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Abstract

A mathematical model to simulate drug delivery from a vicoelastic erodible matrix
is presented in this paper. The drug is initially distributed in the matrix which is
in contact with water. The entrance of water in the material changes the molecular
weight and bulk erosion can be developed depending on how fast is this entrance and
how fast degradation occurs. The viscoelastic properties of the matrix also change in
the presence of water as the molecular weight changes. The model is represented by
a system of quasi linear partial differential equations that take into account different
phenomena: the uptake of water, the decreasing of the molecular weight, the viscolestic
behaviour, the dissolution of the solid drug and the delivery of the dissolved drug.
Numerical simulations illustrating the behaviour of the model are included.

Key words: dissolution, diffusion, molecular weight, bulk erosion, vicoelastic poly-
mers, IMEX method

1 Mathematical model

We consider a biodegradable viscoelastic polymeric matrix, Ω ⊆ R2, with boundary ∂Ω
and containing a limited amount of drug. The matrix enters in contact with water and
as the water diffuses into the matrix, a hydratation process, that modifies the viscoelastic
properties of the polymer, takes place. The molecular weight decreases and the drug starts
to dissolve.
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In [13] a system that describes the sorption of water, by a loaded erodible matrix and
the release of drug was proposed. However the viscoelastic properties of the matrix were not
considered. In this paper we present a general model, which generalizes the model in [13],
by considering the viscoelastic behaviour of the polymer (see for instance [1],[2], [6],[10],
[14], [16]).

We consider a system of partial differential equations (PDE’s) that describe the whole
process: the entrance of water into the polymer and its consumption in the hydrolysis
process; the decreasing of the molecular weight; the evolution of the stress and strain; the
dissolution and the diffusion of the dissolved drug. The system reads

∂CW
∂t

= ∇ · (DW∇CW ) +∇ · (Dv∇σ)− kCWM in Ω× (0, T ],

∂M

∂t
= −kCWM in Ω× (0, T ],

∂σ

∂t
+
E(M)

µ(M)
σ = −E(M)

∂CW
∂t

in Ω× (0, T ],

∂CS
∂t

= −kdisCSnCAnCWn in Ω× (0, T ],

∂CA
∂t

= ∇ · (D(M)∇CA) + kdisCSnCAnCWn in Ω× (0, T ].

(1)

In (1) CW , CS and CA represent the concentration of water, solid drug and dissolved drug
in the polymeric matrix, respectively, M is the molecular weight of the polymer and σ is
the stress response to the strain exerted by the water molecules.

The first diffusion-reaction equation of (1) describes the diffusion of water into the
matrix and its consumption in the hydrolysis. In this equation DW represents the diffusion
tensor of water in the polymeric matrix. We consider an isotropic medium where the
diffusion tensors are diagonal with equal diagonal elements. For example, DW = DW I,
where I is the 2 × 2 identity matrix. The viscoelastic opposition to the water entrance is
represented by ∇· (Dv∇σ) where Dv is a viscoelastic diffusion tensor. This term states that
the polymer acts as a barrier to the diffusion of water into the polymeric matrix. The term
−kCWM represents the consumption of water in the hydrolysis of the polymer([7]).

Since the water diffuses into the polymeric matrix the molecules of water react with the
polymer and the bounds between the polymeric chains are broken leading to a decrease in
the molecular weight of the matrix. This process is described by the second equation of (1)
([13]).

We assume that the viscoelastic behaviour of the polymer can be modelled by Maxwell
fluid model

∂σ

∂t
+
E

µ
σ = E

∂ε

∂t
, (2)

where E represents the Young modulus of the material, µ is its viscosity and ε is the strain
produced by the water molecules. We assume that the strain and the concentration of water
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are proportional, that is, there k1 > 0 such that ε = k1CW . As the polymer acts as a barrier
to the entrance of the water, then σ and ε are of opposite sign, and a minus sign should be
considered in the right hand side of (2) ([7]).

