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We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of
Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of
higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle,
allows us to study the dynamics of the control problem.

1. Introduction

In [1], Skinner and Rusk obtained a unified formalism for
Lagrangian and Hamiltonian dynamics of autonomous
mechanical systems, and this issue has been extended in
many directions. In particular, there is an increasing interest
in the study of optimal control problems from that geometric
viewpoint, which involves the presymplectic algorithm of
Gotay-Nester [2].

Riemannian cubic polynomials can be seen as a general-
ization of cubic polynomials to non-Euclidean spaces [3, 4].
These objects are stationary curves in a Riemannianmanifold
for a second-order variational problem with Lagrangian
given by the norm squared covariant acceleration. There are
many applications that inspire the study of those curves,
namely, problems of interpolation in computer graphics and
problems in the context of robotics and aeronautics as the
trajectory planning of a rigid body.

As far as we know, the first Hamiltonian description of the
optimal control problem whose control system is associated

with the variational problem mentioned in the previous
paragraph was considered in [5] but from a non-geometric
perspective.The aim of this paper is to give a precise and geo-
metric description of that optimal control problem. For this
purpose, we adapt the presymplectic geometric version of the
Pontryagin maximum principle based on the Skinner-Rusk
methodology, which was proposed for the control theory by
several authors (see, e.g., [6–9] and the references mentioned
in these papers). Here, we develop the work started in [10,
11] where that intrinsic version of the problem was first
presented. We specify to our problem all the details of the
presymplectic approach and reduce the study of the problem
to the study of an interesting symplectic Hamiltonian system.

The approach used in this work has important impli-
cations from the point of view of the integrability of the
dynamical system on compact and connected Lie groups.
For a detailed description of the optimal control problem for
compact and connected Lie groups, we refer the interested
reader to [12–14].
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The organization of the paper is as follows. In Section 2,
we review the concept and some properties of higher order
tangent bundles. We also recall the geometric formulation
of optimal control problems and its adaptation to Skinner-
Rusk methodology. Section 3 contains the geometric formu-
lation of the second-order variational problem whose Euler-
Lagrange equation is the fourth-order differential equation
that defines the cubic polynomial curves on Riemannian
manifolds. Section 4 is devoted to the main results of this
paper; we consider the second-order optimal control prob-
lem corresponding to the variational problem presented in
Section 3 and use the presymplectic constraint algorithm to
describe its dynamics. In the last section, some examples are
provided in order to illustrate these geometric tools.

2. Preliminary Results

Consider a differentiable manifold 𝑀 of finite dimension
𝑛. Let (𝑥1, . . . , 𝑥𝑛) be a local coordinate system on 𝑀,
simply denoted by (𝑥𝑖). In the paper, we assume similar
simplifications to coordinate notations.

2.1. Higher Order Tangent Bundles. The tangent bundle of
𝑀 can be seen as a trivial example of higher order tangent
bundles. We recall very briefly some basic tools from the
geometry of those bundles. For further details, see [15].

Consider the following well-defined equivalence relation
on the set of smooth curves in𝑀.

We say that two smooth curves in 𝑀, 𝛾
1
, and 𝛾

2
,

defined on an interval (−𝑎, 𝑎) with 𝑎 ∈ R, have
contact of order 𝑘 at 0 if 𝛾

1
(0) = 𝛾

2
(0) = 𝑥 and for

a local coordinate system (𝑈, 𝜑) on𝑀 around 𝑥, the
derivatives of 𝜑 ∘ 𝛾

1
and 𝜑 ∘ 𝛾

2
up to order 𝑘, included,

coincide at 0.
The equivalence class determined by a curve 𝛾 is denoted by
[𝛾]
𝑘

0
and is called a 𝑘-jet or 𝑘-velocity. The tangent bundle of

order 𝑘 of 𝑀, represented by 𝑇𝑘𝑀, is defined as being the set
of all equivalence classes. The tangent bundle 𝑇𝑘𝑀 is a (𝑘 +
1) 𝑛-dimensional manifold, and it is also a fibered manifold
over𝑀 with projection

𝜋
𝑘
: 𝑇
𝑘
𝑀 →𝑀, [𝛾]

𝑘

0
→ 𝛾 (0) = 𝑥. (1)

A system (𝑈, 𝑥𝑖) of local coordinates on 𝑀 induces natural
local coordinates on 𝑇𝑘𝑀 given by (𝜋−1

𝑘
(𝑈), 𝑥

𝑖

0
; 𝑥
𝑖

1
; 𝑥
𝑖

2
; . . . ;

𝑥
𝑖

𝑘
), where

𝑥
𝑖

𝑙
: 𝜋
−1

𝑘
(𝑈) ⊂ 𝑇

𝑘
𝑀 → R, [𝛾]

𝑘

0
→

𝑑
𝑙

𝑑𝑡𝑙
(𝑥
𝑖
∘ 𝛾) (𝑡)

𝑡=0

,

(2)

for 𝑙 = 0, . . . , 𝑘 and 𝑖 = 1, . . . , 𝑛. If 𝑘 = 0, the tangent bundle
𝑇
0
𝑀 is identified with the manifold𝑀 and for 𝑘 = 1, 𝑇1𝑀 is

just the tangent bundle of𝑀, 𝑇𝑀.
We have the canonical projections

𝜏
𝑙

𝑘
: 𝑇
𝑘
𝑀 → 𝑇

𝑙
𝑀, [𝛾]

𝑘

0
→ [𝛾]

𝑙

0
, 𝑙 = 0, . . . , 𝑘, (3)

which define several different fibered structures on 𝑇𝑘𝑀.
Note that 𝜏0

𝑘
= 𝜋

𝑘
. Locally, 𝜏𝑙

𝑘
(𝑥
𝑖

0
; 𝑥
𝑖

1
; 𝑥
𝑖

2
; . . . ; 𝑥

𝑖

𝑘
) =

(𝑥
𝑖

0
; 𝑥
𝑖

1
; 𝑥
𝑖

2
; . . . ; 𝑥

𝑖

𝑙
).

Given a smooth curve 𝛾 in 𝑀, the lift to 𝑇𝑘𝑀 of 𝛾 is
a smooth curve in 𝑇𝑘𝑀 defined by 𝛾

𝑘
(𝑡) = [𝛾

𝑡
]
𝑘

0
, where

𝛾
𝑡
(𝑠) = 𝛾(𝑡 + 𝑠). If 𝛾 is given locally by (𝑥𝑖), then 𝛾

𝑘
is locally

represented by (𝑥𝑖; 𝑑𝑥𝑖/𝑑𝑡; . . . ; 𝑑𝑘𝑥𝑖/𝑑𝑡𝑘).
We can also consider natural injections 𝑖

𝑘,𝑙
: 𝑇
𝑘+𝑙
𝑀 →

𝑇
𝑘
(𝑇
𝑙
𝑀), [𝛾]

𝑘+𝑙

0
→ [𝛾
𝑙
]
𝑘

0
, for 𝑙 = 1, . . . , 𝑘.

