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Abstract

This paper presents analytical solutions for computing the 3D displacements in a flat solid elastic stratum bounded by a rigid base, when it

is subjected to spatially sinusoidal harmonic line loads. These functions are also used as Greens functions in a boundary element method code

that simulates the seismic wave propagation in a confined or semi-confined 2D valley, avoiding the discretization of the free and rigid

horizontal boundaries.

The models developed are then used to simulate wave propagation within a rigid stratum and valleys with different dimensions and

geometries, when struck by a spatially sinusoidal harmonic vertical line load. Simulations are performed in the frequency domain, for varying

spatial wave numbers in the axial direction of the valley. Time results are obtained by means of inverse Fourier transforms, to help understand

how the geometry of the valley may affect the variation of the displacement field. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It has long been recognized that site effects may

significantly affect the motion generated by seismic waves.

The site effects generated by topographical features are

among the sources of amplifications and de-amplifications

of the seismic signals, which can be important over large

frequency domains [1–3]. Different analytical and numeri-

cal approaches for modeling wave propagation generated by

seismic sources have been proposed over the years.

Analytical and semi-analytical solutions have limited

their application to the study of scattering and diffraction of

waves by geological inclusions and foundations with regular

cross-sections placed in a homogeneous medium [4–8].

Numerical methods, such as finite elements and differences,

have been used to compute the response within localized

domains, like the case of soil structure interaction [9]. In

addition to these methods, other researchers have devised

techniques for modeling topographic effects, using rep-

resentation theorems: the direct boundary element method

(BEM) [10], and the indirect boundary element method

(IBEM) [11–14]. Another refinement was the development

of combinations of integral representations and discrete

wave number expansions of Green’s functions [15,16].

Discrete methods have also occasionally been used to model

large alluvial basins [17]. Finally, hybrid methods, which

combine semi-analytical representations (to model the

exterior domain of the inhomogeneities), and finite elements

(to model its interior domain), have also been used [18]. The

increased power of computational resources has made it

possible to study the 3D behavior of irregular topographies,

such as valleys and canyons. Sánchez Sesma [4] analyzed

the response of axisymmetric canyons and valleys when

subjected to vertically incident P-waves. Sánchez Sesma

et al. [19] also studied the scattering from an axisymmetric

alluvial valley provoked by SH-waves. Frankel and Vidale

[20] used a finite difference method to study the Santa Clara

Valley in San Jose, CA. Frankel [21] applied the same

technique to the San Bernardino Valley, illustrating how the

synthetics seismograms from 3D simulations are markedly

different from those computed using 1D and 2D models.

Kim and Papageorgiou [22] employed a discrete wave

number boundary element method to compute the responses

of a hemispherical canyon for incident SH, SV and P waves

in a 3D half-space. Reinoso et al. [23] presented a direct

BEM for calculating the 3D scattering of seismic waves
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from irregular topographies and buried valleys due to the

incidence of P, S and Rayleigh waves. The model is

formulated using isoparametric quadratic boundary

elements and it makes use of the 3D fundamental

displacement. Kattis et al. [24] used a 3D BEM to analyze

the vibration isolation provided by a concrete trench and a

row of concrete piles.

Many researchers have addressed the study of resonance

frequencies in different geologic formations. Bard and

Bouchon [25] presented numerical results on the elastic

response of symmetrical and homogeneous sediment-filled

deep valleys when subjected to the incidence of SH, SV and

P plane waves. Their work shows the existence and

importance of 2D resonance patterns. Again, their work

revealed that both the 2D resonance frequencies and

amplifications differ markedly from their 1D model. Zhou

and Dravinski [26] used an eigenvalue method, based on an

indirect boundary integral formulation, to determine the

resonance frequencies and mode shapes of deep sediment

valleys.

Some researchers have studied the wave propagation for

2.5D formulations (in which the medium is 2D and the

dynamic source 3D, such as a point load), for which the

response can be obtained as a sequence of 2D solutions for

different spatial wave numbers, in the direction in which the

geometry does not vary.

Analytical solutions of 2.5D problems are only known for

inclusions with simple geometry, such as a circular cylinder.

The solution becomes more complex when the 2D geometry

is irregular. Luco et al. [27] computed the 3D seismic

response of a cylindrical canyon cut in a layered viscoelastic

half-space when subjected to the incidence of P and S plane

waves using an indirect boundary element formulation.

