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Abstract

Based on a recently derived effective chiral meson Lagrangian from the ext8dd2d® SU(2)
Nambu—Jona-Lasinio (ENJL) model, in the linear realization of chiral symmetry, we extract to
leading order in the AN, expansion all associated relevant three-point functions 77,0 — 7,
a1 — pm,a; — o, aswell as the amplitude farr scattering. We discuss the formal differences of
these amplitudes as compared with those derived in the literature and calculate the associated decay
widths and scattering parameters. The differences have two origins:

(i) new terms, which are proportional to the current quark mass and arise from taking the correct

NJL vacuum from the first steps in a proper-time expansion, are present in the Lagrangian;
(i) an implemented chiral covariant treatment of the diagonalization in the pseudoscalar—axial-
vector sector induces new couplings between three or more mesonic fields.
Both effects have been derived from the chiral Ward Takahashi identities, which are fully taken into
account at each order of the proper-time expansid2001 Elsevier Science B.V. All rights reserved.

PACS 12.39.Fe; 11.30.Rd
Keywords. Chiral meson Lagrangian; Correct vacuum and proper-time expansion

1. Introduction

The Nambu-Jona-Lasinio (NJL) model [1] and its several extensions (see, e.g., [2—14])
have been vastly studied as effective models of the strong interaction, based on the chiral
dynamics of four-quark interactions. By incorporating the main symmetries of QCD
and being reminiscent of the effective four-fermion interaction for QCD, obtained after
eliminating the gluonic degrees of freedom [15], the NJL model is a useful playground
for simulating relevant features of low-energy hadron physics. Its innumerous applications
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range from the calculation of the low-lying meson spectra, meson couplings, decay and
scattering amplitudes, diquark physics and extensions to the baryonic sector, to modeling
of finite density and temperature effects on chiral properties of hadrons.

In the present paper, we focus on the implications of a recently de®H@) ®
U (2) effective chiral Lagrangian [18,19], on the low-lying hadron phenomenology. The
Lagrangian has been constructed on the basis of the ENJL model by using the Schwinger
proper-time representation for the modulus of the one-loop quark determinant [16,17],
and the following long wavelength expansion of its heat kernel. This semiclassical WKB
expansion of the ENJL action is implemented by polynomial counterterms, which result
from requiring that the symmetry-breaking pattern of the fermionic Lagrangian in the
presence of the explicit chiral symmetry-breaking term be equivalent to the one of the
bosonized effective Lagrangian [19,20]. As a consequence of these symmetry requirements
we have shown how relevant and previously not considered current quark-mass terms
appear in the local action of the chiral mesonic fields. These terms allow to account for
the correct vacuum already at the first steps of the proper-time expansion and lead to a
resummation in the current quark mass. Furthermore, in the case of the linear realization
of chiral symmetry, the Lagrangian contains new meson couplings which derive from
a modified diagonalization of the axial-vector—pseudoscalar interaction, which we have
shown to be necessary in order to preserve the chiral transformation properties of the
vector mesons. We consider worthwhile understanding the consequences of such new
structures on relevant amplitudes and scattering processes. As we shall show, the effects of
the new current quark-mass terms will be manifest in all considered amplitudes, and may
appear both explicitly and implicitly through the coupling parameters. As for the covariant
diagonalization, we shall observe the following:

(1) the prr coupling becomes a three-derivative type, contrary to the one-derivative
type obtained in the usual linear approaches. This is important, since the latter
violates chiral symmetry [21]. On the mass shell one recovers the one-derivative
structure.

(2) Theaimo coupling acquires also new three-derivative type of couplings. On the
mass shell it reduces in form to the known results of [12,22].

(3) The amplitudesgrr and aijpmr are not altered by the proposed covariant
diagonalization.

(4) The contact term with four pion fields gets modified with extra two- and four-
derivatives in the fields.

