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Abstract

In this paper diffusion through a viscoelastic biodegradable material is studied. The

phenomenon is described by a set of three coupled partial differential equations that take

into account passive diffusion, stress driven diffusion and the degradation of the material.

The stability properties of the model are studied.

Erodible viscoelastic materials, as biodegradable polymers, have a huge range of ap-

plications in medicine to make drug eluting implants. Using the mathematical model the

behaviour of a particular ocular drug eluting implant which describes drug delivery into

the vitreous chamber of the eye is presented. The model consists of coupled systems of

partial differential equations linked by interface conditions. The chemical structure, the

viscoelastic properties and the diffusion in the implant as well as the transport in the

vitreous are taken into account to simulate the evolution in vivo of released drug. The de-

pendence of the delivery profile on the properties of the material are addressed. Numerical

simulations that illustrate the interplay between these phenomena are included.

1 Introduction

In the past few decades diffusion through viscoelastic materials has attracted the attention

of many researchers ([1, 2, 3, 4, 5]). Apart from the mathematical interest of non Fickian

diffusion such research focus is also explained by the increasing practical use of polymers in

coatings, packaging, membranes for transdermal drug delivery and more generally in con-

trolled drug delivery ([3, 6]).

It is well known that diffusion through a viscoelastic material does not obey Fick’s law.

In fact the material opposes a resistance to the Brownian motion of molecules that can be

quantified by the stress response to the strain induced by these molecules. Several authors
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([7, 8, 9]) have proposed a general model represented by

∂C1

∂t
= −∇.J, (1)

where C1 represents drug concentration and J is a modified flux with a stress driven diffusion

term defined by

J = −D1∇C1 −Dv∇σ, (2)

where the stress σ is related with the concentration by some mechanistic model ([10]). In (2)

D1 represents the diffusion coefficient and Dv a viscoelastic parameter which meaning will

clarified later.

When the polymer matrix is biodegradable the transport of molecules is not well described

by (1)-(2) and a more complex system must be considered. As degradation proceeds, the poly-

mer molecular weight decreases and diffusional paths open through the matrix allowing solved

drug molecules to leave the polymeric matrix ([11]). Because of the increasing permeability

of the system upon polymer degradation, the constant diffusion coefficient is replaced by a

molecular weight dependent diffusion coefficient ([12]) and a reaction term stands for the

degradation of drug inside the polymeric matrix is considered (k1 represents the degradation

rate). Equation (1) is then replaced by

∂C1

∂t
= ∇.(D1(M)∇C1 +Dv∇σ)− k1C1

and completed with two other equations: one that describes the mechanistic behaviour of

the polymer, that is a relation between stress and strain; another equation which represents

the evolution of the material molecular weight as drug concentration changes. One of the

contributions of this paper is a theoretical study of this system which leads to a stability

restriction with a sound physical meaning: If the Fickian diffusion dominates the non Fickian

one the mathematical model is stable. As the material where diffusion occurs is viewed as

opposing a barrier to diffusion the theoretical restriction is also a sound physical condition.

Delivering drugs to the vitreous chamber of the eye assumes a crucial role and is a challeng-

ing problem due to the presence of various physiological and anatomical barriers. Classical

ocular drug delivery systems for posterior segment diseases is systemic or topical.

However none of the these drug delivery systems are effective. In fact systemic delivery is

not effective because as the eye has a relatively small size the drug concentration carried by the

blood stream is not enough which means that it does not reach the therapeutic window of the

drug; with topical delivery just a small fraction of drug reaches the posterior segment of the

eye due to physiological barriers. These classical drug delivery systems are being replaced by

direct intravitreal injection or intravitreal implants of drug. As vitreal injections imply several

treatments and can cause side effects intravitreal implants have deserved much attention these

last years. These polymeric matrices are being used in different medical delivery systems, for
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Figure 1: Anatomy of the human eye (left) and an ocular implant (right)

(http://en.wikipedia.org/wiki/ and http://marcelohosoume.blogspot.pt/2010/10/iluvien-

and-future-of-ophthalmic-drug.html).

example in ocular diseases. In fact there are a number of severe diseases that can affect the

vitreous and the retina, which must be treated over long periods of time and where drugs

must be maintained in their therapeutic windows (Figure 1). In this paper we will propose a

model to simulate intravitreal delivery of drug through viscoelastic biodegradable implants.