Based on the results presented for instance in [1], [2], [6], [10], [14] and [16], we assume
that the Young modulus and the viscosity depend on the molecular weight. In fact the
Young modulus varies significantly in a biodegradable polymeric matrix due to the het-
erogeneous nature of the hydrolysis reaction that leads to the cleavages of the polymeric
chains. As the degradation processes evolves, the Young modulus decreases ([12]). More-
over a functional relation between the viscosity and the molecular weight represented by
Mark-Houwink equation ([11]) is applied. The expressions used to represent the behaviours
of E(M) and µ((M)) are E(M) = E0M

α and µ(M) = µ0M
β where E0, µ0, α and β are

constant ([11, 12]).
The evolution in time of the solid drug is described by the fourth equation of (1)

where kdis is the dissolution rate, CSn is the normalized concentration of solid drug in the
polymeric matrix, CAn is the difference between the dissolved drug concentration and its
maximum solubility (CAmx), normalized by CAmx, CWn is the normalized concentration of

water (
CW
CWout

). In this last expression CWout is the concentration of water outside of the

polymeric matrix. The evolution of the concentration of dissolved drug in the matrix is
defined by the last equation of (1) where Fick’s law and the dissolution source were taken
into account.

As the degradation occurs the molecular weight decreases and the permeability of the
polymer increases. This leads to an increasing of the diffusion coefficient ([15]) that can be
represented by

D(M) = DAe
k̄
M0−M

M0 ,

where DA is the diffusion coefficient of the drug in the non hydrolyzed polymer, M0 is its
initial molecular weight and k̄ is a positive constant.

System (1) is completed with the initial conditions

CW (0) = 0 in Ω,

σ(0) = σ0 in Ω,

M(0) = M0 in Ω,

CS(0) = CS0 in Ω,

CA(0) = 0 in Ω,

(3)

where σ0 represents the initial stress of the polymer and CS0 is the initial concentration of
solid drug in the polymeric matrix.

Degradation of the polymeric matrix can be one of the two types: surface and bulk.
Surface degradation occurs because degradation is faster than the entrance of water in
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the system. In this case the cleavage of polymeric chains occurs mainly in the outermost
polymeric layers. Bulk degradation occurs when the degradation is slower than the water
uptake. The entire system is rapidly hydrated and polymeric chains are cleaved through all
the polymeric structure ([15]).

In what follows we assume that bulk degradation occurs and that the physical domain
maintained during all diffusion process. The entrance of water occurs due to the difference
of concentrations in the polymer and in the water. Then the system (1) and the initial
conditions are coupled with the following boundary condition{

J · η = Ac(CW − CWout) on ∂Ω× (0, T ],

CA = 0 on ∂Ω× (0, T ],
(4)

where J represents the flux defined by J = −DW∇CW − Dv∇σ, η is the unit outward
normal to ∂Ω, Ac is the permeability constant and CWout denotes the water concentration
out of the polymeric matrix.

The aim of this paper is to present a numerical method to solve (1), (3) and (4) and
to study the qualitative behaviour of the numerical solution. In Section 2 Implicit-Explicit
method (IMEX) is introduced and its convergence is numerically studied. The qualitative
behavior of the solution is analyses in Section 3. Finally in Section 4 we present some
conclusions.

2 Numerical method

In this section we introduce a finite difference method to solve (1), (3), (4). Let Ω be the
square (0, L) × (0, L), where L represents the thickness of the polymer. We fix h > 0 and
we define in Ω the grid

Ωh =
{

(xi, yj), i, j = 0, . . . , N, x0, y0 = 0, xN , yN = L,

xi − xi−1 = h, yj − yj−1 = h, i, j = 1, . . . , N
}
.

