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Abstract

In this paper we consider a mathematical model to describe glioma evolution. The
model is established combining the viscoelastic behaviour of the brain tissue with a
mass conservation law that takes into account the effect of chemotherapy. For the non
Fickian model we establish an upper bound for the tumor mass that leads to a sufficient
condition to control tumor growth. Based on the theoretical upper bound, protocol for
chemotherapy treatment are proposed. Numerical experiments are included to illustrate
the behaviour of the model as well as the efficiency of the presented protocols.
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1 Introduction

Gliomas are the most common type of brain tumors. They begin in the glial cells and thus
diffuse and highly invade the brain tissue, often intermixing with normal brain tissue. Un-
fortunately, the prognosis for patients with gliomas is very poor. Median untreated survival
time for high grade gliomas ranges from 6 months to 1 year and even lower grade gliomas
can rarely be cured. Tumor cell transport and proliferation are the main contributors to
the malignant dissemination [21]. Theorists and experimentalists believe that inefficiency
of treatments results of the highly mobility capacity and high proliferation rates presented
by glioma cells.

Research activity in the mathematical modelling of tumor growth has been very fruit-
ful specially in solid tumors where the growth primarily comes from cellular proliferation.
Glioma’s growth is characterized by proliferation (as solid tumors) but also by invasion of
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the surrounding brain tissue. The recognition that tumor cells might spread outside the
grossly visible mass, invading locally and metastasizing distantly, and that some cells die
during the development process, lead to more complex mathematical concepts than those
used in the original simple models for solid tumors ([8], [11], [12], [14], [18], [20], [21]).

The most popular model used to measure the glioma growth is characterized by an
equation of type

∂c

∂t
= ∇(D∇c) + f(c) , in Ω× (0,+∞) . (1)

where Ω ⊂ R
n, n = 1, 2, 3, is the spatial domain of the glioma, c(x, t) denotes the tumor cell

density at location x and time t, f(c) denotes net proliferation of tumor cells, D represents
the diffusion tensor and ∇ defines the spatial gradient operator (see [18]). The proliferation
term f is assumed to be exponential, and so cell growth term is given by f(c) = ρ c, where
the net proliferation rate ρ is constant. Logistic and gompertzian growths are also possible
choices for f but found to be unnecessary in the time frames considered for gliomas [14].

Equation (1) is established combining the mass conservation law

∂c

∂t
+∇JF = f(c) , in Ω× (0,+∞), (2)

with the classical Fick’s law for the mass flux JF ,

JF = −D∇c . (3)

The partial differential equation (1) is of parabolic type and it is well known that if a
sudden change on the cell concentration takes place somewhere in the space, it will be felt
instantaneously everywhere. This means that Fickian approach gives rise to infinite speed
of propagation which is not a physical property. To avoid this limitation of Fickian models
an hyperbolic correction has been proposed in different contexts ([1], [2], [6], [7], [13], [16],
and the references cited therein).

In this paper we consider a mathematical model to describe glioma growth of non
Fickian type that takes into account the viscoelastic behaviour of the brain tissue ([10], [15]
and [17]). Following [2], [3], [4], [5] and [19], the viscoelastic behaviour of the brain tissue
is included in the definition of the mass flux considering the effect of the stress exerted by
the brain tissue on the tumor cells.

Chemotherapy is one of the most popular treatments used on gliomas. This therapy
involves the use of drugs to disrupt the cell cycle and to block proliferation. The success of
chemotherapy agents varies widely, depending on cell type and the type of drug being used.
The effectiveness of a particular drug is dependent on the concentration of drug reaching
the tumor, the duration of exposure and the sensitivity of the tumor cells to the drug.

Tracqui et al. [22] incorporated chemotherapy by introducing cell death as a loss term.
If G(t) defines the time profile of the chemotherapy treatments then, assuming a loss pro-
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portional to the amount of therapy at a given time, equation (1) is replaced by

∂c

∂t
= ∇(D∇c) + f(c)−G(t)c , in Ω× (0,+∞) , (4)

where

G(t) =

{

k, when chemotherapy is being administered
0, otherwise .

(5)

Here k describes the rate of cell death due to exposure to the drug. If f(c) = ρc, for a
tumor to decrease in size during chemotherapy, k must be larger than the growth rate ρ
of the cell population. The main question is to define k and the periods of chemotherapy
applications that lead to control the glioma mass.