One expects therefore that when off-shell processes are at work, such as in form factors or
p exchange imrr scattering, the related amplitudes are affected correspondingly. We shall
show, however, that in the case ofr scattering, one recovers old results (up to current
quark-mass terms), regardless of using the covariant diagonalization.

We work in the leading AN, approximation, that is, to fermion one-loop level. The
bosonized Lagrangian is correspondingly treated to tree-level order in the meson couplings.
Furthermore, we sum the proper-time series up to the third Seeley—DeWitt coefficient,
which amounts to keeping, out of the full momentum dependence afgant functions,
only the quadratic and logarithmic divergent contributions. There are several reasons to
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stop at this order in the heat kernel expansion. First, once this is done, the masses and
coupling constants of the chiral fields are completely fixed in a way which guarantees that
the first and the second Weinberg sum rules are automatically satisfied. Second, truncating
the proper-time series at this order is substantiated by the results of [23], where an infinite
number of local counterterm operators were added to the ENJL Lagrangian, with couplings
fixed, such that the corresponding Adler function exhibited the properties of the “lowest
meson dominance” approximation to largyg-QCD. For the vector and axial-vector two-
point functions this requirement was tantamount to removing the nonconfining terms and
guarantees their correct matching to the QCD short-distance behaviour. Third, one might
expect, except for amplitudes which are finite previous to regularization, the divergent
contributions to dominate over the finite ones.

The paper is structured as follows. In the second section, we set up the notation and
situate the problem, by giving a short review of the results obtained in [18,19]. In Section 3,
we derive the amplitudes — nw, 0 — 7w, a1 — pwr anda; — ox and discuss the
differences with respect to similar amplitudes obtained from other models based on ENJL-
type Lagrangians. In Section 4, we derive the amplituderforscattering. In Section 5,
we present the numerical results. We conclude with a summary and outlook.

2. TheLagrangian: current quark-masstermsand covariant diagonalization

The starting point is the effective quark Lagrangian of strong interactions which is
invariant under a global coloBU (N,.) symmetry:

. Gs . _ _
L=q(iy"d, —me)g + 75 (@)% + @iystiq)?]
Gy

- [(@r"7iq)* + (Gv"ystiq)?]- 1)

Heregq is a flavor doublet of Dirac spinors for quark fielfis= (it, d). Summation over the
colour indices is implicit. We use the standard notation for the isospin Pauli matfices
The current quark-mass matrix. = diag(m,,, m4) is chosen in such a way that, =

my = m. Without this term the Lagrangian (1) would be invariant under global chiral
SU(2) ® SU(2) symmetry. The coupling constar@ andGy have dimensiond_ength?

and can be fixed from the meson-mass spectrum. The transformation law for the quark
fields is the following:

8q =i(a+ ysp)q, 8q =—igq(a — ysp), (2

where parameters of global infinitesimal chiral transformations are choser=ag; t;,
B = Bit;. Under infinitesimal chiral transformations the Lagrangiaexhibits, therefore,
the following explicit symmetry-breaking pattern:

8L =—2im(gyspq), 3

which is to be kept intact at each stage of calculations (here we are not considering the
anomalous sector). The chiral effective Lagrangian which we obtain [19] from (1) as
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result of the heat kernel expansion up to and including the third-order Seeley—DeWitt
coefficient and taking into account the symmetry requirements has the following form in
the spontaneously broken phase:

2 2 ~ -
v tay  me?4+7% N1
Loff = L H — 20 Tir(v? 2
eff 2Gy  2m—m)Gs 872 |6 (Vi + )
1 .
-3 tr((V,m)? + (V,0)?) + (02 + 20m — i)o + n,?)z], (4)
where the trace is to be taken in isospin space. Here we have used the notation:
Uy = Uy — 0y — i[vp, vl —ilay, avl, (5)
ayy = ay — dvay —ilay, vl —ilvg, avl, (6)
Vo =030 —ilvg, o]+ {a,, ), @)
Vur =9, —ilvy, ] —{ay, 0 +m —m}, (8)

with v, = vy 7, a, = a,iti, o, T = w;7; designating the vector—isovector, axial-vector—
isovector, scalar—isoscalar and pseudoscalar—isovector fields, respectivety, iarttie
constituent quark mass. In terms of these fields, the infinitesimal chiral transformation
laws read:

o =—{B,}, St =ila, w1+ 2(c +m —m)B, (9)
S, =ila, v ] +i[B, aul, 8a, =ila, a,] +ilB, vul. (10)
The variation of the second term of (4) yields the symmetry-breaking pattern of the