By Ωh and ∂Ωh we represent the mesh nodes of Ωh that are in Ω and on the boundary
∂Ω, respectively. Let uh and vh be grid functions defined in Ωh. To discretize the spatial
derivatives we introduce the second order finite difference operator

D∗
x

(
a(vh)D−xuh

)
(xi, yj) =

1

h

(
a(Ah,xvh(xi+1, yj))D−xuh(xi+1, yj)−a(Ah,xvh(xi, yj))D−xuh(xi, yj)

)
,

where D−x denotes the backward finite difference operator with respect to the x-variable
and Ah,x is the following average operator

Ah,xvh(x`, yj) =
1

2

(
vh(x`, yj) + vh(x`−1, yj)

)
.
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The finite difference operator D∗
y

(
b(vh)D−yuh

)
(xi, yj) is defined analogously considering

the backward finite difference operator with respect to the y-variable, D−y, and the average
operator Ah,y. If B is a diagonal matrix with entries a and b we use the following notation

∇∗
h.
(
B(vh)∇huh

)
= D∗

x

(
a(vh)D−xuh

)
+D∗

y

(
b(vh)D−yuh

)
.

In [0, T ] we consider the following time grid{
tn, n = 0, . . . ,M∆t, t0 = 0, tM∆t

= T, tn − tn−1 = ∆t, n = 1, . . . ,M∆t

}
.

By D−t we denote the backward finite difference operator with respect to the variable t.
Let pnh(xi, yj) stands for an approximation of p(xi, yj , tn).

To solve numerically the initial boundary value problem (1), (3), (4) we consider the
IMEX method defined by

D−tC
n+1
W,h = ∇∗

h.
(
DW∇hCn+1

W,h

)
+∇∗

h.
(
Dv∇hσnh

)
− kCnW,hMn

h in Ωh

D−tM
n+1
h = −kCn+1

W,hM
n
h in Ωh

D−tσ
n+1
h +

E0(Mn+1
h )α

µ0(Mn+1
h )β

σnh = −E0(Mn+1
h )αD−tC

n+1
W,h in Ωh

D−tC
n+1
S,h = − kdis

CS0CAmxCWout
CnS,h(CAmx − CnA,h)Cn+1

W,h in Ωh

D−tC
n+1
A,h = ∇∗

h.
(
D(Mn+1

h )∇hCn+1
A,h

)
+

kdis
CS0CAmxCWout

Cn+1
S,h

(
CAmx − CnA,h

)
Cn+1
W,h in Ωh

(5)
for n = 0, . . . ,M∆t − 1, 

C0
W,h = 0 in Ωh

σ0
h = σ(0) in Ωh

M0
h = M(0) in Ωh

C0
S,h = CS(0) in Ωh

C0
A,h = 0 in Ωh

(6)

and 
Jn+1
h .η = Ac(C

n+1
W,h − CWout) on ∂Ωh

Cn+1
A,h = 0 on ∂Ωh,

(7)

where

Jn+1
h = −DWDηC

n+1
W,h −DvDησ

n
h ,
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and Dη is the boundary operator

Dηvh(xi, yj) =


−Dxvh(x0, yj), i = 0
D−xvh(xN , yj), i = N
−Dyvh(xi, y0), j = 0
D−yvh(xi, yN ), j = N

for (xi, yj) ∈ ∂Ωh.

3 Qualitative behaviour of the model

In this section we illustrate the influence of the parameters on the behaviour of the model.
The values of the parameters are present in Table 1 and some of them were obtained from
[13]. We start by analyzing numerically the convergence properties of the numerical scheme.

Parameter Value Parameter Value
DA 5.94× 10−2

Dv 2× 10−2

DW 4.61× 10−2

k 1× 10−2

σ0 5× 10−2

CAmx 2.184× 10−2

CS0 288.42× 10−2

β 0.7
∆t 1× 10−4

E0 1× 10−3

µ0 1× 10−1

kdis 4.6× 10−2

M0 8.3× 10−2

CWout 5.55× 10−1

Ac 1× 10−2

α 0.2
L 1
h 0.01

Table 1: Parameter values used for the simulation.