The model consists of coupled systems of partial differential equations linked by interface

conditions. The chemical structure, the viscoelastic properties and the diffusion are taken

into account to simulate the evolution of released drug.

Many drugs have a narrow concentration window of effectiveness and may be toxic at

higher concentration ([14]), so the ability to predict local drug concentrations is necessary for

proper designing of the delivery system. Mathematical models which couple drug delivery

from a device with the transport in the living system play a central role because not only

they can be used to explain the kinetics of the delivery by describing the interplay of the

different phenomena as they quantify the effect of physical and physiological parameters in

the delivery trend. Several authors have studied mathematical models to describe transport

and elimination of drugs in the vitreous ([14, 15, 16, 17, 18, 19]). However at the best of

our knowledge the in vivo delivery of drug from a biodegradable implant has not yet been

addressed. Preliminary results were obtained in [20] and [21]. Another aspect we believe is

new in our approach is the fact that the theoretical results established are used to obtain

physically sound numerical simulations.

The paper is organized as follows. In Section 2 the mathematical model of the diffusion

through a viscoelastic biodegradable materials is presented. The qualitative behaviour of the

released mass is studied through an a priori energy estimate. In Section 3 the medical appli-

cation is addressed. The geometry of the vitreous chamber of the eye and of the intravitreal

implant are described and the mathematical coupled model is presented. Numerical simula-

tions that illustrate the kinetics of the drug release and show the effect of degradation and
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viscoelasticity are exhibited in Section 4. Finally in Section 5 some conclusions are addressed.

2 Diffusion in a material

In this section the transport of a drug through a biodegradable viscoelastic material is studied.

The phenomenon is described by a set of three coupled partial differential equations that take

into account passive diffusion, stress driven diffusion and the degradation of the material.

The stability properties of the system using the total mass are analysed.

2.1 Mathematical model

We consider a biodegradable viscoelastic material filling a bounded domain Ω1 ⊂ R
2 with

boundary ∂Ω1. A certain amount of drug is dispersed in the polymer. We suppose that when

in contact with a penetrant solvent an instantaneous swelling occurs. The drug then dissolves

in the solvent and its diffusion through Ω1 is described by















































∂C1

∂t
= ∇.(D1(M)∇C1) +∇.(Dv∇σ)− k1C1 in Ω1 × (0, T ],

∂σ

∂t
+

E

µ
σ = EC1 in Ω1 × (0, T ],

∂M

∂t
+ β1M = β2C1 in Ω1 × (0, T ].

(3)

In (3) C1 represents the unknown diffusive concentration of the drug inside the material, for

example a polymer, σ is the unknown stress response to the strain exerted by the dissolved

drug, and M is the unknown molecular weight of the polymer. The viscoelastic influence in

the drug transport is represented by the term ∇.(Dv∇σ) where Dv is a viscoelastic tensor

which physical dimension is time. The term −k1C1 describes the degradation of drug inside

the polymer and the positive constant k1 is the degradation rate. The viscoelastic term

states that the polymer acts as a barrier to the diffusion of the drug: as the drug strains the

polymer it reacts with a stress of opposite sign. To account for the increasing permeability

of the system upon polymer degradation, the diffusion coefficient is defined by ([12])

D1(M) = D0e
M0

M+M0 , (4)

where D0 is the diffusion coefficient of the drug in the non hydrolyzed polymer and M0 is

the initial molecular weight of the polymeric matrix. The second equation in (3) defines the

viscoelastic behaviour of the polymer by Maxwell fluid model ([1, 2, 7, 8, 10])

∂σ

∂t
+

E

µ
σ = E

∂ǫ

∂t
, (5)
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where E represents the Young modulus of the material, µ is its viscosity and ǫ is the strain

produced by the drug molecules. Assuming that the polymer acts as a barrier to the release

of the drug, σ and ǫ are of opposite sign, and a minus sign should be considered in the right

hand side of (5). To eliminate the strain ǫ in (5) we assume

ǫ(x, t) = k

∫ t

0
C1(x, s)ds, (6)

where k is a dimensional positive constant ([3]). Replacing (6) in (5) and considering the

minus sign in the right hand side of (5) we obtain the second equation in (3) where E = −Ek.

The viscoelastic tensor Dv has a precise physical meaning and for one dimensional model it

can be proved that Dv > 0 ([22]). In [9, 23, 24] the authors considered Dv < 0 and the stress

σ and the strain ǫ with the same sign. Even if these arguments are not physically correct from

a practical point of view the sign of the viscoelastic term is the same as in our approach. In

the third equation of (3) β1 and β2 are positive constants that characterize the degradation

properties of the material.