Here, we are particularly interested in the second-
order tangent bundle 𝑇2𝑀. We denote the canonical local
coordinates on 𝑇𝑀 and 𝑇2𝑀 by (𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑛) =
(𝑥
𝑖
; 𝑦
𝑖
) and (𝑥1, . . . , 𝑥𝑛; 𝑦1, . . . , 𝑦𝑛; 𝑢1, . . . , 𝑢𝑛) = (𝑥𝑖; 𝑦𝑖; 𝑢𝑖),

respectively. The natural bases of the tangent spaces 𝑇
𝑥
𝑀,

𝑇
(𝑥,𝑦)
𝑇𝑀, and 𝑇

(𝑥,𝑦,𝑢)
𝑇
2
𝑀 are denoted, respectively, by

{𝜕/𝜕𝑥
𝑖
}, {𝜕/𝜕𝑥𝑖, 𝜕/𝜕𝑦𝑖}, and {𝜕/𝜕𝑥𝑖, 𝜕/𝜕𝑦𝑖, 𝜕/𝜕𝑢𝑖}, for 𝑥 ∈ 𝑀,

(𝑥, 𝑦) ∈ 𝑇𝑀, and (𝑥, 𝑦, 𝑢) ∈ 𝑇2𝑀. For clarity, to distinguish
the projections 𝜋

1
of the tangent bundles 𝑇𝑀 and 𝑇𝑇𝑀, we

use the notations 𝜋
𝑀
: 𝑇𝑀 → 𝑀 and 𝜋

𝑇𝑀
: 𝑇𝑇𝑀 → 𝑇𝑀.

Moreover, the natural injection 𝑖
1,1
: 𝑇
2
𝑀 → 𝑇𝑇𝑀 is locally

defined by

𝑖
1,1
(𝑥
𝑖
; 𝑦
𝑖
; 𝑢
𝑖
) =

𝑛

∑

𝑖=1

(𝑦
𝑖 𝜕

𝜕𝑥𝑖
+ 𝑢
𝑖 𝜕

𝜕𝑦𝑖
) . (4)

2.2. Geometric Description of an Optimal Control Problem.
Let 𝐵 be a fiber bundle over𝑀 with projection 𝜏 : 𝐵 → 𝑀.
Consider also a vector field Π along the projection 𝜏; that is,
a smooth map Π : 𝐵 → 𝑇𝑀 such that the diagram

B
Π

TM

𝜏

M

𝜋M (5)

is commutative, where 𝜋
𝑀

represents the natural canonical
projection from 𝑇𝑀 to𝑀.

An optimal control problem with state space 𝑀 and
control bundle 𝐵 consists in finding the curves 𝛼 : [0, 𝑇] →
𝐵 of class 𝐶2, piecewise smooth and with 𝑇 ∈ R+, with fixed
initial and final conditions in the state space, satisfying

𝑑

𝑑𝑡
(𝜏 ∘ 𝛼) = Π ∘ 𝛼 (6)

and minimizing an integral functional ∫𝑇
0
𝐿(𝛼(𝑡))𝑑𝑡, where 𝐿

is a smooth function 𝐿 : 𝐵 → R called cost function.
Equation (6) is known as the control system, while an

integral curve of Π, that is, a curve 𝛼 in 𝐵 satisfying the
control system, is called a trajectory of the control system. Note
that if (𝑥𝑖) is a local coordinate system on𝑀 and (𝑥𝑖; 𝑢𝑎) are
natural coordinates on 𝐵 (𝑖 = 1, . . . , 𝑛, 𝑎 = 1, . . . , 𝑚, with
𝑛 + 𝑚 = dim𝐵), then the control system is characterized by
the system of differential equations

�̇�
𝑖
= Π
𝑖
(𝑥, 𝑢) , 𝑖 = 1, . . . , 𝑛, (7)
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for (𝑥, 𝑢) ∈ 𝐵 and where Π𝑖 represent the canonical
local coordinates of Π on 𝑇𝑀, that is, Π(𝑥, 𝑢) = ∑𝑛

𝑖=1

Π
𝑖
(𝑥, 𝑢)(𝜕/𝜕𝑥

𝑖
)|
𝜏(𝑥,𝑢)

.
The costate space of the system is the cotangent bundle

𝑇
∗
𝑀 with natural canonical projection 𝜏

𝑀
: 𝑇
∗
𝑀 → 𝑀.

The dynamics of the control system can be described by
a symplectic or a presymplectic Hamiltonian system (see,
e.g., [6–9]). Here, we are interested in the presymplectic
description, and hence we should consider the presymplectic
Hamiltonian system (T, Ω,𝐻) with the following.

(i) The total space T = 𝑇
∗
𝑀×
𝑀
𝐵 a fiber bundle over

the manifold 𝑀 with canonical projections 𝑝𝑟
1
:

𝑇
∗
𝑀×
𝑀
𝐵 → 𝑇

∗
𝑀 and 𝑝𝑟

2
: 𝑇
∗
𝑀×
𝑀
𝐵 → 𝐵.

(ii) The canonical presymplectic form Ω on T (i.e., a
closed 2-form which may be degenerate) given by
the pullback of the canonical symplectic form 𝜔

0
on

𝑇
∗
𝑀 (i.e., a closed and nondegenerate 2-form) by the

projection 𝑝𝑟
1
,Ω = (𝑝𝑟

1
)
∗
𝜔
0
. Locally,

Ω =

𝑛

∑

𝑖=1

𝑑𝑥
𝑖
∧ 𝑑𝑝
𝑖
, (8)

where (𝑥𝑖; 𝑝
𝑖
) are the natural local coordinates on

𝑇
∗
𝑀 induced by (𝑥𝑖). Note that the kernel of Ω is

locally given by 𝜕/𝜕𝑢𝑎 = 0.
(iii) The Hamiltonian 𝐻 : 𝑇∗𝑀×

𝑀
𝐵 → R defined by

𝐻 = ⟨⟨𝑝𝑟
1
, Π∘𝑝𝑟

2
⟩⟩−𝐿∘𝑝𝑟

2
, where ⟨⟨⋅, ⋅⟩⟩ represents

the pairing duality of vectors and covectors on𝑀. We
get

𝐻(𝑥, 𝑝, 𝑢) =

𝑛

∑

𝑖=1

𝑝
𝑖
Π
𝑖
(𝑥, 𝑢) − 𝐿 (𝑥, 𝑢) , (9)

for each (𝑥, 𝑝, 𝑢) ∈ T (i.e., 𝑥 ∈ 𝑀, 𝑝 ∈ 𝑇∗
𝑥
𝑀 and

(𝑥, 𝑢) ∈ 𝐵, with 𝜏(𝑥, 𝑢) = 𝑥).

The dynamics of the presymplectic Hamiltonian system
(T, Ω,𝐻) is determined by the vector field 𝑋

𝐻
solution of

the equation

𝑖
𝑋𝐻
Ω = 𝑑𝐻. (10)

Equation (10) is interpreted as an intrinsic version of the
Hamiltonian equations that come from themaximumprinci-
ple of Pontryagin in the sense that a curve𝛼 in𝐵 is a trajectory
of the optimal control problem if there exists a lifting of 𝛼 to
the total spaceTwhich is an integral curve of the vector field
𝑋
𝐻
. Notice the following.

(i) Locally, 𝑋
𝐻
= ∑

𝑛

𝑖=1
(𝐴
𝑖
(𝜕/𝜕𝑥

𝑖
) + 𝐵

𝑖
(𝜕/𝜕𝑝
𝑖
)) +

∑
𝑚

𝑎=1
𝐶
𝑎
(𝜕/𝜕𝑢

𝑎
), where 𝐴𝑖, 𝐵

𝑖
, and 𝐶𝑎 are smooth

functions onT. Hence, 𝑖
𝑋𝐻
Ω = ∑

𝑛

𝑖=1
(𝐴
𝑖
𝑑𝑝
𝑖
− 𝐵
𝑖
𝑑𝑥
𝑖
).