The mathematical model that we consider is defined in a simple geometry. To apply
the modeling approach to specific patients, a more realistic look at the brain geometry and
structure was necessary. In [20] Swanson et al. introduced the complex geometry of the
brain and allowed diffusion to be a function of the spatial variable x to reflect the observation
that glioma cells exhibit higher motility in the white matter than in grey matter ([11]).

The paper is organized as follow. In Section 2 we present a class of non Fickian models
that describe the space and time evolution of glioma cells constructed combining the dif-
fusion process with the viscoelastic properties of the brain tissue. In Section 3 we study
the behaviour of the glioma mass and we establish sufficient conditions on the parameters
of the model that lead to control glioma growth. These sufficient conditions allow us to
define the standard bang-bang chemotherapy protocol. In Section 4 we present numerical
experiments that illustrate the effect of several protocols. Finally, in Section 5 we include
some conclusions.

2 A viscoelastic model

In this section we present the mathematical model that will be considered in this work.
Following [2], [3], [4], [5] and [19], if a diffusion process occurs in a medium that has a
viscoelastic behaviour then this behaviour should be included in the mass flux. This fact
means that the mass flux J admits the representation

J = JF + JnF , (6)

where the Fickian flux JF is given by (3) and the non Fickian mass flux JnF is defined by

JnF (t) = −Dv∇σ(t), (7)

where σ represents the stress exerted by the brain tissue on the tumor cells.
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We will assume that the viscoelastic behaviour of the brain tissue is described by

∂σ

∂t
+ βσ = α1ǫ+ α2

∂ǫ

∂t
, (8)

where ǫ stands for the strain. Equation (8) is based on a mechanistic model which is
represented by a spring (restorative force component) and a dashpot (damping component)
in parallel connected with a free spring. In (8) the viscoelastic characteristic time β is given
by β = E0+E1

µ1
, and α1 = E0E1

µ1
, α2 = E0, where E1 is the Young modulus of the spring

element, µ1 represents the viscosity and E0 stands for the Young modulus of the free spring
(see for instance [10], [15] and [17]).

Equation (8) leads to the following expression for σ

σ(t) =

∫ t

0
e−β(t−s)(α1ǫ(s) + α2

∂ǫ

∂t
(s))ds+ e−βtσ(0). (9)

If we assume that the strain ǫ satisfies ǫ = λc where λ is a positive constant (see [2], [3], [4]
and [5]) from (9) we obtain

σ(t) = λ

∫ t

0
e−β(t−s)(α1c(s) + α2

∂c

∂t
(s))ds+ e−βtσ(0). (10)

Mass conservation equation (2) with JF replaced by J , given by (6), leads to the integro-
differential equation

∂c

∂t
= ∇(D∗∇c) +

∫ t

0
ker(t− s)∇(D∗

v∇c(s)) + f(c) , in Ω× (0,+∞) , (11)

where D∗ = D + λα2Dv , D∗
v = λ(α1 + α2)Dv and ker(t) = e−βt .

To establish a mathematical model to describe the evolution in time and space of the
glioma cells some medical information is needed. According to [8] and [9] the following
assumptions are assumed in our model:

- glioma cells are of two phenotypes: proliferative (state 1) and migratory (state 2);

- in state 1 cells randomly move but there is no cell fission;

- in state 2 cells do not migrate and only proliferation takes place, with rate ρ;

- a cell of type 1 remains in state 1 during a time period and then switches to a cell of
type 2;

- β1 is the switching rate from state 1 to state 2;

- a cell of type 2 remains in state 2 during a time period and then switches to a cell of
type 1;
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- β2 is the switching rate from state 2 to state 1.

Let u(x, t) and v(x, t) be the densities of migratory and proliferation cells at position
x and time t, respectively. The dynamics of glioma cells in Ω× (0, T ] is then described by
(11), where we have dropped the asterisk in D∗ and D∗

v , completed with an equation that
describes the dynamic of proliferation cells











∂u

∂t
= ∇(D∇u) +

∫ t

0
ker(t− s)∇(Dv∇u(s))− β1u+ β2v ,

∂v

∂t
= ρv + β1u− β2v ,

(12)

where D and Dv denote square matrices of order n, β1 is the switching rate from migra-
tory phenotype to proliferative phenotype and β2 is the switching rate from proliferative
phenotype to migratory phenotype.