System (3) is completed with initial conditions































C1(x, 0) = C0, x ∈ Ω1,

σ(x, 0) = σ0, x ∈ Ω1,

M(x, 0) = M0, x ∈ Ω1,

(7)

and boundary conditions































C1(x, 0) = 0 on ∂Ω1 × (0, T ],

σ(x, t) = σ0e
−E

µ
t
on ∂Ω1 × (0, T ],

M(x, t) = M0e
−β1t on ∂Ω1 × (0, T ],

(8)

where ∂Ω1 denotes the boundary of Ω1. The first boundary condition means that the drug is

immediately removed as it attains the boundary. The boundary conditions for σ and M have

been obtained from the solutions of the second and the third equations of (3), respectively.

2.2 Qualitative behaviour of solution

In this section we study the qualitative behaviour of the energy functional

Q(t) = ‖C1(t)‖
2, t ≥ 0, (9)

where ‖.‖ represents the usual norm in L2(Ω1) which is induced by the corresponding inner

product (., .).
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In what follows we drop the argument x and we assume that D1 and Dv are diagonal

matrices where the nonzero entries of D1, (D1)ii, i = 1, 2, satisfy (D1)ii ≥ D0 > 0, i = 1, 2,

and the nonzero entries of Dv, (Dv)ii, i = 1, 2, satisfy |(Dv)ii| ≤ Dv. From the second

equation of (3) we easily get

σ(t) = E

∫ t

0
e
−E

µ
(t−s)

C1(s)ds+ σ(0)e
−E

µ
t
, t ≥ 0,

with E = −Ek and replacing in the first equation of (3) we obtain for C1

∂C1

∂t
= ∇.(D1(M)∇C1)− Ek

∫ t

0
e
−E

µ
(t−s)

∇.(Dv∇C1(s))ds − k1C1 in Ω1 × (0, T ]. (10)

As
1

2

dQ

dt
= (C1(t),

∂C1

∂t
(t)) we deduce, from (10), after multiplying scalarly by C1(t) and

using the first equation of (8) the following

1

2

dQ

dt
= −

∥

∥

∥

∥

√

D1(M)∇C1(t)

∥

∥

∥

∥

2

+

((

Ek

∫ t

0
e
−E

µ
(t−s)

Dv∇C1(s)ds,∇C1(t)

))

− k1‖C1(t)‖
2, (11)

where
√

D1(M) is defined considering the square root of the entrance of D1(M). In (11)

((., .)) denotes inner product of (L2(Ω1))
2 and ||.|| represents the associated norm. From (11)

and using Cauchy-Schwarz inequality, we have

1

2

dQ

dt
(t) +D0

∥

∥

∥

∥

∇C1(t)

∥

∥

∥

∥

2

≤
Ek

4δ2

∥

∥

∥

∥

∫ t

0
e−

E
µ
(t−s)∇C1(s)ds

∥

∥

∥

∥

2

+D
2
vEkδ2

∥

∥

∥

∥

∇C1(t)

∥

∥

∥

∥

2

− k1Q(t),

where δ 6= 0. We note that in the application of Cauchy- Schwarz inequality the factors are

defined as to be dimensionally sound. From the previous inequality we deduce

1

2

dQ

dt
(t) + k1Q(t) + (D0 −D

2
vEkδ2)

∥

∥

∥

∥

∇C1(t)

∥

∥

∥

∥

2

≤
Ek

4δ2

∫ t

0
e
−2E

µ
(t−s)

ds

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds,

and then

Q(t) + 2k1

∫ t

0
Q(s)ds+ 2(D0 −D

2
vEkδ2)

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds

≤
Ek

4δ2 E
µ

∫ t

0

∫ s

0

∥

∥

∥

∥

∇C1(µ)

∥

∥

∥

∥

2

dµds+Q(0).

If δ2 is such that

D0 −D
2
vEkδ2 > 0

we obtain

Q(t) +

∫ t

0
Q(s)ds+

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds
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≤
kµ

min{1, 2k1, 2(D0 −D
2
vEkδ2)}4δ2

∫ t

0

∫ s

0

∥

∥

∥

∥

∇C1(µ)

∥

∥

∥

∥

2

dµds

+
1

min{1, 2k1, 2(D0 −D
2
vEkδ2)}

Q(0).

