time. We consider the
following linear evolution problem: find u : Ω × [0, T ]→
R such that

∂u

∂t
+Au = f in Ω × (0, T ],

u(., 0) = u0 in Ω, (1)

u = 0 on Γ− × (0, T ),

where A is a first-order linear differential operator

Au = β · ∇u+ σu,

β : Ω → Rd is a given Lispschitz convection field, σ :
Ω → R is a bounded reaction term, f : Ω × [0, T ] → R
is the source term, u0 : Ω → R is the initial datum, and
Γ− is the inflow part of the boundary defined as

Γ− = {x ∈ Γ : −β(x) · n > 0},

with n denoting the outer normal unit vector to Γ . The
outflow boundary, Γ+, is defined by Γ+ = Γ\Γ−. We
make the following hypothesis on the data

σ(x)− 1

2
divβ(x) ≥ µ0 > 0 ∀x ∈ Ω.

Let us consider the space

V = {v ∈ L2(Ω) : β · ∇v ∈ L2(Ω), v|Γ− = 0},

endowed with the norm

‖v‖2V = µ0‖v‖2L2(Ω) + ‖β · ∇v‖2L2(Ω).

Assuming that f ∈ C0([0, T ], L2(Ω)) and u0 ∈ V , taking
the L2-inner product, from (1) we obtain the following
variational problem: find u ∈ C0([0, T ], V )∩C1([0, T ], L2(Ω))
such that, ∀v ∈ L2(Ω), ∀t ∈ (0, T ],

(
∂u

∂t
(t), v)L2(Ω) + (Au(t), v)L2(Ω) = (f(t), v)L2(Ω),

u(0) = u0. (2)

Using the relation

(β · ∇u+ σu, u)L2(Ω) = (σ − 1

2
divβ, u2)L2(Ω)

+
1

2
((β · n)u, u)L2(Γ ),

we can derive the following energy inequality, which ex-
presses the continuous dependence of the solution of (2)
on the data,

‖u(t)‖2L2(Ω) +

∫ t

0

et−τ
∫
Γ+

(β(x) · n(x))u(x, τ)2 dx dτ

≤ et‖u0‖2L2(Ω) +

∫ t

0

et−τ‖u(τ)‖2L2(Ω) dτ, t ∈ [0, T ].

The proof of the uniqueness of solution follows from the
above inequality. Further results on the well-posedness
of (2), namely the existence of solution, can be found in
[19].

3 The discrete setting

We introduce some key ideas behind the DG finite el-
ement method in a simple case, considering the scalar
wave equation

∂u

∂t
+ a

∂u

∂x
= 0, x ∈ (0, 1) = Ω, t ∈ (0, T ], (3)

with a > 0, subject to the initial condition u(x, 0) =
u0(x) and the inflow boundary condition u(0, t) = 0.

Assume that the computational domain Ω is par-
titioned into K nonoverlapping elements Dk such that
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Fig. 1. Partition of the computational domain in 1 dimen-
sion.

Ω = ∪kDk, as illustrated in the Figure 1. On each ele-
ment Dk, the solution is approximated by polynomials
of degree less than or equal to N = Np − 1,

ũk(x, t) =

Np∑
n=1

ûkn(t)ϕn(x),

where ϕn, n = 1, . . . , Np, form the local polynomial ba-
sis. The global solution u(x, t) is then assumed to be
approximated by the piecewise N order polynomials de-
fined as the direct sum of the K local polynomial solu-
tions

u(x, t) ' ũ(x, t) =

K⊕
k=1

ũk(x, t).

In order to deduce the method, we start by multiplying
equation (3) by test functions ϕn. Spatial integration by
parts over each element Dk yields∫
Dk

(
∂ũk
∂t

ϕn − aũk
∂ϕn
∂x

)
dx = −

[
aũkϕn

]xr
k

xl
k

= −
∫
∂Dk

n · aũkϕn dx, 1 ≤ n ≤ Np,

where n represents the local outward pointing normal.
The next step is to substitute in the resulting contour
integral the flux by a numerical flux (aũ)∗, which will be
specified later. Reversing the integration by parts yields∫
Dk

(
∂ũk
∂t

ϕn + a
∂ũk
∂x

ϕn

)
dx

=

∫
∂Dk

n · (aũk − (aũ)∗)ϕn dx, 1 ≤ n ≤ Np.