(ii) On the other hand, 𝑑𝐻 = ∑
𝑛

𝑖=1
((𝜕𝐻/𝜕𝑥

𝑖
)𝑑𝑥
𝑖
+

(𝜕𝐻/𝜕𝑝
𝑖
)𝑑𝑝
𝑖
) + ∑
𝑚

𝑎=1
(𝜕𝐻/𝜕𝑢

𝑎
)𝑑𝑢
𝑎.

(iii) So, (10) is equivalent to 𝐴𝑖 = 𝜕𝐻/𝜕𝑝
𝑖
, 𝐵
𝑖
= −𝜕𝐻/𝜕𝑥

𝑖,
and 𝜕𝐻/𝜕𝑢𝑎 = 0, 𝑖 = 1, . . . , 𝑛, 𝑎 = 1, . . . , 𝑚.

(iv) Therefore, an integral curve of 𝑋
𝐻
, locally given by

(𝑥
𝑖
; 𝑝
𝑖
; 𝑢
𝑖
), is such that

�̇�
𝑖
=
𝜕𝐻

𝜕𝑝
𝑖

, �̇�
𝑖
= −
𝜕𝐻

𝜕𝑥𝑖
,
𝜕𝐻

𝜕𝑢𝑎
= 0,

𝑖 = 1, . . . , 𝑛, 𝑎 = 1, . . . , 𝑚

(11)

That is,𝑋
𝐻
is the vector field

𝑋
𝐻
=

𝑛

∑

𝑖=1

(
𝜕𝐻

𝜕𝑝
𝑖

𝜕

𝜕𝑥𝑖
−
𝜕𝐻

𝜕𝑥𝑖

𝜕

𝜕𝑝
𝑖

) (12)

defined in the subset𝑊
1
= {(𝑥, 𝑝, 𝑢) ∈ T : 𝜕𝐻/𝜕𝑢𝑎 =

0, 𝑎 = 1, . . . , 𝑚}.
In the geometric framework, we have
𝑊
1
= {𝑧 ∈ T : 𝑑𝐻 (𝑧) (V

𝑧
) = 0, ∀V

𝑧
∈ KerΩ (𝑧)} , (13)

where KerΩ(𝑧) = {V
𝑧
∈ 𝑇
𝑧
T : Ω(𝑧)(V

𝑧
, ⋅) = 0}. Indeed,

sinceΩ is presymplectic, we have to consider the points ofT
where (10) has solution. We assume that𝑊

1
is a submanifold

of T. The dynamical vector field 𝑋
𝐻

is determined by
(𝑖
𝑋𝐻
Ω − 𝑑𝐻)|

𝑊1

= 0. However, the solution of that equation
is not necessarily unique, and it is possible that there exist
points on 𝑊

1
where the solution vector field is not tangent

to 𝑊
1
, and thus it does not necessarily induce a dynamics

on 𝑊
1
. If it is the case, we construct a second constraint

submanifold 𝑊
2
, that we assume to be a submanifold of

𝑊
1
, defined by the points on 𝑊

1
, where such a solution

exists. But, again, it may happen, that we cannot guarantee
the existence of a dynamics on 𝑊

2
, and so the process may

have to continue. This procedure is called the presymplectic
constraint algorithm of Gotay-Nester [2]. The idea of the
algorithm is to construct a chain of constraint manifolds
until we find (if it exists) a final submanifold 𝑊

𝑓
, where

exists at least one vector field tangent to that submanifold
and satisfying the dynamical equation. If the optimal control
problem is regular, then𝑊

𝑓
= 𝑊
1
.

3. Second-Order Variational Problem

From this section onwards, 𝑀 is a Riemannian manifold
with Riemannian metric ⟨⋅, ⋅⟩. We denote the symmetric
connection on𝑀 compatible with this metric by ∇ and the
corresponding covariant derivative along a curve in 𝑀 by
𝐷𝑋/𝑑𝑡, where 𝑋 is a vector field along the curve. Moreover,
we denote the curvature tensor field by 𝑅.

We are interested in the following second-order varia-
tional problem: find the curves that minimize

𝐽 (𝛾) =
1

2
∫

𝑇

0

⟨
𝐷
2
𝛾

𝑑𝑡2
,
𝐷
2
𝛾

𝑑𝑡2
⟩𝑑𝑡, (14)

over the classC of smooth curves 𝛾 : [0, 𝑇] → 𝑀 satisfying
the boundary conditions

𝛾 (0) = 𝑥
0
, 𝛾 (𝑇) = 𝑥

𝑇
,

𝑑𝛾

𝑑𝑡
(0) = 𝑦

0
,

𝑑𝛾

𝑑𝑡
(𝑇) = 𝑦

𝑇
,

(15)
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where 𝑥
0
, 𝑥
𝑇
∈ 𝑀, 𝑦

0
∈ 𝑇
𝑥0
𝑀, 𝑦
𝑇
∈ 𝑇
𝑥𝑇
𝑀, and 𝑇 ∈

R+. This problem was studied in 1989 by Noakes et al. on
compact Lie groups [4] and later, in 1995, by Crouch and
Silva Leite in the context of dynamic interpolation [3]. The
Euler-Lagrange equation of the problem is the fourth-order
differential equation

𝐷
4
𝛾

𝑑𝑡4
+ 𝑅(

𝐷
2
𝛾

𝑑𝑡2
,
𝑑𝛾

𝑑𝑡
)
𝑑𝛾

𝑑𝑡
= 0. (16)

The solutions of this equation are called cubic polynomials on
𝑀.

Recall that if a curve 𝛾 in 𝑀 is locally represented
by (𝑥𝑖), then the velocity vector field along 𝛾 is 𝑑𝛾/𝑑𝑡 =
∑
𝑛

𝑖=1
�̇�
𝑖
(𝜕/𝜕𝑥

𝑖
)|
𝛾(𝑡)

and the covariant acceleration of 𝛾 is given
by

𝐷
2
𝛾

𝑑𝑡2
=

𝑛

∑

𝑘=1

(�̈�
𝑘
+

𝑛

∑

𝑖,𝑗=1

Γ
𝑘

𝑖𝑗
�̇�
𝑖
�̇�
𝑗
)
𝜕

𝜕𝑥𝑘

𝛾(𝑡)

. (17)

Here, Γ𝑘
𝑖𝑗
are the Christoffel symbols defining the Riemannian

connection, which can be obtained using the identity

Γ
𝑘

𝑖𝑗
=
1

2

𝑛

∑

𝑙=1

𝑔
𝑘𝑙
(

𝜕𝑔
𝑗𝑙

𝜕𝑥𝑖
+
𝜕𝑔
𝑙𝑖

𝜕𝑥𝑗
−

𝜕𝑔
𝑖𝑗

𝜕𝑥𝑙
) , (18)

where 𝑔
𝑖𝑗
are the components of the Riemannian metric

and [𝑔𝑖𝑗]
1≤𝑖,𝑗≤𝑛

is the inverse matrix of the matrix [𝑔
𝑖𝑗
]
1≤𝑖,𝑗≤𝑛

.
Moreover, the lift 𝛾

2
to 𝑇2𝑀 of the curve 𝛾 is locally

represented by (𝑥𝑖; �̇�𝑖; �̈�𝑖). Therefore, the action functional
𝐽 : C → R of our problem can be written as 𝐽(𝛾) =
∫
𝑇

0
𝐿(𝛾
2
(𝑡))𝑑𝑡, where 𝐿 : 𝑇2𝑀 → R is the Lagrangian of

the problem. Locally, we have

𝐿 (𝑥
𝑖
; 𝑦
𝑖
; 𝑢
𝑖
) =
1

2

𝑛

∑

𝑖=1

𝑔
𝑖𝑗
𝑢
𝑖
𝑢
𝑗
, (19)

with 𝑢𝑘 = 𝑢𝑘 + ∑𝑛
𝑖,𝑗=1
Γ
𝑘

𝑖𝑗
𝑦
𝑖
𝑦
𝑗.