Finally Gronwall’s Lemma leads to

Q(t) +

∫ t

0
Q(s)ds+

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds

≤
1

min{1, 2k1, 2(D0 −D
2
vEkδ2)}

Q(0)e
kµ

min{1,2k1,2(D0−D
2
vEkδ2)}4δ2

t
. (12)

This last inequality establishes that Q(t),

∫ t

0
Q(s)ds and

∫ t

0

∥

∥∇C1(s)
∥

∥

2
ds are bounded for

bounded intervals of time. Inequality (12) can be improved by eliminating the exponential

factor in its right hand side. Following [25] we multiply (10) by eγt, where γ is a positive

constant, obtaining

eγt
∂C1

∂t
= ∇.(D1(M)∇C1)e

γt − Ek

∫ t

0
e
−E

µ
(t−s)

eγt∇.(Dv∇C1(s))ds − k1e
γtC1. (13)

Adding γeγtC1(t) to both sides of (13) we have

∂C1,γ

∂t
= ∇.(D1(M)∇C1,γ)− Ek

∫ t

0
e(γ−

E
µ
)(t−s)∇.(Dv∇C1,γ(s))ds + γC1,γ(t)− k1C1,γ(t),(14)

where C1,γ(t) = eγtC1(t). The last equation leads to

(

dC1,γ

dt
(t), C1,γ(t)

)

+ (D1(M)∇C1,γ(t),∇C1,γ(t))

= Ek

((
∫ t

0
e(γ−

E
µ
)(t−s)Dv∇C1,γ(s)ds,∇C1,γ(t)

))

+ (γ − k1)(C1,γ(t), C1,γ(t)).

Using the Cauchy-Schwarz inequality, the first equation of (8) and the notation Qγ(t) =

‖C1,γ(t)‖
2 , we easily deduce

d

dt
Qγ(t) + 2k1Qγ(t)− 2γQγ(t) + 2D0

∥

∥

∥

∥

∇C1,γ(t)

∥

∥

∥

∥

2

≤ 2DvEk

∫ t

0
e
(γ−E

µ
)(t−s)

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

∥

∥

∥

∥

∇C1,γ(t)

∥

∥

∥

∥

ds

≤ 2δ2D
2
vEk

∥

∥

∥

∥

∇C1,γ(t)

∥

∥

∥

∥

2

+
βγEk

2δ2

∫ t

0
e
(γ−E

µ
)(t−s)

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds,
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for γ such that γ − E
µ
< 0 and where βγ is defined by

∫ t

0
e
(γ−E

µ
)(t−s)

ds <
1

E
µ
− γ

= βγ . (15)

Since

∥

∥

∥

∥

C1,γ

∥

∥

∥

∥

≤ KΩ

∥

∥

∥

∥

∇C1,γ

∥

∥

∥

∥

, where KΩ represents the Poincaré’s constant, we have

Qγ(t) + 2k1

∫ t

0
Qγ(s)ds + (2D0 − 2γK2

Ω − 2δ2D
2
vEk)

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds

≤ Q(0) +
βγEk

2δ2

∫ t

0

∫ η

0
e
(γ−E

µ
)(η−s)

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

dsdη. (16)

Changing the order of integration in the double integral in the right hand side of (16) we have

Qγ(t) + 2k1

∫ t

0
Qγ(s)ds + (2D0 − 2γK2

Ω − 2δ2D
2
vEk)

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds

≤ Q(0) +
βγEk

2δ2

∫ t

0

∫ t

s

e(γ−
E
µ
)(η−s)dη

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds. (17)

Computing the interior integral in the right hand side of (17) and considering (15) we obtain

Qγ(t) + 2k1

∫ t

0
Qγ(s)ds + (2D0 − 2γK2

Ω − 2δ2D
2
vEk)

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds

≤ Q(0) +
β2
γEk

2δ2

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds. (18)

As Qγ(t) = e2γtQ(t) we establish

Q(t) + 2k1

∫ t

0
e−2γ(t−s)Q(s)ds

+

(

2D0 − 2γK2
Ω − 2δ2D

2
vEk −

Ek

2δ2(E
µ
− γ)2

)

∫ t

0
e−2γ(t−s)

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds ≤ e−2γtQ(0).