Later, Luco and De Barros [28] applied a similar technique

to obtain the response of a layered cylindrical valley. Zhang

and Chopra [29,30] used the BEM to compute the impedance

matrix for a 3D foundation supported on an infinitely long

canyon of uniform cross-section cut in a homogenous half-

space, subjected to P, S or Rayleigh waves, discretizing the

free surface with linear boundary elements.

Pedersen et al. [31] used the IBEM to compute the 3D

seismic response of 2D topographies to plane waves, using

the full-space Green’s functions for a moving harmonic

point force. Luco and De Barros [32,33] computed the 3D

harmonic response of a system composed by an infinitely

long shell with a circular cross-section, buried in a layered

vicoelastic half-space when excited by harmonic plane

waves impinging at an oblique angle relative to the axis of

the shell. An indirect representation for the field in the

exterior half-space is combined with a model of the pipeline

based on Donnel shell theory. The integral representation of

the layered half-space is based on the use of moving Green’s

functions [34]. Stamos and Beskos [35] calculated 3D

dynamic response of long, lined tunnels of uniform cross-

section in a half-space subjected to a plane harmonic waves

propagating in an arbitrary direction using the BEM

formulation. Their model discretizes the free soil surface

of the half-space using the full-space Green’s function.

Santos et al. [36] computed the 3D scattering field obtained

when a 2D smooth topographical deformation is subjected to

a dilatational point load placed at some point in the medium,

using the BEM to discretize the free surface. Tadeu and

Santos [37] used the BEM to evaluate the 3D wave field

elicited by monopole sources in the vicinity of a fluid-filled

borehole. Pei and Papageorgiou [38] simulated the propa-

gation of surface waves in the Santa Clara valley, CA using a

hybrid numerical technique, which combines the boundary

integral equation method with the finite element method.

2D analyses have also been performed to predict the

seismic response of different geological configurations.

Huang and Chiu [39] used a 2D numerical scheme based

on the boundary integral equation method to study the effects

of a canyon on SH wave ground motion. Davis et al. [40]

computed the transverse response of underground cavities

embedded within an elastic half-space, when subjected to the

incidence of SV waves. Analytical solutions are derived for

unlined cavities, with the half-space free surface being

approximated by a large curved surface. The unlined cavity

solution was extended to derive an approximate model for

estimating the dynamic hoop forces and bending moments in

lightweight flexible liners, subjected to low-frequency

waves whose wavelength was much longer than the pipe

diameter.

In other related work, Rassem et al. [41,42] computed the

seismic site response of alluvial valleys of limited width,

using three different engineering models: 1D, 2D and a

frame model approach, which allows the prediction of a non-

linear seismic response. The results from the frame model

were compared with those given by the 2D finite element

solution, and a good agreement was found. Guan et al. [43]

presented a transient Green function caused by suddenly

applied line loads in an isotropic and homogeneous half-

space. Dineva and Manolis [44,45] developed a hybrid

integral equation, based on both displacement and hyper-

singular traction formulations, for the analysis of time-

harmonic seismic waves propagating through cracked,

multi-layered geological regions with surface topography

under plane strain conditions.

The present work computes the 3D seismic response of a

2D valley limited by a free horizontal surface and three rigid

boundaries (one horizontal and the other two inclined). The

medium is subjected to a vertical sinusoidal harmonic line

load, and the displacement wave field near the surface is

evaluated using the BEM. Notice that most of the work

reported in the literature assumes the incidence of plane

harmonic waves. The horizontal, free and rigid surfaces of

the present model are not discretized since the Green’s

functions used are derived in closed form, which accounts for

the required boundary conditions at these interfaces. Thus,

only the lateral limiting surfaces need to be discretized.

The Green’s functions applied here employ the authors’

previous technique for defining analytical solutions for the
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steady state response of a homogeneous half-space, and a

system built as a single solid elastic layer bounded by two

fluid media, subjected to spatially sinusoidal harmonic line

loads [46,47]. The solid displacement potentials were

defined by the authors [48] when evaluating the Green’s

functions for a harmonic (steady state) line load with a

sinusoidally varying amplitude in the third dimension, in an

infinite medium. These are in full agreement with the

solution for moving loads given earlier by Pedersen et al.

[31] and Papageorgiou and Pei [49]. The potentials are

written as a superposition of plane waves, according to the

technique used first by Lamb [50] for the 2D case, and then

by Bouchon [51] and Kim and Papageorgiou [22] for

calculating the three-space dimension field by means of a

discrete wave number representation.