Lagrangian in terms of the collective fields, which is the equivalent of Eq. (3) in terms
of the fermionic variables:

hot
8L = — == (Bimi) = 8Lef. (11)
Gs

All other terms in (4) are chiral invariant. The functidpappearing in (4) is one of the set
of integralsJ, emerging in the heat kernel expansion [19],

oo

a7 . 2

I (m?, A2)=/me Tmp(T,4%), n=0,1,2,.... (12)
0

In the explicit evaluation of these integrals, we use as regulating kernel the Pauli-Villars

cutoff [24] with two subtractions
p(T, AY) =1— (1+T A% e ™4 (13)

Prior to regularization, thé; integral is logarithmically divergent. The other characteristic
divergence of the ENJL model at one-loop order is the quadratic one, givés shich
has been traded by the gap equation in writing down (4)
m—im _ N.Jo
mGs  2n2’
to establish the real vacuum of the spontaneously broken phase. As it stands, the effective
Lagrangian (4) still requires a diagonalization of the pseudoscalar—axial-vector fields

(14)
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appearing in the quadratic forms for the covariant derivatives. We have shown in [19] that
the simplest replacement of variables which fulfills the linear transformation property (10)

not only for old variablesy,, a,, but also for new onesy,, a,, is

ay=ay + % (fo+m—m, 0,7} —{m,d,0}),
i
v =, + g([a, 8,01+ [, d,7]). (15)

For the case at hand, the commutaferd,o] = 0. These redefinitions involve new
terms that are bilinear in the fields and induce changes at the level of couplings with
three or more fields, as compared to the noncovariant diagonalizations that have widely
been used previously in the linear chiral symmetry versions of the ENJL model. The
replacement (15) is identical to the field redefinition considered in [12,35] for the case
of nonlinear realization of chiral symmetry. The constait fixed by the requirement that
the bilinear part of the effective Lagrangian becomes diagonal in the frietmzda;t. We
find in this way that

1 2 2

2 =M Gy

The physical meson fields are obtained as usual by bringing the kinetic terms to their

standard form. For the vector fields, one has:

| b2 g g
o | 22 (ph) — &P . (ph) 1 _ 9P _(ph)
TN T T e (17)

Then we have

(16)

m2 = LZ m2 =m2 + 6(m — m)? (18)
P N.J1Gy’ “ P '
In particular, it implies the relations
6(m —m)2 m3 3
=1-——— ==, =—. 19

We also have to redefine the spin-0 fields:

o= 4L20(”'”Ega<7(””) T =g, g =57 (20)
Neda | T e

The mass formulae for spin-0 fields are

2 _ ﬁgi
T (m—-m)Gs’
As compared with previous calculations in [5,12], our mass formulae have a different
dependence on the current quark mass.
Let us also point out that after the field redefinitions the symmetry-breaking part takes
the form [25]

8Left = —2m2 fr fim ", (22)

mtzr = gAmJZT +4(m — ﬁi)z. (21)
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which leads to the well known PCAC relation for the divergence of the quark axial-vector
current

) =2 fzm27 PP, (23)
We used the relation

=" (24)
to get (22).