We now look for γ such that

2D0 − 2γK2
Ω − 2δ2D

2
vEk −

Ek

2δ2(E
µ
− γ)2

> 0,

with
E

µ
− γ > 0.

The parameter δ is arbitrary so we select δ = 1. The function f defined by

f(γ) = 2D0 − 2γK2
Ω − 2D

2
vEk −

Ek

2(E
µ
− γ)2
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is a continuous function for γ ∈ [0, E
µ
[. We have

f(0) = 2D0 − 2D
2
vEk −

µ2k

2E

and lim
γ→E

µ

f(γ) < 0. If we impose

D0 −D
2
vEk −

µ2k

4E
> 0, (19)

the non linear equation

f(γ) = 0

has a positive root in ]0, E
µ
[.

We have then proved the following result for the energy functional defined in (9).

Theorem 2.1. If D0, Dv, E, k and µ are such that

D0 −D
2
vEk −

µ2k

4E
> 0 (20)

then ∃γ ∈]0, E
µ
[ such that

Q(t) +

∫ t

0
e−2γ(t−s)Q(s)ds +

∫ t

0
e−2γ(t−s)

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds ≤ Ce−2γtQ(0), t ≥ 0, (21)

where

C =
1

min{1, 2k1, 2D0 − 2γK2
Ω − 2D

2
vEk − Ek

2(E
µ
−γ)2

}
.

We note that the restriction on the parameters imposed in Theorem 2.1 have a physical

meaning. It establishes that the Fickian contribution dominates the non Fickian one, which

is a physically sound restriction. In fact if we make a dimensional analysis of (20) for 1D case

we conclude that all the terms are consistent with dimension L2

T
, where L2 stands for square

length and T for time.

To simulate in vivo the drug release, the polymeric matrix is coupled with a living system.

In this case the Dirichlet boundary conditions (8) should be replaced by a Robin boundary

condition of type

J.η = AcC1, (22)

where J stands for the flux, η is the exterior unit outward normal to ∂Ω1 and Ac is a positive

constant. The problem to be solved is then the third equation of system (3) and the equation

(10) coupled with initial condition (7) and boundary condition in ∂Ω1

(

−D1(M)∇C1(t) +DvEk

∫ t

0
e−

E
µ
(t−s)∇C1(s)ds

)

.η = AcC1(t). (23)
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The same arguments used in the proof of Theorem 2.1 still hold. In fact equation (10) is

of form
∂C1

∂t
(t) = −∇.J(t)− k1C1(t)

and multiplying scalarly by C1 we have

1

2

dQ

dt
(t) = −

(

J.η, C1

)

∂Ω1

+
(

J,∇C1

)

− k1

∥

∥

∥
C1

∥

∥

∥

2
,

where
(

J.η, C1

)

∂Ω1

=

∫

∂Ω1

J.ηC1(x, t)dx.

From (22) and (23) we obtain, instead of (11), the inequality

1

2

dQ

dt
(t) ≤ (J(t),∇C1(t))− k1‖C1(t)‖

2,

and estimate (12) then follows. To eliminate the exponential factor we used the same argu-

ments as in the proof of Theorem 2.1. In this case the existence of γ ∈]0, E
µ
[ such that (21)

holds with

C =
1

min{1, 2(k1 − γ), 2(D0 −D
2
vEk − Ek

4(E
µ
−γ)2

)}
,

is guaranteed provided (20) holds and E
µ
< k1.

3 A medical application

In this section we present a medical application of a biodegradable viscoelastic drug eluting

implant. As described in Section 1 this type of implant is used for instance in the vitreous

chamber of the eye to release drug to the retina. The model presented here describes in vivo

drug delivery as it couples system (3) with the kinetics of drug in the vitreous chamber of the

eye.

3.1 Geometry

The geometrical model of the human eye adopted in the present study is shown in Figure 2

and is based on physiological dimensions ([15]).

The vitreous chamber Ω2 is mainly composed by vitreous humor and it occupies about

two-third of the eye. The lens is located behind the iris and is modeled here as an ellipsoid.

The hyaloid membrane and the lens separate the anterior chamber and the posterior chamber

of the eye from the vitreous chamber. The retina forms the boundary of the vitreous on

the posterior surface and is modeled as a spherical surface with a radius of 9.1 mm. The

intravitreal implant Ω1 is placed into the vitreous, as shown in Figure 2, and it is geometrically

represented by a cylinder with radius 0.023 mm and height 0.6 mm.
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∂Ω1

Figure 2: Geometry of the vitreous chamber of the human eye (Ω2), hyaloid membrane

(∂Ω2, ∂Ω3), lens (∂Ω4), retina (∂Ω5), ocular implant (Ω1) and its boundary (∂Ω1).