Table 2 contains the errors for CW and CA defined by

Error(C) = max
n=1,...,M∆t

max
Ωh

|Cnh − C
n
h|,

where C = CW , CA and C
n
h is a reference solution obtained with a fine grid defined by

∆t = 10−5 and h = 0.001.

h Error(CW ) Error(CA)

0.01 0.0048 5.1432× 10−8

0.005 0.0032 4.8043× 10−8

0.004 0.0029 4.4917× 10−8

0.002 0.0017 2.9373× 10−8

Table 2: Errors for different step-sizes in space.
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The results of Table 2 suggest the convergence of the IMEX method.

Let the mass of water and drug, inside the matrix, be defined by

Mi(t) =

∫
Ω
Ci(t)dxdy,

where i = W,A, for t ∈ [0, T ]. A numerical approximation for Mi(t) is computed with the
trapezoidal rule.
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Figure 1: Influence of Dv on the mass of the water.

In Figure 1 we plot the dependence on the viscoelastic diffusion coefficient Dv of the
mass of water. We observe that the polymer acts as a barrier to the entrance of water
into the polymer. In other words, the non Fickian flux −Dv∇σ decreases the Fickian flux,
−DW∇CW . According to this description an increase in Dv leads to a decrease of MW .

The influence of the Young modulus E on MW is presented in Figure 2 (left). near
t = 2. It is well known that the crosslink density of the polymer is proportional to the
Young modulus E. Consequently as this constant increases the resistance of the polymer
to the entrance of water also increases leading to a decreasing of the mass of water.

The influence of the polymer degradation rate, k, is presented in Figure 2 (right). As
expected, if the degradation rate increases, then the delivery rate of the dissolved drug also
increases.

The behaviour of the mass of dissolved drug is presented in Figure 3, for different
thickness of the polymer. We observe that the maximum value of the mass of dissolved
drug in thinner polymers is higher and less time is required to achieve this maximum.

In Figure 4 the mass of water inside the polymer, for different values of L, is plotted.
In the thinner polymer more time is required for the mass to reach the steady state. We
also observe that the value of the steady state in the polymer with L = 0.1 is 0.0555 while
in the polymer with L = 0.5 is 0.2769.
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Figure 2: Mass of water for different E’s (left); concentration of dissolved drug CA for
different k (right).
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Figure 3: Mass of dissolved drug inside the polymer with L = 0.1 (left) and L = 0.5 (right).
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Figure 4: Mass of water inside the polymer with L = 0.1 (left) and L = 0.5 (right).
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Figure 5: Concentration of water for different times.
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Figure 6: Concentration of solid drug for different times.
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Figure 5 illustrates the behavior of the concentration of water into the polymeric matrix
at different times. We observe that the concentration increases as time increases and the
behavior is homogeneous since the diffusion coefficient is constant.

The concentration of solid drug and dissolved drug, respectively, at different times are
shown in Figures 6 and 7. Te regions where the concentration of water is higher, correspond
to regions where the concentration of solid drug is lower. We also note that when the
concentration of solid drug decreases, the concentration of dissolved drug increases.
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Figure 7: Concentration of dissolved drug for different times.

4 Conclusions

In this paper we describe a process of sorption of a solvent by a biodegradable polymeric
matrix, when bulk erosion occurs, and the simultaneous release of a drug. Numerical results
that highlight the whole process are presented. These results are physically sound. The
influence of the crosslinking density of the polymer is shown to delay the drug release. In fact
a larger Young modulus exerts a larger opposition to the solvent penetration. Bulk erosion
which is governed by the degradation rate speeds up the release of drug. The dependence
on the dimensions of the matrix is also illustrated.

The theoretical study of the initial boundary value problem (1), (3) and (4) will be
object of a future work. We intent also to analyse the occurrence of surface degradation.
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