The computations are first performed in the frequency

domain for different spatial wave numbers in the third

dimension. Time responses are then obtained by means of

inverse Fourier transforms. Complex frequencies are used to

avoid aliasing phenomena [52].

This paper first presents the Green’s functions for the

steady state response of a homogeneous 3D solid layer,

limited by a horizontal free surface and rigid horizontal

base, when subjected to a spatially sinusoidal harmonic line

load. The derived Green’s functions for the layer are then

incorporated in a direct BEM model to solve the valley

problem, which requires only the discretization of the lateral

boundaries. The results are validated by applying a direct

BEM, using Green’s functions for an unbounded space,

which requires the full discretization of all the boundaries.

The BEM model is then used for simulation analyses to

investigate the 3D wave propagation alteration within a

valley, for differing thickness and extent.

2. Green’s functions

Consider an elastic layer of infinite extent bounded by a

flat free surface and a flat rigid base. This system is assumed

to be excited by a spatially sinusoidal harmonic line load

along the z direction, applied at point ðx0; y0Þ in the x-, y- or

z-directions.

The derivation of the present Green’s functions requires

the solid displacement potentials, and the corresponding

Green’s functions, defined by the authors [48], when

evaluating the Green’s functions for a harmonic (steady

state) line load with a sinusoidally varying amplitude in the

third dimension (see Appendix A), in an infinite medium

(full-space), written as a superposition of plane waves

[46,47].

The Green’s functions for a free-rigid solid layer, with

thickness h, can be expressed as the sum of the source terms

equal to those in the full-space and the surface terms

required to satisfy the boundary conditions at the two

surfaces (null normal and tangential stresses on the free

surface and null displacements along the rigid base). Next,

the potentials associated with the surface terms generated by

the free (top) and rigid (bottom) surfaces are given.

Load acting in the direction of the x-axis:

f
x_top
0 ¼ Ea

Xn¼þ1

n¼21

kn

nn

Eb0Ax
n

� �
Ed; c

x_top
x0 ¼ 0;

c
x_top
y0 ¼ Eakz

Xn¼þ1

n¼21

Ec0

gn

Bx
n

� �
Ed;

c
x_top
z0 ¼ 2Ea

Xn¼þ1

n¼21

Ec0Cx
n

� �
Ed

ð1Þ

fx_bottom
0 ¼ Ea

Xn¼þ1

n¼21

kn

nn

Eb
b0Dx

n

� �
Ed; cx_bottom

x0 ¼ 0;

cx_bottom
y0 ¼ Eakz

Xn¼þ1

n¼21

Eb
c0

gn

Ex
n

 !
Ed;

cx_bottom
z0 ¼ 2Ea

Xn¼þ1

n¼21

Eb
c0Fx

n

� 	
Ed

ð2Þ

Load acting in the direction of the y-axis:

f
y_top
0 ¼ Ea

Xn¼þN

n¼2N

Eb0Ay
n

� �
Ed;

c
y_top
x0 ¼ Eakz

Xn¼þN

n¼2N

2Ec0

gn

Cy
n

� �
Ed; c

y_top
y0 ¼ 0;

c
y_top
z0 ¼ Ea

Xn¼þN

n¼2N

kn

gn

Ec0By
n

� �
Ed

ð3Þ

f
y_bottom
0 ¼ Ea

Xn¼þN

n¼2N

Eb
b0Dy

n

� 	
Ed;

c
y_bottom
x0 ¼ Eakz

Xn¼þN

n¼2N

2Eb
c0

gn

Fy
n

 !
Ed; c

y_bottom
y0 ¼ 0;

c
y_bottom
z0 ¼ Ea

Xn¼þN

n¼2N

kn

gn

Eb
c0Ey

n

� �
Ed

ð4Þ

Load acting in the direction of the z-axis:

f
z_top
0 ¼ Eakz

Xn¼þN

n¼2N

Eb0

nn

Az
n

� �
Ed;

c
z_top
x0 ¼ Ea

Xn¼þN

n¼2N

Ec0Bz
n

� �
Ed;

c
z_top
y0 ¼ Ea

Xn¼þN

n¼2N

2kn

gn

Ec0Cz
n

� �
Ed; c

z_top
z0 ¼ 0

ð5Þ
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fz_bottom
0 ¼ Eakz

Xn¼þN

n¼2N

Eb
b0

nn

Dz
n

 !
Ed;