3. Three-meson vertices
3.1. Theon interaction

After using the field redefinitions (15) in the effective Lagrangian (4) and collecting all
terms involving one scalar and two pseudoscalar fields, one gets

2 2
8o e mz(l—ga)].>, 1-8g
Logg = —2=—(m — 1-—= — 22
T 24 (m m)“”: 2(m _m)z 2(

where use has been made of the mass relation for the scalar field Eq. (21), the field
renormalizations (20) (here and henceforth we drop the ingéx on the physical fields),

and the mixing parametar, Eq. (16). One obtains for the decayq) — 7, (p)7p(p)

(a, b are isospin indices) the amplitude

<aﬁ>2}, (25)

m — im)?

1
Mo (P, P/) = ZTr{Ta, W} forn (P, P/)~ (26)
Va8 iyl L8 2
fam(p,p)—4gA(m m){l 2(m_m)z[m,,+171r7(1+gA)]}. (27)

On the mass shelz2 = 2(m2 + pp’) and using (21) for the mass, one obtains

mZ(1—ga)
4(m — im)? }

This amplitude differs from previously calculated ones by the current quark-mass terms.

For instance in [13]: keeping only the logarithmically divergent integrals at zero squared

momentum, we find a correspondence to the considered order of the present heat kernel

expansion, after the substitutions ((Ihs) are the notations of [13] and (rhs) the present)

2

m—m— i, §=1-— - — g4, (29)
a

Jorn =4ga(m_"/i){gA+ (28)

which lead to Eq. (28). The decay width is obtained in the standard way:

2
Tyun = oxx [0z~ am2). (30)
8rm?2 “ T
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3.2. The prrw interaction
Again by collecting all terms involving the, -meson field and two-pseudoscalar fields,
after the redefinition (15), one obtains the interaction Lagrangian:

N.J1
1672

. K N
Lonn = Igpgi tr{ Gy vylm, 0] — [5 (1— K(m — m)z)v,w[aﬂn, oy ]

— (2c(m — )? — 1), vy, JT]”, (31)

with v,, denoting the derivative terms of (5). The terms containingvhich are

not multiplying quark-mass factors stem from the proposed field bilinears in the
redefinition (15) for the vector fields and were therefore absent in previous analyzes. Also
all m terms are new. Using Egs. (16) and (19), one can recast the interaction in the form

. gp(1+ga), .
Lonn = =i 8T8 (5, [0, dy]). (32)
8mp
The interaction is of three-derivative type, as opposed to the usual one-derivative coupling.
This is a consequence of the chiral covariant diagonalization. On the mass shell, one

obtains, after partial integration in the action and discarding total derivatives:
Lpmn = —i %‘) 1+ ga) tr(vylm, 3,7]). (33)

The Lagrangian becomes on-shell equivalent in form to the standard expression, for the
nonlinear as well as linear cases, see, e.g.,[12,13]. In order to make these comparisons, one
should again keep only the logarithmically divergent contributions in the cases considered
in [12,13], to be compatible with the order of the heat kernel expansion considered in the
present approach. Starting from the Lagrandiap, of [12],

Epr[n’: ZI\(jY ( Mv[guvév])s

, 1
€M=|(§+8M€_€aué+)_)f_au-n"‘"'s %_:exp(zf )‘¢l> (34)

one has the following correspondence between the notation of [12] (Ihs) and the present
one (rhs):

N, 1-g4 , N.I(@O0,x) 1
1-¢2)r (o, , AR L N
8V = 4gn2f, (1-g3)r O~ 22, W=7 ~ 22
m2
O, x)— Ji, gA — —zp, (35)
ag

wherex = m2/Af(. In the expression fogy of [12] we have already dropped a term
proportional toI"(1, x), which would correspond to d integral in our notation and
therefore be of higher order than the one considered in the heat kernel expansion of
the present work. Note that, although there is a formal equivalence to the standard
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result, hidden information stemming from the current quark-mass terms is carried by the
expressions relating , to m,, and byga, Egs. (18) and (19).
The amplitude for the procegs; (¢) — P (p)yre(p))is