The approximate solution is allowed to be discontin-
uous across elements boundaries. In this way, we intro-

duce the notation of average {{ũ}} = ũ−+ũ+

2 and of the
jumps of the solution values across the interfaces of the
elements, [ũ] = ũ− − ũ+, where the superscript “ + ”
denotes the neighbouring element and the superscript
“ − ” refers to the local element. The coupling between
elements is introduced via the numerical flux

(aũ)∗ = {{aũ}}+ a
1− α

2
n · [ũ], 0 ≤ α ≤ 1.

If α = 1 the numerical flux is called central flux being the
average of two solutions. The case α = 0, corresponds to
the upwind flux which takes into account the direction
of the flux.

Figure 2 shows the computed solution of equation
(3), considering a = 2, u0(x) = sin(πx), at time t = 0.1,

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Numerical solution of the wave equation. Top left:
N = 1,K = 10. Top right: N = 1,K = 20. Bottom left:
N = 1,K = 40. Bottom right: N = 4,K = 10.

obtained by means of the DG method with upwind flux,
for different values of N and K.

The flexibility of DG methods allows us to easily
change basis functions. For instance, we could use La-
grange polynomials or other polynomials satisfying a de-
sired orthogonality property. One possible choice is to
consider the orthonormal basis

ϕj(r) =
Pj(r)√
γj

,

where Pj are the Legendre polynomials of order j and
γj = 2

2j+1 . This basis can be computed through the re-
currence

aj+1ϕj+1(r) = rϕj(r)− ajϕj−1(r),

aj =

√
j2

(2j + 1)(2j − 1)
,

with ϕ0(r) = 1√
2
, ϕ1(r) =

√
3
2r. The affine mapping

x(r) = xlk +
1 + r

2
(xrk − xlk),

relates x ∈ Dk with the reference variable r ∈ [−1, 1].
We now go back to the more general problem (1)

in two or three space dimensions. We will present the
discrete setting in both time and space based on DG in
time-space discretizations. We will also present a result
for the error analysis.

4 Semi-discretization in time

We start by decomposing the time interval I = (0, T ] into
disjoint subintervals In = (tn−1, tn], where n = 1, . . . , N ,
0 = t0 < t1 < · · · < tN−1 < tN = T . We use the notation
τn = tn − tn−1.
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Fig. 3. Legendre polynomials.

The approximate solution is a piecewise polynomial
with respect to time, locally defined on the space

Pk(In, V ) =

{w : In → V,w(t) =

k∑
j=0

W jtj ,∀t ∈ In,W j ∈ V, ∀j}.

The space Pk(In, L
2(Ω)) is defined analogously, with V

replaced by L2(Ω). The jump of wτ at tn is defined as

[wτ ]n = wτ (t+n )− wτ (tn),

where wτ (t+n ) = limt→t+n wτ (t). Using the known value

uτ (tn−1) from the previous time interval and u0 for n =
1, the local problem on In reads: find uτ |In ∈ Pk(In, V )
such that∫
In

(
∂uτ
∂t

+Auτ , vτ )L2(Ω) dt+
(
[uτ ]n−1, vτ (t+n−1)

)
L2(Ω)

= Qn
(
(f, vτ )L2(Ω)

)
,

∀vτ ∈ Pk(In, L
2(Ω)). The right-hand side is evaluated

by means of some numerical integration formula

Qn
(
(f, vτ )L2(Ω)

)
'
∫
In

(f, vτ )L2(Ω) dt.

5 Space discretization

Let Th be a shape-regular mesh of Ω which is assumed to
have a polygonal (d = 2) or polyhedral (d = 3) boundary.
By h we denote the mesh diameter. Let Vh be the space
of piecewise polynomials of order less or equal to r. The
mesh edges or faces (cases d = 2 and d = 3, respectively)
are collected in the set Fh, split into the set of the ones
belonging to the interior, F inth , and boundary, Fexth .

The discrete operator which defines the DG method
in time, Ah, defined for all v ∈ H1(Ω)∪Vh and wh ∈ Vh,

is given by

(Ahv, wh)L2(Ω) =
∑
T∈Th

(σv + β · ∇v, wh)L2(T )

+
∑

F∈Fext,inflow
h

((β · n)v, wh)L2(F )

−
∑

F∈Fint
h

((β · n)[v], {{wh}})L2(F )

+
∑

F∈Fint
h

(
1

2
|β · n|[v], [wh]

)
L2(F )

.

This operator verifies the following important properties.

– Consistency: Let Ph : L2(Ω)→ Vh be the L2-orthogonal
projector onto Vh. Then

Ahw = PhAw, ∀w ∈ H1(Ω).