cz_bottom
x0 ¼ Ea

Xn¼þN

n¼2N

Eb
c0Ez

n

� 	
Ed;

cz_bottom
y0 ¼ Ea

Xn¼þN

n¼2N

2kn

gn

Eb
c0Fz

n

� �
Ed; cz_bottom

z0 ¼ 0

ð6Þ

In Eqs. (1)–(6) Ea ¼ ð1=ð2rv2LxÞÞ; Ed ¼ e2iknðx2x0Þ; Eb0 ¼

e2inny; Ec0 ¼ e2igny; Eb
b0 ¼ e2innly2hl; Eb

c0 ¼ e2ignly2hl; nn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p 2 k2
z 2 k2

n

q
with ðImðnnÞ # 0Þ; gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s 2 k2
z 2 k2

n

q
with

ðImðgnÞ # 0Þ; kn ¼ ð2p=LxÞn; kp ¼ v=a; ks ¼ v=b; a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
and b ¼

ffiffiffiffiffi
m=r

p
are the velocities for P

(pressure) waves and S (shear) waves, respectively, l and

m are the Lamé constants, r the mass density, kz the wave

number in z and i ¼
ffiffiffiffi
21

p
: Lx is the distance between the

virtual sources placed along the x-direction, used to

discretize the above equations. These equations can be

approximated by a finite sum of terms (N ). The parameters

Am
n ; Bm

n ; Cm
n ; Dm

n ; Em
n and Fm

n ðm ¼ x; y; zÞ are as yet unknown

coefficients, to be defined by imposing the appropriate

boundary conditions.

A system of six equations is defined for each load by

imposing the six stated boundary conditions for each

value of n. The derivation of these systems of equations

is quite straightforward, but, since the details are rather

unwieldy, the final systems of equations alone are

presented in Appendix B.

Once the unknown amplitude of each potential has been

calculated, the Green’s functions are expressed by the sum of

the source terms and the surface terms originated on both the

free and rigid surfaces, leading to the following expressions.

Load acting in the direction of the x-axis:

Gxx ¼ Gfull
xx þ Ea

Xn¼þN

n¼2N

� Ax
n

2ik2
n

nn

Eb0 þ 2ignCx
n 2

ik2
z

gn

Bx
n

 !
Ec0

" #
Ed

þ Ea

Xn¼þN

n¼2N

� Dx
n

2ik2
n

nn

Eb
b0 þ 2ignFx

n 2
ik2

z

gn

Ex
n

 !
Eb

c0

" #
Ed;

Gyx ¼ Gfull
yx þ Ea

Xn¼þN

n¼2N

ð2iknAx
nEb0 þ iknCx

nEc0ÞEd

þ Ea

Xn¼þN

n¼2N

ðiknDx
nEb

b0 2 iknFx
nEb

c0ÞEd;

Gzx ¼ Gfull
zx þ Ea

Xn¼þN

n¼2N

2ikzkn

nn

Ax
nEb0 þ

ikzkn

gn

Bx
nEc0

� �
Ed

þ Ea

Xn¼þN

n¼2N

2ikzkn

nn

Dx
nEb

b0 þ
ikzkn

gn

Ex
nEb

c0

� �
Ed

ð7Þ

Load acting in the direction of the y-axis:

Gxy ¼ Gfull
xy þ Ea

Xn¼þN

n¼2N

ð2iAy
nknEb0 þ iBy

nknEc0ÞEd

þ Ea

Xn¼þN

n¼2N

ð2iDy
nknEb

b0 þ iEy
nknEb

c0ÞEd;

Gyy ¼ Gfull
yy þ Ea

Xn¼þN

n¼2N

� 2innAy
nEb0 þ

2ik2
n

gn

By
n þ

2ik2
z

gn

Cy
n

 !
Ec0

" #
Ed

þ Ea

Xn¼þN

n¼2N

� 2innDy
nEb

b0 þ
2ik2

n

gn

Ey
n þ

2ik2
z

gn

Fy
n

 !
Eb

c0

" #
Ed;

Gzy ¼ Gfull
zy þ Ea

Xn¼þN

n¼2N

ð2iAy
nkzEb0 þ iCy

nkzEc0ÞEd

þ Ea

Xn¼þN

n¼2N

ð2iDy
nkzE

b
b0 þ iFy

nkzE
b
c0ÞEd

ð8Þ

Load acting in the direction of the z-axis:

Gxz ¼ Gfull
zx þ Ea

Xn¼þN

n¼2N

2ikzkn

nn

Eb þ
ikzkn

gn

Ec

� �
Ed;

Gyz ¼ Gfull
zy þ Ea

Xn¼þN

n¼2N

½2i sgnðy 2 y0ÞkzEb

þ i sgnðy 2 y0ÞkzEc�Ed;

Gzz ¼ Gfull
zz þ Ea

Xn¼þN

n¼2N

2ik2
z

nn

Eb þ
2ik2

n

gn

2 ign

 !
Ec

" #
Ed

ð9Þ

The expressions for the full space Gfull
ij ði; j ¼ x; y; zÞ are

given in Appendix A. Notice that, if kz ¼ 0 is used, the

system of equations derived above is reduced to four

unknowns, leading to the 2D response.

3. Green’s functions validation

The displacements given by the Green’s functions

presented above are compared with those given by a

BEM model, which requires the discretization of the

free, and rigid surfaces, and the use of the Green’s

functions for a full space. The unlimited discretization

of the free and rigid surfaces in the BEM model is

accomplished by using complex frequencies with a
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small imaginary part of the form vc ¼ v2 ih (with

h ¼ 0:7ð2p=TÞ), which introduces a damping effect [52,

53].

A spatially sinusoidal harmonic line load ðkz ¼ 0:4 rad=
mÞ is applied within a free-rigid solid layer (a ¼ 4208 m=s;
b ¼ 2656 m=s with r ¼ 2140 kg=m3) 10.0 m thick, at the

source point (x ¼ 1:0 m; y ¼ 2:0 m), acting along the

direction y. Computations are achieved in the frequency

domain [2.50,320.0 Hz] with a frequency increment of

2.5 Hz. The surface scattered displacement field in the i

direction due to a load acting along y, Gsurf
iy ; is computed at a

receiver point placed at x ¼ 3:0 m and y ¼ 5:0 m: The

imaginary part of the frequency has been set to h ¼

0:7ð2p=TÞ; with T ¼ 0:0466 s:
Fig. 1 shows the real and imaginary parts of the

displacements. The solid lines represent the analytical

responses, while the marked points correspond to the

BEM solution. The square marks indicate the real part of

the response while the round marks refer to imaginary

part.

The two solutions are in very close agreement, but

the BEM solution required a very large number of

boundary elements, and the use of significant damping.

Equally good results were obtained from tests in which

different loads and receivers were situated at different

points.

4. Boundary element formulation

The 3D field generated by a spatially sinusoidal

harmonic line load within a valley with a limited width is

found by means of the BEM. The present formulation uses

the above Green’s functions, which take into account the

presence of the horizontal free and rigid boundaries. Thus,

only the lateral boundaries need to be discretized by

boundary elements. A detailed explanation of the BEM

equations is not given here since they are widely known [54,

55]. The boundary integral equations, in the absence of

distributed loads and in the presence of virtual point loads,

dðx 2 x0Þ; lead to the following equation

cijujðx0;vÞ ¼
ð

C
tiðx; n;vÞGijðx; x0;vÞds

2
ð

C
Hijðx; n; x0;vÞujðx;vÞds ð10Þ

where i; j ¼ 1; 2 indicates the normal and tangential

directions in relation to the boundary surface; i; j ¼ 3

represents the z-direction; Gijðx; x0;vÞ; Hijðx; n; x0;vÞ are

the displacements and tractions in the direction j at x, on

boundary C, originated by a unit sinusoidal line load acting

at the source, x0, in direction i; vector n is the unit outward

normal at the boundary, and cij is a constant that equals dij/2

Fig. 1. Spatially sinusoidal harmonic line load along the z-direction, acting in the y-direction, in a solid formation bounded by a horizontal rigid base: (a)

geometry of the problem; (b) Gsurf
xy solutions; (c) Gsurf

yy solutions; (d) Gsurf
zy solutions.
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for a smooth boundary, where Kronecker’s delta is

represented by dij.