1
Mopzz(p. p') = ZTr(ta[rb, wl)(p = P) ,€" @) forx. (36)
wheree” (¢) is the polarization of the vector particle and
fpnn Zg?p(l‘i‘gA)’ (37)

for on-shell particles. The decay width is then

1Pl
P — A~ 5 Jpnmw
Gnmp

(38)

with p. being the center of mass momentum of the piops, = ,/(m2 — 4m2)/2.
3.3. Theaipm and a1o 7 interactions

These processes are interesting in relation to the branching ratia Bf 7 (nwm)y).
According to Weinberg [26], chiral symmetry arguments lead to the predicti¢i Bs
m(mm)s) = 10-15%, in conflict with the value quoted in Particle Data until 1996 [27]. The
main source of théx ), pairs is the scalar particle decay and the main decay channel
for ay isay — px. The ratio of these two decay modes for theshould then represent a
reasonable estimate of the branching ratio.

The Lagrangians for the couplingspr andaiom are obtained in a similar way as in
the previous cases:

2
. 8 K - -
Lajpr =1 fr 48%14 trlg(au[avn, U]+ vy ldvm, aw]) +aulvy, 7{]], (39)
1—-ga 1 .
‘Culon =8 = tr aauaun + maw(aﬂnava — avnaua) y (40)

with a,,, the derivative terms contained in (6). Contrary to the cagg,@f; interaction, the
terms bilinear in the fields in Eq. (15) do not contributelq . The terms proportional
to « stem only from the linear combinatiar(m — m)d, 7 of the shift in thea,, field. On
the mass shell, the interaction Lagrangians reduce to

2

.. 8
Lajpr =1 fr Zp tr(aﬂ[vu, T[]), (42)
which coincides in form with the results in [12,22,28] and to
Ealan = —8pVE8A tr(aauaﬂﬂ)v (42)

which corresponds to the result of [12,22]. Let us note, however, that the couplings
and f, depend, in the present approach, on extra current quark-mass terms, Egs. (19)
and (24).
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The decay amplitudes for the processél%(q) — pb(p)mc(p’) and ai’u(q) —
o (p)?(p’) on-shell are

i
Magpr (p, p) = _ZTr(ra[r;,, e ])en(@)es(p) dpr> (43)
[
Majorn (Pv P,) = ZTr{fa, Tb}eu(Q)P,Mfalan, (44)
with
(ﬁ_;n = fﬂg;z)gl“) and falaﬂ = ng vV EA- (45)

Finally, the decay widths are calculated to be
f]‘?gﬁ (‘ZI’)Z 2 2.2
Falpn = Fﬂlg (2 + W) (qp) - mamp (46)

with 2gp = m? + m% —m?2 and
3/2
_ Ma_ 2|4 _ (Mot maNZ|[, _ (Mo —mx)2
Tagon = 192”|fw|{[1 (" )][1 () - @

4, mm scattering

The scattering amplitudg, . .4 for the process*(p1) + 7’ (p2) — 7¢(p3) + 14 (pa)
has the well-known isotopic structure:
Tub;cd(s’ t,u) =8ap0ca A(s, t,u) + 8acbpa A, s, u) + 8addcpAu, t, ). (48)

Here, the standard Mandelstam variables for two-particle elastic scatterirandu, are
defined by

s=(p1+p2?  t=(p1—p2?  u=(p1—pa°. (49)
Amplitudes with definite isospin/), T/, are then

T, 1,u) = A(t,s,u) + A(u, t,s) + A(s, 1, u),
T, t,u) = A(t, s,u) — Au, 1, 5),
T?(s,t,u) = A(t,s,u) + Au, 1, 5). (50)

After the redefinitions (15), the Lagrangian (4) contributes with scalar @mgeson
exchange as well as with a contact term to the scattering amplitude. First, we evaluate
the scalar-exchange amplitudg; (s, 7, u) using the interaction Lagrangian (25) for the
omw vertex:

_ 16gZem—m)* ([, mid-gn]?
i) = 22 T
10 (- e —2m
2(m — m)? (m — m)?