If chemotherapy is applied and G(t) defines the time profile of the chemotherapy treat-
ments then, assuming a loss proportional to the amount of therapy at a given time, system
(12) is replaced by











∂u

∂t
= ∇(D∇u) +

∫ t

0
e−β(t−s)∇(Dv∇u(s))− β1u+ β2v −G(t)u ,

∂v

∂t
= ρv + β1u− β2v −G(t)v ,

(13)

where G(t) is defined by (5).
System (13) is completed with initial conditions

u(0) = u0, v(0) = v0 in Ω, (14)

and boundary conditions
u(t) = v(t) = 0 on ∂Ω, (15)

where ∂Ω denotes the boundary for Ω. Condition (15) means that glioma is located inside
the brain and cancer cells do not attain pia mater.

3 Control of glioma growth

We will assume that D = [dij ] and Dv = [dv,ij ] are diagonal matrices such that

0 < αe ≤ dii, dv,ii ≤ αb in Ω, i = 1, . . . , n. (16)

Let M1(t) be the natural total mass of tumor cells in Ω,

M1(t) =

∫

Ω
(u(t) + v(t)) dΩ (17)
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and M2(t) be an artificial mass of tumor cells, defined by the accumulated energy

M2(t) = ‖u(t)‖2 + ‖v(t)‖2 , (18)

where ‖.‖ denotes the usual L2 norm which is induced by the usual L2 inner product (., .).
For mathematical reasons we will study the behaviour of the artificial mass of tumor cells
M2(t), hoping to control the natural total mass M1(t).

We have
1

2
M′

2(t) =

∫

Ω

(

∂u

∂t
(t)u(t) +

∂v

∂t
(t)v(t)

)

dΩ.

From (13) and taking into account the boundary conditions (15) we deduce

1

2
M′

2(t) = −‖
√
D∇u(t)‖2 −

(

∫ t

0
e−β(t−s)Dv∇u(s) ds,∇u(t)

)

+ (− β1 −G(t))‖u(t)‖2

+(ρ− β2 −G(t))‖v(t)‖2 + (β1 + β2)(u(t), v(t)),
(19)

where
√
D = [

√
dii ].

As
(

∫ t

0
e−β(t−s)Dv∇u(s) ds,∇u(t)

)

=
1

2

d

dt
‖
∫ t

0
e−β(t−s)

√

Dv∇u(s) ds‖2

+β ‖
∫ t

0
e−β(t−s)

√

Dv ∇u(s) ds‖2,

and
αe‖v‖2 ≤ C2

Ω‖
√
D∇v‖2, v ∈ H1

0 (Ω), (20)

then from (19) we get

d

dt

(

M2(t) + ‖
∫ t

0
e−β(t−s)

√

Dv∇u(s) ds‖2
)

≤ −2β‖
∫ t

0
e−β(t−s)

√

Dv∇u(s) ds‖2

+2max
{β2 − β1

2
− αe

C2
Ω

−G(t),
β1 − β2

2
+ ρ−G(t)

}

M2(t).

(21)

If
β1 − β2

2
+ ρ >

β2 − β1
2

− αe

C2
Ω

(22)

and

β2 − β1
2

− αe

C2
Ω

−G(t) > −β, (23)

then equation (21) leads to

M2(t) ≤ e2((
β1−β2

2
+ρ)t−

∫ t

0
G(s) ds)M2(0). (24)
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As
αe

C2
Ω

is a constant arising from mathematical analysis, conditions (22), (23) can be

replaced by
β1 − β2 + ρ > 0

and
β1 − β2 < 2(β −G(t)),

respectively. Avoiding such constant, these last conditions assume a biological meaning. To
conclude that the artificial massM2(t) is bounded byM2(0), we need to combine conditions
(22), (23) with

(β1 − β2
2

+ ρ
)

t <

∫ t

0
G(s) ds. (25)

Condition (25) means that density of proliferation cells at time t, that is density of cells
originated by cells of this type and cells that comes from state 1 and remains in state 2, is
less than the total amount of death cells until time t due to chemotherapy effect.

From Schwarz inequality we have

M1(t) ≤
√

|Ω| (‖u(t)‖ + ‖v(t)‖). (26)

If we assume that
√

|Ω| ≤ ‖u(t)‖ and
√

|Ω| ≤ ‖v(t)‖, then we conclude that the upper bound
(24) for M2(t) is also an upper bound for the mass M1(t). We note that inequality (26)
has pure mathematical character and it is not obviously that it has a medical translation.
However for the different simulations that we carried on, inequality (26) was verified and
consequently we can use condition (25) to control tumoral mass.