Observe that the Lagrangian 𝐿 : 𝑇2𝑀 → R of the prob-
lem is defined, for each [𝛾]2

0
∈ 𝑇
2
𝑀, by

𝐿 ([𝛾]
2

0
) =
1

2
⟨(𝐾 ∘ 𝑖

1,1
) ([𝛾]

2

0
) , (𝐾 ∘ 𝑖

1,1
) ([𝛾]

2

0
)⟩ , (20)

for 𝑖
1,1
: 𝑇
2
𝑀 → 𝑇𝑇𝑀 the natural injection defined by (4)

and 𝐾 : 𝑇𝑇𝑀 → 𝑇𝑀 the connection application locally
given by

𝐾(

𝑛

∑

𝑖=1

𝑋
𝑖

𝜕

𝜕𝑥𝑖
+

𝑛

∑

𝑖=1

𝑋
𝑖+𝑛

𝜕

𝜕𝑦𝑖
)

=

𝑛

∑

𝑖=1

(𝑋
𝑛+𝑖
+

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
𝑦
𝑗
𝑋
𝑘
)
𝜕

𝜕𝑥𝑖
.

(21)

The Lagrangian 𝐿 defines a dynamics on the third-order
tangent space 𝑇3𝑀 since the Euler-Lagrange equation (16)
can be interpreted as a vector field on 𝑇3𝑀, whose integral
curves are lifts to 𝑇3𝑀 of curves in𝑀 solutions of the Euler-
Lagrange equation.

4. Second-Order Optimal Control Problem

The control system associated with the variational problem
of the previous section is a control system of second-order on
𝑀. We now adapt for that situation the geometric description
of Section 2.2.

4.1. Geometric Formulation of the Optimal Control Problem.
The second-order control system on𝑀 that we are interested
in is

𝐷
2
𝛾

𝑑𝑡2
=

𝑛

∑

𝑖=1

𝑢
𝑖 𝜕

𝜕𝑥𝑖

𝛾(𝑡)

, (22)

where 𝛾 : [0, 𝑇] → 𝑀 is a curve in 𝑀 and 𝑢𝑖 are real
smooth functions called control functions. If 𝛾 is locally
represented by (𝑥𝑖), then the control system is written as the
set of differential equations dependent of the parameters 𝑢𝑖

�̈�
𝑖
= 𝑢
𝑖
−

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
�̇�
𝑗
�̇�
𝑘
, 𝑖 = 1, . . . , 𝑛, (23)

since 𝐷2𝛾/𝑑𝑡2 is given by (17). Note that the system is affine
on the controls.

From a geometric point of view, the control system can
be described by a vector field Π along the natural projection
𝜏
1

2
: 𝑇
2
𝑀 → 𝑇𝑀, that is, a smooth map Π : 𝑇2𝑀 → 𝑇𝑇𝑀

such that the following diagram is commutative:
Π

TTM

TM
𝜏
1
2

T
2
M

𝜋TM, (24)

where 𝜋
𝑇𝑀

is the canonical projection.The state space is 𝑇𝑀
and 𝑇2𝑀 is the control bundle. If [𝛾]2

0
∈ 𝑇
2
𝑀, we know that

𝜏
1

2
([𝛾]
2

0
) = [𝛾]

1

0
∈ 𝑇𝑀 and hence Π([𝛾]2

0
) ∈ 𝑇

[𝛾]
1

0

𝑇𝑀. Con-
sequently, for real smooth functions Π𝑖 : 𝑇2𝑀 → R, with
𝑖 = 1, . . . , 𝑛, the vector field Π can be expressed as Π([𝛾]2

0
) =

∑
𝑛

𝑖=1
Π
𝑖
([𝛾]
2

0
)(𝜕/𝜕𝑥

𝑖
)|
[𝛾]
1

0

+∑
𝑛

𝑖=1
Π
𝑖+𝑛
([𝛾]
2

0
)(𝜕/𝜕𝑦

𝑖
)|
[𝛾]
1

0

. Along a
curve 𝛼 : [0, 𝑇] → 𝑇2𝑀, we have

Π ∘ 𝛼 =

𝑛

∑

𝑖=1

(Π
𝑖
∘ 𝛼)

𝜕

𝜕𝑥𝑖

(𝜏1
2
∘𝛼)(𝑡)

+

𝑛

∑

𝑖=1

(Π
𝑖+𝑛
∘ 𝛼)

𝜕

𝜕𝑦𝑖

(𝜏1
2
∘𝛼)(𝑡)

.

(25)

Furthermore, if 𝛼 is an integral curve of Π, then

d

dt
(𝜏

1
2 ∘ 𝛼) = Π ∘ 𝛼

TM

Π
TTMT

2
M

𝛼
𝜏
1
2

[0, T]
𝜏
1
2 ∘ 𝛼

d

dt
(𝜏

1
2 ∘ 𝛼)

(26)
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Now, if 𝛼 is locally represented by (𝑥𝑖; 𝑦𝑖; 𝑢𝑖), in order to
describe the differential equations (23), we should consider
(25) with

Π
𝑖
∘ 𝛼 = 𝑦

𝑖
, Π

𝑖+𝑛
∘ 𝛼 = 𝑢

𝑖
−

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
𝑦
𝑗
𝑦
𝑘
. (27)

The variables (𝑥𝑖; 𝑦𝑖) are called the state variables and 𝑢𝑖 are
the control variables of our control problem.

The optimal control problem consists in finding the
curves 𝛼 : [0, 𝑇] → 𝑇

2
𝑀 of class 𝐶2, piecewise smooth,

with fixed endpoints in the state space

(𝜏
1

2
∘ 𝛼) (0) = (𝑥

0
, 𝑦
0
) , (𝜏

1

2
∘ 𝛼) (𝑇) = (𝑥

𝑇
, 𝑦
𝑇
) , (28)

satisfying the control system (𝑑/𝑑𝑡)(𝜏1
2
∘ 𝛼) = Π ∘ 𝛼 and

minimizing the functional ∫𝑇
0
𝐺(𝛼(𝑡))𝑑𝑡, for 𝐺 : 𝑇2𝑀 → R

the cost function defined by

𝐺([𝛾]
2

0
) =
1

2
⟨𝐾 (Π ([𝛾]

2

0
)) , 𝐾 (Π ([𝛾]

2

0
))⟩ , (29)

for each [𝛾]2
0
∈ 𝑇
2
𝑀, where 𝐾 is the connection application

defined by (21). Notice that in local coordinates, the cost
function is given by

𝐺(𝑥
𝑖
; 𝑦
𝑖
; 𝑢
𝑖
) =
1

2

𝑛

∑

𝑖,𝑗=1

𝑔
𝑖𝑗
𝑢
𝑖
𝑢
𝑗
. (30)

The relation between (19) and (30) is 𝐿(𝑥𝑖; 𝑦𝑖; 𝑢𝑖 −
∑
𝑛

𝑘=1
Γ
𝑘

𝑖𝑗
𝑦
𝑖
𝑦
𝑗
) = 𝐺(𝑥

𝑖
; 𝑦
𝑖
; 𝑢
𝑖
), or equivalently, 𝐿(𝑥𝑖; 𝑦𝑖; 𝑢𝑖) =

𝐺(𝑥
𝑖
; 𝑦
𝑖
; 𝑢
𝑖
).