+

0o 2i))

16(m — m)* (1)



AA. Osipov et al. / Nuclear Physics A 703 (2002) 378-392 387

The scalar propagator is expanded up to a desired order i) 2,

1 1 1 gam2 —s -1
m2 —s 4(m — m)? 4(m — m)?

2 _ 2 _ 2
=1l sy (@am 97 (52)
4(m — m)? 4m —m)2  16(m —m)*
leading to
gz 4 84 1 9 3
Ag(s,t,u)= 4 |: <2 —>—mn<4__)i|_|_.... 53
i g3 ga (43)

Next, we obtain thep-exchange amplituded , (s, #,#) using the interaction La-
grangian (31) for thexr vertex. Thep-propagator has the conventional form

d* [ kuk e ihl—x2)
A (1 —xo) = —i 8 Ko S — 54
v (X1 — x2) 1 8ab (271)4( m% 8uv (m% 2 —ie) (54)
and the amplitude reads
2 2 2
g t°(s—u) u(s—t)
my mg —t mg —u

This amplitude starts & (p®) in chiral counting and therefore does not contribute to the
Weinberg result. It can be compared to theneson-exchange contribution to ther-
scattering amplitude derived by Gasser and Leutwyler [21], in spite of the fact thaptheir
meson has origin in an antisymmetric tensor field. This is because in the evaluation of the
respectiveS-matrix element Mg, , with p exchange

—igh(1+4%)

Max = 128n2

(8118 m — Sim 1) / oy dea (7 (pa)? (pa) | (x0)

X avﬂj (x1)9g 7 (x2) aﬂﬂm (XZ)up,vaﬂ |7Ta (Pl)ﬂb(P2)>7 (56)
one encounters the te), s

d4k e—ik(xl—xz) ( )
A AT o o\ [_kukagvﬂ +kvkagp,/3 _kvkﬂgﬂa +kukﬂgva]’ 57
(2m)* (m2 —k?)

which is identical to a piece of the Green'’s function for theneson in [21] and leads
to the contribution proportional ta)mlz, — k%)L for the correspondingrx-scattering
amplitude.

Finally, we evaluate the contact term, by collecting all terms with four pseudoscalar
fields:

Le =g, tr{

Upvap =

4

N T
[6 (1= km— )22 (9,7, d,7 ]2 — >

©2 N¢.J1
16Gy [, 0
K2 ~2 2 K
+ ?(m — )0, T} + 5 ([, 0], ]

+i2(m — m)2d, |7, [, aun]]} } (58)
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All terms containing powers of as factors (except the ones multiplying quark masses)
derive from the covariant diagonalization and were not present in previous schemes. After
some rearrangement, one can write the contact term as

2 —
EC — _g_y-[ (ﬁ2)2 (1 gA)

2ga 2g4 f?
(8,7 x 3,7)?
4f7$m% ’

[(78,7)% — gait 2(8,7)?]

—(1-g5)d+ga) (59)

which leads to the contact amplitude

2
1—
Ac(S,t,M) = —4g_n+#
84 fngA
(1-g8)d+ga)
4f2m?

[s +2ga(s — 2m§)]

[(s —Du+ (s —u)r]. (60)

Now we obtain the complete amplitud€s, ¢, u) for 77 scattering, by assembling the
scalar- and vector-exchange amplitudes and contact terms. We give here explicitly the
result top*th order:

1 2 1
At = 55 =ma) 4 S e

+683[ (s — 2m2)ga +m2]*} + O(p°). (61)

This result can be compared with the one obtained using the noncovariant diagonalization
in [13] after keeping there only the logarithmic divergent contributions at zero squared
momentum, again to relate to the order of heat kernel expansion considered in the present
work. To orderp?, we obtain the Weinberg result [29]. In fact we find that for grfy

order of A(s, t,u) one recovers the previous result, except for the current quark-mass
terms (i.e., if one puts everywhere in (64)— m — m). It turns out that in the case of the
usual noncovariant diagonalization and induced linear derivatigeupling to the pions,

a judicious combination of the chiral noncovariant terms emerging in the vector channel
and the contact term simulates the correct structure of the contact term obtained in the
case of the covariant diagonalization, upsd order (the vector-exchange only starts at

pB order). Starting fron®©(p®), the vector-exchange term coincides in the two approaches
and the contact term does not contribute in both cases, at the considered order of the heat
kernel expansion.