3.2 Mathematical model

The implant Ω1 containing dispersed drug is placed into the vitreous, near the retina (Figure

2). The drug is released in a controlled manner through the vitreous which is a porous media,

and its target is the retina affected by an inflammatory process.

The diffusion-reaction equation that describes the drug dynamics in the polymeric implant

is represented by system (3), coupled with initial conditions (7). We couple with this system

the drug dynamics in the vitreous, where the diffusion of drug occurs from the polymer

towards the vitreous and the retina. Mass transport in the vitreous is described by diffusion

and convection. Convection is due to the steady permeation of the aqueous humor through the

vitreous, and diffusion is driven by the concentration gradient ([17]). To simulate the dynamics

of the drug in the vitreous we use a diffusion reaction equation, where the permeation velocity

of the aqueous humor is given by Darcy’s law ([14, 15, 18, 19, 26, 27]), as follows:

∂C2

∂t
+∇.(C2v)−∇.(D2∇C2) = 0 in Ω2 × (0, T ], (24)

and










v = −
K

µ1
∇p in Ω2 × (0, T ]

∇.v = 0 in Ω2 × (0, T ]

. (25)

In equation (24) C2 represents the concentration of the drug in the vitreous, D2 is the

diffusion coefficient of the drug in the vitreous and v is the velocity of aqueous humor per-

meation given by (25). In this last system K is the permeability of the vitreous and µ1 is
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the viscosity of the permeating aqueous humour ([17]). The term
K

µ1
is referred to as the

hydraulic conductivity. Equations (3), (24) and (25) are completed with initial conditions

represented by























C1(x, 0) = C0 in Ω1,

σ(x, 0) = σ0 in Ω1,

M(x, 0) = M0 in Ω1,

C2(x, 0) = 0 in Ω2.

(26)

Boundary conditions of different types will be used in the model:

- Boundary conditions for the pressure:

p = 2000 on ∂Ω2 ∪ ∂Ω3 × (0, T ],

p = 1200 on ∂Ω5 × (0, T ].

We note that ∂Ω2 ∪ ∂Ω3 represents the hyaloid membrane and ∂Ω5 represents the

retina. The two previous values of the pressure that we considered correspond to the

intra ocular pressure in the anterior chamber near the lens and the pressure of the blood

system, respectively.

- Boundary conditions for the drug concentration:

C2 = 0 on ∂Ω5 × (0, T ],

(−D2∇C2 + vC2).η = 0 on ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 × (0, T ].

- Wall conditions for the velocity:

v = 0

on the boundary ∂Ω4 of the vitreous chamber Ω2 and on the boundary of the implant

∂Ω1 (Figure 2).

- Interface boundary conditions for the flux of drug concentration:

(−D1(M)∇C1 −Dv∇σ).η = Ac(C1 − C2) on ∂Ω1 × (0, T ],

where Ac is the permeability constant and η is the unit exterior normal to ∂Ω1.

12



3.3 Numerical simulations

In this section we illustrate the behaviour of drug concentration in the implant and in the

vitreous. In the case the values of the constants are not available in the literature, we use

values that make physical sense but that may not correspond to the exact characteristics

of the intravitreous implants in the market. For this reason the present study has for the

moment mainly a qualitative character.

The numerical simulations have been obtained with C0 = 1.7887× 10−6, M0 = 0.5× 10−6

and σ0 = 0.5×10−6, that represent the initial drug concentration, initial stress and the initial

molecular weight in the implant, respectively. The units used for concentration aremol/mm3.

For the other variables the units are selected such that the equations are dimensionally correct.

The diffusion coefficient of the drug in the implant is defined considering D0 = 1×10−11I2

in (4), where I2 is the identity matrix and its diffusion coefficient in the vitreous is defined

by D2 = 1 × 10−8I2. We recall that the diffusion coefficient in the polymer will increase as

the molecular weight decreases that is as degradation occurs. The following values for the

parameters have been considered:

k1 = 1× 10−10, β1 = 5× 10−4, β2 = 1× 10−9, µ = 2× 10−4, E = 1× 10−7, k = 1,

and

Ac = 5× 10−5, Dv = 1× 10−11I2, µ1 = 0.7, ρ = 970, K = 0.7 × 8.4× 10−8.