4.2. Presymplectic Hamiltonian System. The Hamiltonian
description of our problem has the cotangent bundle 𝑇∗𝑇𝑀
as costate space. We consider the presymplectic system (T,
Ω,𝐻) characterized as follows.

(i) The total space is the bundle over 𝑇𝑀 given by

T = 𝑇
∗
𝑇𝑀×
𝑇𝑀
𝑇
2
𝑀, (31)

where the fiber of T over a point (𝑥, 𝑦) ∈ 𝑇𝑀
is 𝑇∗
(𝑥,𝑦)
𝑇𝑀 × (𝜏

1

2
)
−1

(𝑥, 𝑦). The canonical projections
are 𝑝𝑟

1
: 𝑇
∗
𝑇𝑀×
𝑇𝑀
𝑇
2
𝑀 → 𝑇

∗
𝑇𝑀 and 𝑝𝑟

2
:

𝑇
∗
𝑇𝑀×
𝑇𝑀
𝑇
2
𝑀 → 𝑇

2
𝑀.

(ii) The presymplectic 2-form Ω on T is defined by the
pullback

Ω = (𝑝𝑟
1
)
∗

𝜔
1
, (32)

where 𝜔
1
denotes the canonical symplectic 2-form on

𝑇
∗
𝑇𝑀.

(iii) The Hamiltonian function𝐻 : T → R is defined by

𝐻 = ⟨⟨𝑝𝑟
1
, Π ∘ 𝑝𝑟

2
⟩⟩ − 𝐺 ∘ 𝑝𝑟

2
, (33)

where Π and 𝐺 are defined, respectively, by (27)
and (29), and ⟨⟨⋅, ⋅⟩⟩ represents the pairing duality of
vectors and covectors on 𝑇𝑀.

(iv) The dynamical vector field 𝑋
𝐻
: T → 𝑇(T) is the

solution of the dynamical system

𝑖
𝑋𝐻
Ω = 𝑑𝐻. (34)

We now apply the geometric algorithm of presymplectic
systems to (T, Ω,𝐻). We first consider the submanifold𝑊

1

defined by (13), but adapted to our second-order problem.
In this stage, it is important to do a local analysis of the
presymplectic structure Ω defined by (32). If (𝑥𝑖) is a local
coordinate system on𝑀 and (𝑥𝑖; 𝑦𝑖; 𝑝

𝑖
; 𝑞
𝑖
) and (𝑥𝑖; 𝑦𝑖; 𝑢𝑖) rep-

resent, respectively, the natural local coordinates on 𝑇∗𝑇𝑀
and 𝑇2𝑀, then (𝑥𝑖; 𝑦𝑖; 𝑢𝑖; 𝑝

𝑖
; 𝑞
𝑖
) is a coordinate system on the

total spaceT = 𝑇∗𝑇𝑀×
𝑇𝑀
𝑇
2
𝑀. In this context, it is obvious

thatΩ is expressed by

Ω =

𝑛

∑

𝑖=1

(𝑑𝑥
𝑖
∧ 𝑑𝑝
𝑖
+ 𝑑𝑦
𝑖
∧ 𝑑𝑞
𝑖
) , (35)

and so KerΩ = span{𝜕/𝜕𝑢1, . . . , 𝜕/𝜕𝑢𝑛}. It follows that𝑊
1
is

locally defined by the constraints

𝜕𝐻

𝜕𝑢𝑖
= 0, 𝑖 = 1, . . . , 𝑛. (36)

Note also that since our control system is affine on
the controls, from (33) and (30), we get (𝜕2𝐻)/(𝜕𝑢𝑖𝜕𝑢𝑗) =
−(𝜕
2
𝐺)/(𝜕𝑢

𝑖
𝜕𝑢
𝑗
) = −𝑔

𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. As a consequence,

the matrix

[
𝜕
2
𝐻

𝜕𝑢𝑖𝜕𝑢𝑗
]

1≤𝑖,𝑗≤𝑛

(37)

is invertible, and this means that the system is regular at any
point.

Consider Ω
𝑊1

the restriction to𝑊
1
of the presymplectic

formΩ defined by (32).

Proposition 1. The 2-form Ω
𝑊1

is symplectic.

Proof. Recall that Ω
𝑊1

is symplectic if and only if 𝑇
𝑧
𝑊
1
∩

(𝑇
𝑧
𝑊
1
)
⊥
= {0}, for all 𝑧 ∈ 𝑊

1
, where

(𝑇
𝑧
𝑊
1
)
⊥

= {V
𝑧
∈ 𝑇
𝑧
T : Ω (𝑧) (V

𝑧
, 𝑢
𝑧
) = 0, ∀𝑢

𝑧
∈ 𝑇
𝑧
𝑊
1
} .

(38)

Let 𝑧 ∈ 𝑊
1
. Using the fact that𝑊

1
is defined by (36), we

can conclude that 𝜕/𝜕𝑢𝑗 ∉ 𝑇
𝑧
𝑊
1
, for 𝑗 = 1, . . . , 𝑛. Indeed,

suppose that there exists a 𝑗 such that 𝜕/𝜕𝑢𝑗 ∈ 𝑇
𝑧
𝑊
1
; this

means that 𝑑(𝜕𝐻/𝜕𝑢𝑖)(𝜕/𝜕𝑢𝑗) = (𝜕2𝐻)/(𝜕𝑢𝑖𝜕𝑢𝑗) = 0, for 𝑖 =
1, . . . , 𝑛, but this is not true because of the invertibility of the
matrix (37). Therefore,

𝑇
𝑧
𝑊
1
⊕ KerΩ (𝑧) = 𝑇

𝑧
T. (39)
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To conclude the proof, we have just to observe thatKerΩ(𝑧) =
(𝑇
𝑧
𝑊
1
)
⊥. It is sufficient to verify that (𝑇

𝑧
𝑊
1
)
⊥
⊂ KerΩ(𝑧)

since, by definition, the opposite inclusion always happens.
If V
𝑧
∈ (𝑇
𝑧
𝑊
1
)
⊥, then Ω(𝑧)(V

𝑧
, 𝑢
𝑧
) = 0, for all 𝑢

𝑧
∈ 𝑇
𝑧
𝑊
1
.

Furthermore, from 𝜕/𝜕𝑢𝑖 ∈ KerΩ, we get Ω(𝑧)(V
𝑧
, 𝜕/𝜕𝑢

𝑖
) =

0, for all 𝑖 = 1, . . . , 𝑛. In this way, according to (39), we
conclude that V

𝑧
∈ KerΩ(𝑧), and hence KerΩ(𝑧) = (𝑇

𝑧
𝑊
1
)
⊥.