In the next section, we analyze the numerical effects due to the present heat kernel
expansion onzn threshold parameters, as compared to the studies where the full
momentum expansion of Feynman amplitudes was considered [13]. We do not expect
large deviations, since, at least to the order of the heat kernel expansion considered here,
the sz amplitude does not get modified by the covariant diagonalization, and the current
quark mass may not be large enough to make the new terms in the amplitude numerically
significant. However, it is worthwhile measuring the numerical effects related to the
momentum expansions in the two approaches, since they differ by finite nonvanishing

{(1— gi)z[(s —Hu+ (s — u)t]
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contributions present in [13], due to differences of logarithmic divergent integrals of
different arguments and other finite terms.

5. Numerical results

We start the numerical section by calculating the decay widths of the heavy mesons. The
four parameters of the modeft,s, Gy, A andm, are obtained by fixing:,, = 139 MeV,
frx =92 MeV,m, =770 MeV and the ratig s = m2/mZ, which we take at two different
mg values. Fog 4 = 0.5, in accordance with the choice of [26], we obtain = 1089 MeV,
m =314 MeV, i = 1.7 MeV, Gs = 3.22 GeV 2, Gy = 1477 GeV 2, A = 1.536 GeV,
and for g4 = 0.374, which corresponds to the empiriea), = 1260 MeV, we getn =
408 MeV, 7 = 1.4 MeV, Gs = 3.40 GeV?, Gy = 1849 GeV 2, A = 1.544 GeV. In
Table 1 we display the mesonic observables, set | corresponding to the simaitdue
and set Il to the large one. Some comments are in order here. The decayyjdttand
I,z turn out to be smaller than the empirical values by roughly a factor two, if one insists
on keeping the correct empirical fit far, and f;;. This trend did not change as compared
to the calculations in a full momentum scheme, for the cases in whicp theson is a
well-defined bound state below the quark—antiquark pair thresholdy theeson in the
latter case is always slightly embedded in the continuum (with a very small decay width in
quark—antiquark pairs [14]). The results for the branching ratio

oy
Brlay — w(wm),] ~ = — ~ L4%(1); %) (62)
1= 1—

are in fair agreement to the 10-20% obtained by Weinberg. The rather large change
observed in the width,—, ., from set Il of parameters to | is mainly dictated by the
square root term in Eq. (46), which is reduced by roughly a factor two and the change in
the couplinggf,, which gets smaller by 25%.

Table 1
Some meson properties calculated in the present version of the NJL model are compared to
experimental data [34]

[MeV] Model (set I) Model (set II) Experiment
fr 92* 92* 93.3
My 139 139 139
Mg 633 818 400-1200
mp 770¢ 770¢ 770
May 1089 1260 1260
Iosnx 409 394 600-1000
Tpsnn 82 86 150
Ty1s o 192 420 seen; full’ = 250-600
Iyt son 31 23 seen

* The asterisks indicate quantities which served as input to determine the model parameters.
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Table 2
The calculatedr r-scattering lengths and effective ranges are compared to Soft Meson Theorems
(SMT) [29] and experimental data (taken from [30,31], see text please)

al oM o8 o [ O(p®) 1] Full[13]  SMT Experiment [30]
i (r) (P°) N O(p%) (P°)

ag 0166 Q167 Q161 Q162 Q17 016 026+0.05
b3 0188 Q192 Q178 Q179 Q19 018 025+0.03
ag ~ —0.0454 —0.0454 —0.0454 —0.0454 —0.047 —0.0454 —0.028+0.012
b3 ~ —0.0875 —0.0875 —0.0875 —0.0875 —0.090 —0.089  —0.082+0.008
a} 0.0336 00347 00338 00351 0038 Q030 Q0384 0.002
adx10* 592 8198 5034 7476 69 17+3
a§x10* -074 -193 -196 -316 25 13+3