– Discrete coercivity: Let us consider the mesh-dependent
norm

|||vh|||2 = µ0‖v‖2L2(Ω) +
∑

F∈Fext
h

‖|β · n|1/2v‖2L2(F )

+
1

2

∑
F∈Fint

h

‖|β · n|1/2[v]‖2L2(F ).

Then ∃C > 0 such that

C|||vh|||2 ≤ (Ahvh, vh)L2(Ω),

∀vh ∈ Vh.

6 Full space-time discretization

Putting all together, we now derive the fully discrete
method.

We consider the finite element space V nh resulting
from the mesh T nh which can change from one time in-
terval to the next. The local problem in In reads: find
uτh|In ∈ Pk(In, V

n
h ) such that, for all vτh ∈ Pk(In, V

n
h ),∫

In

(
∂uτh
∂t

+Ahuτh, vτh)L2(Ω) dt

+
(
[uτh]n−1, vτh(t+n−1)

)
L2(Ω)

= Qn
(
(f, vτh)L2(Ω)

)
.

This method, which was analysed in [7], is uncondi-
tionally stable and convergent. The error bound in the
following result shows that the method is of arbitrary
high order in time and in space.

Theorem 1. Let u be the exact solution of (2), which is
assumed to be enough regular, and let uτh be the fully
discrete solution of the DG method. Assume that k ≥ 1
and τn ≤ 1, for all n = 1, . . . , N . Then the following
error bound holds for all m = 1, . . . , N ,

‖u(tm)− uτh(tm)‖L2(Ω) ≤

C

(
(E0)2 + tm max

1≤n≤m

{
CTn (u)τ2(k+2)

n + CSn (u)h2r+1
}

+C ′m(u)h2(r+1)
)
,
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with CTn (u) = |u|2
Ck+3(Īn,L2(Ω))

+ |u|2
Ck+2(Īn,V )

, CSn (u) =

‖u‖2
C1(Īn,Hr+1(Ω))

and C ′m(u) = |u(tm)|2Hr+1(Ω).

The error bound point out not only the influence of
the mesh size but also the dependence on the choice of
the degree of the polynomials used in the construction
of the finite element space, making possible to balance
accuracy and computational efficiency.

7 Outlook

The demand for modelling intricate systems often involv-
ing multiscales and multiphysics around complex geome-
tries has been a source of motivation for great progress
in the field of computational mathematics. High order
methods for solving partial differential equations, such
as finite element methods or spectral methods, are at-
tractive due to the need of great accuracy on realistic
models. Nevertheless a number of challenges still exist
not only in the development of new mathematical tools
but also in translating academic progresses into engineer-
ing practice.

There is a truly need of a formulation and analy-
sis of new multiscale, multiphysics, scalable, parallel ef-
ficient methods for treating multiple time and spatial
scales that arise in modelling complex phenomena. The
arising of new methods demands developments in their
analysis and investigators are engaged to seek results on
the well-posedness of the models, a priori and a posteri-
ori error estimators, stability and convergence aspects.
Another important issue to address is reliability of com-
puter predictions due to uncertainty. Physical phenom-
ena can rarely be modelled with complete fidelity even
under the best of circumstances, even though they often
support life-and-death decisions in different fields. The
uncertainty may occur in all phases of the predictive pro-
cess, from model selection and choice of the parameters
to the observation data. Mathematicians are driven for-
ward to investigate uncertainty quantification and error
estimators.

In the particular topic of the present article, there
are still important questions to be addressed. First, the
investigation of the theoretical aspects of the DG time-
stepping method, as the convergence properties, is far
from being closed. The existent literature does not en-
compasses all models. The introduction of nonlinearities
or the change of the boundary conditions, often needed
to model real applications, entail subtleties and often
the analysis is not straightforward from the existent re-
sults. Another challenge appears when applying the DG
time-stepping method in practice and we are faced with
the task of solving big linear systems at each time-step
possible defined by matrixes with large condition num-
bers. The drawback in the computational cost can be
tamed using efficient solvers. There has been a great
interest in investigating strategies like multigrid meth-
ods, domain decomposition methods and to develop ro-
bust and efficient preconditioners. An additional aspect
which deserves attention is how to deal efficiently with

the quadrature rules, which involve sums on the quadra-
ture points, in the case of high order methods.
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11. P. Houston and E. Süli (2001). hp-Adaptive discontinu-
ous Galerkin finite element methods for first-order hyper-
bolic problems, SIAM Journal on Scientific Computing,
23(4):1225-1251.



6
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