Consequently, as we have the direct sum (39), we get 𝑇
𝑧
𝑊
1
∩

(𝑇
𝑧
𝑊
1
)
⊥
= {0}.

The previous proposition assures us that (𝑊
1
, Ω
𝑊1
) is a

symplectic manifold. As a result, the algorithm stops after the
first step because we can state that there exists a unique vector
field 𝑋

𝑊1
on𝑊
1
solution of the dynamical system (34) when

restricted to𝑊
1
, that is, such that

𝑖
𝑋𝑊1
Ω
𝑊1
= 𝑑𝐻
𝑊1
, (40)

where𝐻
𝑊1

is the restriction of𝐻 to𝑊
1
.

We proceed with the analysis of the obtained system and
an important simplification of our study. Using (27) and (30),
we obtain the following local expression for the Hamiltonian
𝐻 : T → R defined by (33):

𝐻(𝑥
𝑖
; 𝑦
𝑖
; 𝑢
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
)

=

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦
𝑖
+

𝑛

∑

𝑖=1

𝑞
𝑖
(𝑢
𝑖
−

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
𝑦
𝑗
𝑦
𝑘
) −
1

2

𝑛

∑

𝑖,𝑗=1

𝑔
𝑖𝑗
𝑢
𝑖
𝑢
𝑗
.

(41)

Then, the submanifold𝑊
1
is defined by

𝑞
𝑖
=

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
𝑢
𝑗
, 𝑖 = 1, . . . , 𝑛, (42)

and this implies that the optimal controls are

𝑢
𝑖
=

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
𝑞
𝑗
, 𝑖 = 1, . . . , 𝑛. (43)

So, we can consider the diffeomorphism

𝜑 : (𝑇
∗
𝑇𝑀,𝜔

1
) → (𝑊

1
, Ω
𝑊1
) ,

(𝑥
𝑖
; 𝑦
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
) → (𝑥

𝑖
; 𝑦
𝑖
;

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
𝑞
𝑗
; 𝑝
𝑖
, 𝑞
𝑖
) .

(44)

Observe that the inverse function of 𝜑 is the restriction to𝑊
1

of the projection 𝑝𝑟
1
. It is easy to show that 𝜑∗Ω

𝑊1
= 𝜔
1
,

which means that 𝜑 defines a symplectomorphism between
the symplectic manifolds (𝑇∗𝑇𝑀,𝜔

1
) and (𝑊

1
, Ω
𝑊1
). This

allows us to reduce the study of the dynamical system (40)
on𝑊
1
, to the study of the following system on 𝑇∗𝑇𝑀:

𝑖
𝑋𝐻1
𝜔
1
= 𝑑𝐻
1
, (45)

where𝐻
1
: 𝑇
∗
𝑇𝑀 → R is defined by𝐻

1
= 𝐻
𝑊1
∘ 𝜑. Locally,

𝐻
1
(𝑥
𝑖
; 𝑦
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
)

=

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦
𝑖
+

𝑛

∑

𝑖=1

𝑞
𝑖
(
1

2

𝑛

∑

𝑙=1

𝑔
𝑖𝑙
𝑞
𝑙
−

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
𝑦
𝑗
𝑦
𝑘
)

(46)

and the vector field𝑋
𝐻1

on 𝑇∗𝑇𝑀 is the pushforward of𝑋
𝑊1

by 𝜑−1; that is,

𝑋
𝐻1
= (𝜑
−1
)
∗
𝑋
𝑊1
= 𝑇𝜑
−1
∘ 𝑋
𝑊1
∘ 𝜑. (47)

The solution vector field is determined according to

𝑋
𝐻1
(𝑥
𝑖
; 𝑦
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
)

=

𝑛

∑

𝑖=1

(
𝜕𝐻
1

𝜕𝑝
𝑖

𝜕

𝜕𝑥𝑖
+
𝜕𝐻
1

𝜕𝑞
𝑖

𝜕

𝜕𝑦𝑖
−
𝜕𝐻
1

𝜕𝑥𝑖

𝜕

𝜕𝑝
𝑖

−
𝜕𝐻
1

𝜕𝑦𝑖

𝜕

𝜕𝑞
𝑖

) ;

(48)

that is,

𝑋
𝐻1
(𝑥
𝑖
; 𝑦
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
)

=

𝑛

∑

𝑖=1

[

[

𝑦
𝑖 𝜕

𝜕𝑥𝑖
+ (

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
𝑞
𝑗
−

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
𝑦
𝑗
𝑦
𝑘
)
𝜕

𝜕𝑦𝑖

+

𝑛

∑

𝑗,𝑘,𝑙=1

𝑞
𝑗
(
𝜕Γ
𝑗

𝑙𝑘

𝜕𝑥𝑖
𝑦
𝑙
𝑦
𝑘
−
1

2

𝜕𝑔
𝑗𝑘

𝜕𝑥𝑖
𝑞
𝑘
)
𝜕

𝜕𝑝
𝑖

+(2

𝑛

∑

𝑗,𝑘=1

𝑞
𝑗
Γ
𝑗

𝑖𝑘
𝑦
𝑘
− 𝑝
𝑖
)
𝜕

𝜕𝑞
𝑖

]

]

.

(49)

As a consequence, the Hamiltonian equations are

�̇�
𝑖
= 𝑦
𝑖
,

̇𝑦
𝑖
=

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
𝑞
𝑗
−

𝑛

∑

𝑗,𝑘=1

Γ
𝑖

𝑗𝑘
𝑦
𝑗
𝑦
𝑘
,

�̇�
𝑖
=

𝑛

∑

𝑗,𝑘,𝑙=1

𝑞
𝑗
(
𝜕Γ
𝑗

𝑙𝑘

𝜕𝑥𝑖
𝑦
𝑙
𝑦
𝑘
−
1

2

𝜕𝑔
𝑗𝑘

𝜕𝑥𝑖
𝑞
𝑘
) ,

̇𝑞
𝑖
= 2

𝑛

∑

𝑗,𝑘=1

𝑞
𝑗
Γ
𝑗

𝑖𝑘
𝑦
𝑘
− 𝑝
𝑖
,

(50)

for 𝑖 = 1, . . . , 𝑛.

5. Examples

5.1. Optimal Control Problem on the Euclidean Space R𝑛. A
trivial example of the optimal control problem discussed in
the previous section is the case𝑀 = R𝑛. The tangent space
ofR𝑛 at an arbitrary point can be identified withR𝑛, and the
Riemannian metric on R𝑛 is the Euclidean one. By means of
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the canonical basis {𝑒
𝑖
} of R𝑛, the components of the metric

are 𝑔
𝑖𝑗
= 𝑒
𝑖
⋅ 𝑒
𝑗
= 𝛿
𝑖𝑗
and the Christoffel symbols are all null.

The cost functional of the control problem is

𝐺 : R
3𝑛
→ R, 𝐺 (𝑥

𝑖
; 𝑦
𝑖
; 𝑢
𝑖
) =
1

2

𝑛

∑

𝑖=1

(𝑢
𝑖
)
2

, (51)

and the control system, described by a vector fieldΠ : R3𝑛 →
R4𝑛 along the projection 𝜏1

2
: R3𝑛 → R2𝑛, is locally given by

�̇�
𝑖
= 𝑦
𝑖
, ̇𝑦
𝑖
= 𝑢
𝑖
, 𝑖 = 1, . . . , 𝑛. (52)

The Hamiltonian 𝐻 : R5𝑛 → R of the presymplectic
system that describes the dynamics of the problem is

𝐻(𝑥
𝑖
; 𝑦
𝑖
; 𝑢
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
) =

𝑛

∑

𝑖=1

[𝑝
𝑖
𝑦
𝑖
+ 𝑞
𝑖
𝑢
𝑖
−
1

2
(𝑢
𝑖
)
2

] . (53)

Therefore, the constraint equations 𝜕𝐻/𝜕𝑢𝑖 = 0, 𝑖 = 1, . . . , 𝑛,
defining the symplectic manifold𝑊

1
are 𝑢𝑖 = 𝑞

𝑖
, 𝑖 = 1, . . . , 𝑛.