Since the boundaries of the valley to be discretized are

the rigid lateral surfaces, which require null displacement

boundary conditions, a simplified form of Eq. (10) is

obtainedð
C

tiðx;n;vÞGijðx; x0;vÞds ¼ 0 ð11Þ

Equilibrium relations are used to transform the displacement

fields into the normal, tangential and local (z ) co-ordinate

systems at each element. The boundary and variable values

need to be discretized before this integral can be evaluated

for an arbitrary cross-section. Therefore, when N boundary

elements are used and nodal displacements within each

element are taken to be constant, and to have the same value

at the respective nodal point, Eq. (11) becomes

XN
n¼1

Gkn
ij tn

j ¼ 0 ð12Þ

In Eq. (12), the element number at the point where the

virtual load is applied is defined by k, the boundary values in

element n are identified by tn
j ; and Gkn

ij represents the element

integrals

Gkn
ij ¼

ð
Cn

Gijðx; x0;vÞds ð13Þ

where Cn is the boundary segment.

If a virtual load is applied on the boundary, in each node,

a system of linear equations relating nodal forces and nodal

displacements is obtained. These equations can be solved

for the nodal tractions.

When an incident wave illuminates the valley, Eq. (11) is

changed as followsð
C

tiðx;n;vÞGijðx; x0;vÞds þ uinc
j ðx0;vÞ ¼ 0 ð14Þ

The incident field in this equation is given analytically as the

sum of the source terms (2.5D full-space) and the surface

terms originated on both free and rigid horizontal surfaces

(described in Appendix B). After mathematical manipu-

lation of the integral equations, combined and subjected to

the boundary conditions, and discretized appropriately, a

system of equations is formulated that can be solved for the

nodal tractions.

The required integrations in Eq. (14) are performed using

Gaussian quadrature when the element to be integrated is

not the loaded element. For the loaded element, the existing

singular integrands in the source terms of the Green’s

functions are calculated in closed form [56,57], while the

integrands involving the surface terms originated on both

free and rigid surfaces are solved using a Gaussian

quadrature scheme.

A numerical inverse fast Fourier transform in the

frequency domain allows the displacements to be obtained

in the time domain. In the present work, the source is

modeled as a Ricker wavelet. The Fourier transformations

are achieved by discrete summations over frequencies,

which is mathematically the same as adding periodic

sources at temporal intervals T ¼ ð2p=DvÞ; where Dv

represents the frequency steps. Complex frequencies are

used, in the form vc ¼ v2 ih (with h ¼ 0:7Dv), to avoid

aliasing phenomena. In the time domain, this effect is

removed by rescaling the response using an exponential

window eht [58].

5. BEM validation

The present BEM algorithm was implemented and

validated by comparing the results with those provided by

a BEM code, which requires the full discretization of all

valley boundaries. To validate the response, a smaller valley

was chosen, as shown in Fig. 2(a), with the same material

properties as the free-rigid solid layer. A spatially sinusoidal

harmonic line load (kz ¼ 0:4 rad=m) is applied at

(x ¼ 24:0 m; y ¼ 3:0 m), actuating along the direction y.

Computations are performed in the frequency range

[2.50,320.0 Hz] with a frequency increment of 2.5 Hz.

The scattered displacement field is computed at a receiver

point placed at x ¼ 26:0 m and y ¼ 6:0 m: Fig. 2(b)–(d)

show the computed results: solid lines represent the new

BEM solutions, while the marked points correspond to the

BEM solution using the full boundary discretization. The

square marks represent the real part of the response while

the round marks indicate the imaginary part.

Analysis of the results reveals a very good agreement

between the two solutions. However, it should be pointed

out that the BEM formulation, using the full boundary

discretization, will not be suitable for computation involv-

ing large, extended valleys.

6. Applications

The analytical and the BEM solutions are used to study

the effect of a stratum with a rigid base or a valley on the

seismic wave propagation generated by a harmonic

sinusoidal line load acting along the vertical direction.

The valley is assumed to have only one or two lateral

confinements, which can be inclined or vertical. Three

different configurations are therefore analyzed: the first

assumes that the stratum is infinitely long (Model 1); the

second introduces an inclined lateral rigid confinement

(Model 2); the third simulates a valley bounded by two

inclined lateral rigid surfaces (Model 3) (see Fig. 3). The

first model is solved analytically, whereas the second and

the third models are simulated using the BEM to obtain the

solutions.