Next we present in Table 2 the results for threshold parametgrs] from the
representation (61) of thex-scattering amplitude, as compared to the data of [30]. The
more recent analysis of [31] yield§ =0.28840.012+ 0.003 andu? = —0.036+ 0.0009.

Let us note that since we are working at meson tree levelpthexpansion in our case
reveals the subjacent quark—antiquark compositeness of the amplitudes and therefore we
do not compare it to the meson loop orders related momentum expansion of CHPT (for
recent reviews see [32,33]).

At p? order (not shown in the table), the quantitigs b3, a3, b3, a} reproduce the soft
pion theorem values. The observed trendraf-scattering lengths and effective ranges is
congruent with the results of the full momentum expansion [13] (included in the table, for
the larger value of the constituent quark mass considered thete 390 MeV)). Some
deviations are observed in the D-wave scattering lengths. We have checkegithatder
there are no significant changes for any of the calculated scattering lengths and effective
ranges, from which we infer that the differences in the higher partial waves are related
to the presence of finite terms in [13], not existent in the heat kernel expansion (see also
discussion at the end of previous section).

In the present calculation, the vector exchange has still a noticeable contributiq}n for
(the scalar-exchange and contact contributions stabilize* atrder), as well as img
andas.

The case of rather small quark mass Z00 MeV) also considered in [13] (since it
describes better the scalar form factor of the pion) was calculated as well with the present
method, leading to similar conclusions as for the large-mass case. Nevertheless, we do not
consider further this case here, since the corresponding parameter set yields worse results
for the heavy-meson decays.

In the light of the numerical results, the present heat kernel expansion yields comparable
results and trends in the momentum expansion for the scattering parameters calculated
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from Feynman amplitudes with a full momentum dependence in the vertices [13], for the
S and P waves. Some sizeable effects are observed in the higher partial waves.

6. Summary and outlook

The main concern of this work was to show the formal and numerical implications of
a recently derived effectivelU (2) ® SU(2) chiral Lagrangian with linear realization of
chiral symmetry on mesonic observables: mass spectra, strong decays aswdttering
parameters. The considered Lagrangian was constructed on the basis of the Schwinger—
DeWitt proper-time method applied to the ENJL model. The resulting semiclassical WKB
expansion of the ENJL action has been done around the correct NJL vacuum state,
defined by the corresponding Schwinger—Dyson equation in the case with explicit chiral
symmetry breaking. We derive that the amplitudes carry the signature of this vacuum: the
amplitudes get relevant current quark-mass corrections, not present in previous approaches.
Furthermore, we also derive that amplitudes with three or more fields are affected by
the diagonalization in the pseudoscalar—axial-vector sector which was implemented to
correctly describe the vector meson chiral transformations for the linear realization of
chiral symmetry. We have studied in detail the structure of the amplitades, p7w,
ai1pm andayo as well astxr scattering. Ther, ajor amplitudes and the contact four-
pion interaction get modified by the covariant diagonalization and all studied amplitudes
depend on current quark-mass terms. On the mass shell, we obtain that all studied processes
are not affected by the covariant diagonalization, becoming structurally identical (except
for current quark-mass terms) to the ones obtained in the nonlinear as well as linear
realizations of chiral symmetry, at the same order of the heat kernel expansion. In this
study, the current quark-mass effects are numerically negligible, as expected$ox(®)e
case. From the formal point of view, however, the way the new structures appear in the
amplitudes hints at possible large numerical deviations foSthe) case. The extension
to theSU(3) case is presently under study.
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