Consequently, the Hamiltonian𝐻
1
defined on the symplectic

manifold R4𝑛 becomes

𝐻
1
(𝑥
𝑖
; 𝑦
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
) =

𝑛

∑

𝑖=1

[𝑝
𝑖
𝑦
𝑖
+
1

2
(𝑞
𝑖
)
2

] . (54)

From (48), we know that𝑋
𝐻1
(𝑥
𝑖
; 𝑦
𝑖
; 𝑝
𝑖
; 𝑞
𝑖
) = ∑
𝑛

𝑖=1
[𝑦
𝑖
(𝜕/𝜕𝑥

𝑖
)+

𝑞
𝑖
(𝜕/𝜕𝑦
𝑖
) − 𝑝
𝑖
(𝜕/𝜕𝑞
𝑖
)] is the solution vector field on R4𝑛 and

the corresponding Hamiltonian equations are

�̇�
𝑖
= 𝑦
𝑖
,

̇𝑦
𝑖
= 𝑞
𝑖
,

�̇�
𝑖
= 0,

̇𝑞
𝑖
= − 𝑝

𝑖
,

(55)

for 𝑖 = 1, . . . , 𝑛. Note that these equations give the equations
𝑑
4
𝑥
𝑖
/𝑑𝑡
4
= 0, 𝑖 = 1, . . . , 𝑛, and so the curve 𝛾 in R𝑛 locally

represented by (𝑥𝑖) is such that 𝑑4𝛾/𝑑𝑡4 = 0.This corresponds
to (16), since, on the Riemannian manifold R𝑛, the covariant
derivative along a curve is the usual derivative along a curve
in R𝑛 and the curvature tensor is null. We have obtained the
equation of cubic polynomials on the Euclidean space as we
would expect.

5.2. Optimal Control Problem on the Sphere 𝑆2. Let 𝑆2 = {𝑥 ∈
R3 : ‖𝑥‖ = 𝑎} be the sphere of radius 𝑎 with the usual
spherical coordinates 𝑥1 = 𝜃 and 𝑥2 = 𝜑. 𝑆2 is equipped
with the Riemannian metric 𝑑𝑠2 = 𝑎2sin2𝜑 𝑑𝜃2 + 𝑎2𝑑𝜑2,
and so 𝑔

12
= 𝑔
21
= 0, 𝑔

22
= 𝑎
2, and 𝑔

11
= 𝑎
2sin2𝜑. Using

(18), we obtain the Christoffel symbols: Γ1
12
= Γ
1

21
= cot𝜑,

Γ
2

11
= − sin𝜑 cos𝜑, and all the others are null.
Consider the optimal control problemof the previous sec-

tion on𝑀 = 𝑆2. The state space is 𝑇𝑆2, the bundle of controls
is 𝑇2𝑆2, and the costate space is 𝑇∗𝑇𝑆2. We represent the
corresponding coordinates on these spaces by (𝜃, 𝜑, 𝑦

𝜃
, 𝑦
𝜑
),

(𝜃, 𝜑, 𝑦
𝜃
, 𝑦
𝜑
, 𝑢
1
, 𝑢
2
), and (𝜃, 𝜑, 𝑦

𝜃
, 𝑦
𝜑
, 𝑝
𝜃
, 𝑝
𝜑
, 𝑞
𝜃
, 𝑞
𝜑
), respec-

tively. The cost function of the control problem is

𝐺 : 𝑇
2
𝑆
2
→ R,

𝐺 (𝜃, 𝜑, 𝑦
𝜃
, 𝑦
𝜑
, 𝑢
1
, 𝑢
2
) =
1

2
[𝑎
2
(𝑢
1
)
2

sin2𝜑 + 𝑎2(𝑢2)
2

] ,

(56)

and the control system is represented by

̇𝜃 = 𝑦
𝜃
,

�̇� = 𝑦
𝜑
,

̇𝑦
𝜃
= 𝑢
1
− 2𝑦
𝜃
𝑦
𝜑
cot𝜑,

̇𝑦
𝜑
= 𝑢
2
+ (𝑦
𝜃
)
2 sin𝜑 cos𝜑.

(57)

The Hamiltonian is defined on the presymplectic manifold
𝑇
∗
𝑇𝑆
2
×
𝑇𝑆
2𝑇
2
𝑆
2 by

𝐻(𝜃, 𝜑, 𝑦
𝜃
, 𝑦
𝜑
, 𝑢
1
, 𝑢
2
, 𝑝
𝜃
, 𝑝
𝜑
, 𝑞
𝜃
, 𝑞
𝜑
)

= 𝑝
𝜃
𝑦
𝜃
+ 𝑝
𝜑
𝑦
𝜑
+ 𝑞
𝜃
(𝑢
1
− 2𝑦
𝜃
𝑦
𝜑
cot𝜑)

+ 𝑞
𝜑
(𝑢
2
+ (𝑦
𝜃
)
2 sin𝜑 cos𝜑)

−
1

2
[𝑎
2
(𝑢
1
)
2

sin2𝜑 + 𝑎2(𝑢2)
2

] .

(58)

We can verify that the constraint equations 𝜕𝐻/𝜕𝑢𝑖 = 0, 𝑖 =
1, 2, which define the symplectic manifold𝑊

1
, are

𝑞
𝜃
− 𝑎
2
𝑢
1sin2𝜑 = 0, 𝑞

𝜑
− 𝑎
2
𝑢
2
= 0, (59)

and consequently the controls are given by

𝑢
1
=
1

𝑎2
𝑞
𝜃
cosec2𝜑, 𝑢

2
=
1

𝑎2
𝑞
𝜑
. (60)

Therefore, the Hamiltonian defined on 𝑇∗𝑇𝑆2 is written as

𝐻
1
(𝜃, 𝜑, 𝑦

𝜃
, 𝑦
𝜑
, 𝑝
𝜃
, 𝑝
𝜑
, 𝑞
𝜃
, 𝑞
𝜑
)

= 𝑝
𝜃
𝑦
𝜃
+ 𝑝
𝜑
𝑦
𝜑
+
1

2𝑎2
(𝑞
𝜃
)
2 cosec2𝜑 + 1

2𝑎2
(𝑞
𝜑
)
2

+ 𝑞
𝜑
(𝑦
𝜃
)
2 sin𝜑 cos𝜑 − 2𝑞

𝜃
𝑦
𝜃
𝑦
𝜑
cot𝜑.