The topographical free surface and the horizontal rigid

boundary of the various models are not discretized. The
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lateral confinements of the valley are modeled with a

number of boundary elements, defined according to the

excitation frequency of the harmonic source. The ratio

between the wavelength of the incident waves and the

length of the boundary elements is kept to a minimum of 12.

In no case, however, is the number of the boundary elements

used to model each surface less than 20.

The material properties of the medium remain constant

for all analyses and are equal to those used in the validation

of the Green’s functions and the BEM code (b ¼ 2656 m=s;
a ¼ 4208 m=s and r ¼ 2140 kg=m3).

The displacements produced by the vertical load, applied

at (0.0, 2.0 m) are recorded along evenly spaced (40.0 m)

receivers, distributed along one line placed horizontally at

1.0 m below the free surface.

Responses are computed for different values of kz, that is

following waves with different apparent wave velocities

along the z-axis. Selected simulations are presented for three

apparent velocities (c ): infinite c, c ¼ 4208 m=s and c ¼

2656 m=s: Infinite c represents waves arriving at the

receivers with a 908 inclination in relation to the z-axis,

and corresponds to a pure 2D problem. As the path

inclination decreases from 90 to 08, there is a lower bound

value for c that represents the slowest guided surface waves,

which correspond to the Rayleigh waves.

Computations are performed in the frequency range

[0.125,16.0 Hz], with a frequency increment of 0.125 Hz,

which determines the total duration ðT ¼ 8:0 sÞ of the

analysis in the time domain. The time solutions are obtained

assuming the existence of a source with a Ricker time

Fig. 2. Spatially sinusoidal harmonic line load along the z-direction, acting in the y-direction, in a valley formation, applied in the y-direction: (a) geometry of

the problem; (b) horizontal (x ) displacements; (c) vertical (y ) displacements; (d) displacements along the z-direction.

Fig. 3. Geometries of the numerical application models: (a) Model 1; (b)

Model 2; (c) Model 3.
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dependence, with a characteristic frequency of 5.0 Hz. A

selection of synthetic seismograms is displayed for

receivers placed from 820.0 to 2380.0 m up to 4.0 s.

Fig. 4 presents synthetic seismograms in the time domain

for the vertical (y ) displacement when a vertical line load

ðkz ¼ 0Þ is placed in a free-rigid elastic formation, h ¼

1200 m thick. Fig. 4(a) shows the response obtained when

the stratum is of infinite extent (Model 1). At time t ¼ 0; the

load creates a first dilatational and a first shear cylindrical

pulse that propagate away from it. The spacing of the wave

fronts is in accordance with their differing velocities. A

surface pulse follows, which corresponds to the Rayleigh

waves. Fig. 4 shows the predominance of these Rayleigh

waves (labeled R ). The presence of the first dilatational

Fig. 4. Vertical displacements when the vertical load ðkz ¼ 0Þ is placed in an elastic formation 1200 m thick: (a) Model 1; (b) Model 2 (u ¼ 458); (c) Model 3

(u ¼ 458).
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pulse cannot be seen. The horizontal displacement would

show a small earlier-arriving pulse related to the dilatational

P wave (not illustrated). Notice that, the S waves arrive

before the Rayleigh waves, but they do not fully separate

into two pulses because the difference in velocities is only

slight. As time elapses, some of these waves hit the rigid

base and a reflected field will be created. Part of this wave

field travels back to the free surface where it is subjected to a

new scattering phenomenon. This leads to a complex

wavefield, caused by multi-wave reflections at the free

surface and at the rigid base of the stratum. As the wave

pulses travel back and forth between the surface and the

floor of the stratum, they lose energy to the surrounding

medium, and dissipate. The first set of pulses (labeled R ) are

followed by P waves reflected from the rigid base (labeled

PP ), S mode converted waves resulting from the P wave

incidence on the rigid base (labeled PS ) and S waves

reflected from the incidence of S waves on the same

boundary. The arrival times found for these different pulses

are consistent with the predictions given by ray acoustics. It

is further observed that the wave front of these train pulses

becomes flatter for higher order reflections. With the

passage of time, additional surface waves are produced by

the incidence of waves on the free surface of the stratum.