The units of the previous parameters are such that the equations are dimensionally correct

when concentrations are considered in mol/mm3 as previously indicated. We observe that

the parameters which are used in the numerical simulations are in agreement with condition

(20) imposed in Theorem 2.1.

In Figure 3 the drug concentration at time t = 5min and t = 1h are presented. It can

be observed that as time evolves the drug is released and less drug concentration is inside

the implant. We remark that the maximum concentration for t = 5min is higher than the

maximum concentration at t = 1h.

The pressure in the vitreous chamber is showed in Figure 4. The evolution of the pressure

from the top (p = 2000Pa) to the boundary of the vitreous chamber that is in contact with

the retina (p = 1200Pa), can be observed.

In Figure 5 the drug concentration in the vitreous chamber is plotted for t = 5min and

t = 1h.

During the first instants of the delivery process, no drug is observed in the vitreous,

except near the ocular implant, and as time increases more drug concentration is available to

diffuse. For a better understanding of the qualitative behaviour of the drug concentration in

the vitreous chamber, we present in Figure 6, the plot of drug concentration vs time inside

the implant and the vitreous chamber. It can be observed that the drug concentration in the
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Figure 3: Drug concentration in the implant at 5min (left) and 1h (right).

Figure 4: Steady pressure in the vitreous chamber.

Figure 5: Drug concentration in the vitreous chamber at 5min (left) and 1h (right).
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vitreous chamber increases until it attains a maximum value at t = 30min; for t > 30min

the drug concentration decreases until no drug concentration is present in the ocular implant.

This qualitative behaviour is in agreement with medical data, establishing that for a duration

of T units of time the maximum concentration of drug is attained for T , where T
4 < T < T

3 .

Figure 6: Drug concentration in the implant (left) and in the vitreous chamber (right) during

two hours.

Figure 7: Drug concentration in the implant at t = 2h - influence of degradation rate β1 =

5× 10−4 (down line) and β1 = 1× 10−5 (top line).

In Figure 7 the influence of the degradation rate is illustrated: a smaller value of β1 leads

to a slower degradation process and consequently more concentration is observed inside the

polymeric implant.

In Figure 8 the influence of Young’s modulus is illustrated. As expected the increase of

Young’s modulus, E, delays the drug release and consequently more drug concentration is

observed inside the polymer. In fact as crosslinking density is proportional to E, the large

is this parameter, the more stiff is the material and a more significant barrier difficults the

release of drug.

In Figure 9 the influence of diffusion D0 on the mass of drug delivered in the vitreous is
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Figure 8: Drug concentration at a point of the boundary of the implant around t = 110min

- influence of E, E = 1× 10−7 (top line) and E = 1× 10−9 (bottom line).

shown. It is observed that as D0 increases the mass increases because the diffusion process

becomes faster.

Figure 9: Influence of parameters D0 on the mass of drug in the vitreous.

In Figure 10 we observe that increasing the diffusion coefficient of drug in the vitreous,

the mass of drug is also increasing as expected.

4 Conclusion

A coupled model to simulate in vivo drug delivery from an intravitreal viscoelastic biodegrad-

able implant has been developed. The whole process is described by a set of partial differential

equations that take into account passive diffusion, convection resulting from the permeation

of aqueous humor, stress driven diffusion and the degradation of the polymer. At the best of

our knowledge the dynamics of diffusion has not been described so far in the literature con-

sidering the simultaneous interplay between mechanical, physical and chemical effects. The
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Figure 10: Influence of parameter D2 in the mass of drug released in the vitreous.

numerical simulations show qualitative agreement with the physical expected behavior. The

model clarifies the large influence of the degradation parameter in sustained drug delivery.

The viscoelastic properties of the polymeric implant are also shown to be an effective control

mechanism to delay or to speed up the release of drug.

Mathematical modeling is a unique tool to explain transport mechanisms, and to help in

implant design, avoiding expensive and extensive experimentation. In future work physical

values for all the parameters of the model should be retrieved. Also more realistic mechanical

models will be considered and the heterogeneous structure of the vitreous, that is character-

istic of elderly patients, should be taken into account.

Acknowledgements

This work was partially supported by the Centro de Matemática da Universidade de Coimbra
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