(61)

Hence, according to (48), the solution vector field 𝑋
𝐻1

on
𝑇
∗
𝑇𝑆
2 is given by

𝑋
𝐻1
(𝜃, 𝜑, 𝑦

𝜃
, 𝑦
𝜑
, 𝑝
𝜃
, 𝑝
𝜑
, 𝑞
𝜃
, 𝑞
𝜑
)

= 𝑦
𝜃

𝜕

𝜕𝜃
+ 𝑦
𝜑

𝜕

𝜕𝜑
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+ (
1

𝑎2
𝑞
𝜃
cosec2𝜑 − 2𝑦

𝜃
𝑦
𝜑
cot𝜑) 𝜕

𝜕𝑦
𝜃

+ [
1

𝑎2
𝑞
𝜑
+ (𝑦
𝜃
)
2 sin𝜑 cos𝜑] 𝜕

𝜕𝑦
𝜑

+ [
1

𝑎2
(𝑞
𝜃
)
2cosec2𝜑cot𝜑 − 2𝑞

𝜃
𝑦
𝜃
𝑦
𝜑
cosec2𝜑

− 𝑞
𝜑
(𝑦
𝜃
)
2

+ 2𝑞
𝜑
(𝑦
𝜃
)
2sin2𝜑] 𝜕

𝜕𝑝
𝜑

+ (2𝑞
𝜃
𝑦
𝜑
cot𝜑 − 2𝑞

𝜑
𝑦
𝜃
sin𝜑 cos𝜑 − 𝑝

𝜃
)
𝜕

𝜕𝑞
𝜃

+ (2𝑞
𝜃
𝑦
𝜃
cot𝜑 − 𝑝

𝜑
)
𝜕

𝜕𝑞
𝜑

.

(62)

The Hamiltonian equations are
̇𝜃 = 𝑦
𝜃
,

�̇� = 𝑦
𝜑
,

̇𝑦
𝜃
=
1

𝑎2
𝑞
𝜃
cosec2𝜑 − 2𝑦

𝜃
𝑦
𝜑
cot𝜑,

̇𝑦
𝜑
=
1

𝑎2
𝑞
𝜑
+ (𝑦
𝜃
)
2 sin𝜑 cos𝜑,

�̇�
𝜃
= 0,

�̇�
𝜑
=
1

𝑎2
(𝑞
𝜃
)
2cosec2𝜑cot𝜑 − 2𝑞

𝜃
𝑦
𝜃
𝑦
𝜑
cosec2𝜑

− 𝑞
𝜑
(𝑦
𝜃
)
2

+ 2𝑞
𝜑
(𝑦
𝜃
)
2sin2𝜑,

̇𝑞
𝜃
= 2𝑞
𝜃
𝑦
𝜑
cot𝜑 − 2𝑞

𝜑
𝑦
𝜃
sin𝜑 cos𝜑 − 𝑝

𝜃
,

̇𝑞
𝜑
= 2𝑞
𝜃
𝑦
𝜃
cot𝜑 − 𝑝

𝜑
.

(63)

5.3. Optimal Control Problem on the Hyperbolic Plane H2.
Let us analyze now the optimal control problem of the
previous section on the upper half-plane model of the
hyperbolic plane:

H
2
= {𝑥
1
+ 𝑖𝑥
2
∈ C : 𝑥

2
> 0} . (64)

The Riemannian metric on H2 is 𝑑𝑠2 = [𝑑(𝑥1)2 + 𝑑(𝑥2)2]/
(𝑥
2
)
2, and so its components are 𝑔

11
= 𝑔
22
= 1/(𝑥

2
)
2 and

𝑔
12
= 𝑔
21
= 0. From (18), we get Γ1

12
= Γ
1

21
= Γ
2

22
= −Γ
2

11
=

−1/𝑥
2 and Γ1

11
= Γ
1

22
= Γ
2

12
= Γ
2

21
= 0.

In this case, we have the cost function

𝐺 : 𝑇
2
H
2
→ R,

𝐺 (𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑢
1
, 𝑢
2
) =
1

2

(𝑢
1
)
2

+ (𝑢
2
)
2

(𝑥2)
2

(65)

and the control system

�̇�
1
= 𝑦
1
,

�̇�
2
= 𝑦
2
,

̇𝑦
1
= 𝑢
1
+ 2
𝑦
1
𝑦
2

𝑥2
,

̇𝑦
2
= 𝑢
2
+

(𝑦
2
)
2

− (𝑦
1
)
2

𝑥2
.

(66)
The dynamics of the problem is described by a presym-

plectic system on 𝑇∗𝑇H2×
𝑇H2𝑇
2H2 with Hamiltonian

defined by

𝐻(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑢
1
, 𝑢
2
, 𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

= 𝑝
1
𝑦
1
+ 𝑝
2
𝑦
2
+ 𝑞
1
(𝑢
1
+ 2
𝑦
1
𝑦
2

𝑥2
)

+ 𝑞
2
[

[

𝑢
2
+

(𝑦
2
)
2

− (𝑦
1
)
2

𝑥2
]

]

−
1

2

(𝑢
1
)
2

+ (𝑢
2
)
2

(𝑥2)
2

.

(67)

Therefore, the symplectic manifold𝑊
1
is locally defined by

𝑞
1
−
𝑢
1

(𝑥2)
2
= 0, 𝑞

2
−
𝑢
2

(𝑥2)
2
= 0, (68)

and so the controls are such that

𝑢
1
= 𝑞
1
(𝑥
2
)
2

, 𝑢
2
= 𝑞
2
(𝑥
2
)
2

. (69)

As a consequence, the Hamiltonian𝐻
1
is defined on 𝑇∗𝑇H2

by

𝐻
1
(𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

= 𝑝
1
𝑦
1
+ 𝑝
2
𝑦
2
+
1

2
(𝑥
2
)
2

(𝑞
1
)
2

+
1

2
(𝑥
2
)
2

(𝑞
2
)
2

+ 2𝑞
1

𝑦
1
𝑦
2

𝑥2
+ 𝑞
2

(𝑦
2
)
2

− (𝑦
1
)
2

𝑥2
.

(70)

Moreover, the corresponding Hamiltonian equations are

�̇�
1
= 𝑦
1
,

�̇�
2
= 𝑦
2
,

̇𝑦
1
= (𝑥
2
)
2

𝑞
1
+ 2
𝑦
1
𝑦
2

𝑥2
,

̇𝑦
2
= (𝑥
2
)
2

𝑞
2
+

(𝑦
2
)
2

− (𝑦
1
)
2

𝑥2
,

�̇�
1
= 0,

�̇�
2
= 2𝑞
1

𝑦
1
𝑦
2

(𝑥2)
2
+ 𝑞
2

(𝑦
2
)
2

− (𝑦
1
)
2

(𝑥2)
2

− 𝑥
2
(𝑞
1
)
2

− 𝑥
2
(𝑞
2
)
2

,
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̇𝑞
1
= − 2𝑞

1

𝑦
2

𝑥2
+ 2𝑞
2

𝑦
1

𝑥2
− 𝑝
1
,

̇𝑞
2
= − 2𝑞

1

𝑦
1

𝑥2
− 2𝑞
2

𝑦
2

𝑥2
− 𝑝
2
.

(71)

Acknowledgments

The work of L. Abrunheiro was supported in part by FEDER
funds through COMPETE—Operational Programme Fac-
tors of Competitiveness (Programa Operacional Factores
de Competitividade), and by Portuguese funds through the
Center for Research and Development in Mathematics and
Applications and the Fundação para a Ciência e a Tecnologia
(FCT), within project PEst-C/MAT/UI4106/2011 with COM-
PETE no. FCOMP-01-0124-FEDER-022690. The research of
M. Camarinha was partially supported by the Centro de
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