When chemotherapy is applied, condition (25) can be used to determine an effective
dosage that induces a rate k of cell death due to the exposure to the drug that allows to
control the total tumor mass, provided that condition (22) holds. Obviously the value of
k depends of the protocol of chemotherapy. The typical bang-bang protocol corresponds
to treatment which alternate maximum doses of chemotherapy with rest periods when no
drug is administered, as defined by (5) and illustrated in Figure 1.

t

k

Figure 1: Chemotherapy protocol.

4 Numerical simulation

In this section we present some numerical results illustrating the behaviour of the glioma
cells defined by (13). The numerical results were obtained using a standard numerical
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method defined combining the explicit Euler methods with second order centered difference
operators and a rectangular rule to discretize the spatial derivatives and the time integral,
respectively. We consider a homogeneous square domain Ω = [0, 15 cm]×[0, 15 cm] , diffusion
coefficients d11 = d22 = dv,11 = dv,22 = 0.025 cm2/day, growth rate ρ = 0.05 /day, switching
parameters β1 = 10−6/day and β2 = 0.036/day , kernel such that β = 1 and initial
condition defined by 106 proliferation tumor cells at middle square [7, 8] × [7, 8].

In Figure 2 we plot the numerical solutions at day 33 for an virtual untreated patient
(G(t) = 0). We observe a decreasing on the highest values of the tumor cells concentration
at initial times followed by an increase and very intense spreading of cells. The contour plots
allow us to observe high gradients on the core of the tumor, defined by the proliferation
cells, and that the migration cells are already quite far from the core!
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Figure 2: Numerical results at day 33, obtained with 2D model (13) for k = 0/day.

Let us consider now that the chemotherapy treatment defined by (5) is applied with a
protocol as illustrated in Figure 1. Condition (25) is used to compute an effective drug that
lead to control the total tumor mass. We consider a 24h dosage and different rest periods.
In Table 1 we show the minimum value of k allowed by condition (25), for a virtual patient
as defined in the beginning os this section. Here αe = 0.025 cm2/day and CΩ = 1√

2
.

Protocol kmin [./day]

each 2 days 0.064

each 7 days 0.224

each 14 days 0.448

Table 1: kmin as (25), for a protocol of 24 consecutive hours of chemotherapy .
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In Figure 3 we plot the cell distribution at day 33, when a protocol of chemotherapy
of 24h is administered at days 5, 19 and 33 using k = 0.5/day. We observe that glioma
mass at day 33 is less than its mass at day 4 (the day before the first administration of the
chemotherapy).
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Figure 3: Numerical results at day 33, obtained with 2D model (13) for k = 0.5/day.

Finally, in Figure 4 we compare glioma masses of the virtual patient when no chemo-
therapy is administered and the results of the adminstration of 3 different chemotherapy
protocols. The difference between the protocols is the rest period and the values of k were
computed using condition (25). We observe that for all protocols glioma masses are less
than the glioma mass at day 4 (the day before the first administration of the protocol).
The results presented in this figure shows the effectiveness of the our approach to define
chemotherapy protocols.

1
2
3
4
5
6
7
8

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

t [days]

mass [×106]
no chemotherapy

2 days protocol G = 0.07
7 days protocol G = 0.25
14 days protocol G = 0.5

Figure 4: Glioma masses M1(t).
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5 Conclusions

In this paper we studied a mathematical model to describe the evolution of glioma cells
when chemotherapy is applied. The model was established combining a mass conservation
with a non Fickian mass flux that takes into account the viscoelastic behaviour of the brain
tissue described by the Voigt-Kelvin model.

Using the energy method we deduced an estimate for the glioma mass M2(t), defined
using L2 norm. This estimate allowed us to define a sufficient condition on the para-
meters of the model that leads to the control of M2(t), more precisely, to guarantee that
M2(t) < M2(0). Such condition was then used to define chemotherapy protocols. Numeri-
cal experiments illustrating the behaviour of the glioma mass under the conditions deduced
for the chemotherapy protocols are also included. The results obtained suggest our approach
is a promising one. Future work will address the comparison of the model with existing
medical protocols.
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