Fig. 4(b) displays the synthetic waveforms produced

when the second formation configuration is simulated,

ascribing an inclination of 458 to the lateral confinement

(Model 2). The comparison of these results with those

presented in Fig. 4(a) reveals pronounced differences. The

Rayleigh wave strikes the lateral rigid boundary, is reflected

back, and travels in the opposite direction. The amplitude of

these surface waves is now larger than before, and its

enhanced amplitude is observed mainly in the vicinity of the

lateral confinement. The largest amplitude is about 50%

larger in relation to the maximum amplitude registered with

Model 1. The amplitude of the waves generated by the

multi-reflections of the horizontal boundaries decreases,

particularly for receivers placed in the vicinity of the lateral

confinement. This phenomenon is explained by the nature of

the lateral boundary, which ascribes null displacements to

its surface, and by the reflective power created by the

inclination of the confinement, which enables energy to be

reflected away.

Fig. 4(c) gives the responses computed when the valley

formation (Model 3) is built with lateral boundaries at an

inclination of 458. Wave features similar to those found in

the previous model are registered. Additional Rayleigh

wave pulse trains are observable, the result of the multi-

reflections between both lateral confinements. The ampli-

tude of the wavefield increases about 20% in relation to that

registered within the Model 2.

This behavior agrees with the results obtained by Aki [3],

and Bard and Bouchon [25], who confirm that the finite

lateral extent of surface layers introduces other effects, such

as the generation of additional surface waves at the edges

and the resonance in a lateral direction, which tends to

increase the amplitude as well as the duration of the ground

motion.

To better understand the resonance phenomena of the

valley, the frequency spectra responses up to 4.0 Hz are also

included for receivers placed from 22380.0 to 2380.0 m.

Fig. 5(a) shows the spectrum associated with the vertical

displacements obtained in the presence of Model 1. As

expected, the response is symmetric in relation to the

position of the load. Two well-developed resonance peaks

are visible. The first, at fh ¼ a=ð4hÞ ¼ 0:88 Hz; corre-

sponds to the 1D resonance frequency. The second

resonance frequency is spaced from the first fh ¼ a=ð2hÞ ¼

1:75 Hz: Fig. 5(b) gives the frequency spectra response

obtained when the load is placed within a layer formation

bounded by a lateral confinement (Model 2). The extra wave

reflections produced by the lateral confinement, observed in

the time domain plot, originate a complex resonance effect

that is clearly visible at receivers placed between the load

and the confinement. On the other side of the load, the peaks

observed in Model 1 are still evident. However, additional

frequency spectra are present between those resonance

peaks. Fig. 5(c) shows the frequency spectra response

obtained within the valley formation (Model 3) for the

vertical displacements. As expected, given the time

responses, this plot exhibits a complex structure pattern.

The ground motion amplification is easily discernible.

Furthermore, the resonance frequencies associated with

both the vertical and lateral interferences are well defined.

Fig. 6 presents the seismic responses when the thick-

ness of the formation is reduced to 400.0 m. To better

understand the importance of the inclination of the lateral

confinement, an additional geometric formation has been

included, which assumes the existence of a vertical

lateral confinement ðu ¼ 908Þ: The amplitude of the

responses increases when compared with those obtained

for a formation 1200.0 m thick (about 15%). The

responses of the Model 1 reveal the existence of multi-

guided waves, which becomes more visible as the

distance from the receiver to the source increases (see

Fig. 6(a)). The vertical displacements generated by

Model 2, where u ¼ 458; again demonstrate the decay

of amplitude for receivers in the vicinity of the lateral

confinement, particularly after the arrival of the first

guided waves (see Fig. 6(b)). The wavefield produced

away from the lateral confinement is enhanced by the

reflective power of the lateral boundary. Fig. 6(c) shows

the computed response when the lateral confinement is

vertical. It may be seen that although the field in the

immediate vicinity of the lateral boundary is reduced, it

is increased in comparison with the fields obtained for an

inclined confinement. The results for Model 3 follow the

features described above, but exhibit pulses reflected

from the second lateral wall.

Fig. 7 shows the vertical displacements at receivers

placed in the Model 3, with a formation 400.0 m thick

and u ¼ 458; when the apparent velocity is c ¼ 4208 and

J. António, A. Tadeu / Soil Dynamics and Earthquake Engineering 22 (2002) 659–673 667



2656 m/s. As the apparent velocity decreases, the arrival

times of the different pulses and their amplitude also

decrease, indicating that the scattering energy is mainly

concentrated in the vertical z-plane containing the

dynamic source. The amplitude decreases by about 15

and 20% in relation to c ¼ 1 m=s ðkz ¼ 0Þ (Fig. 6(d))

when c ¼ 4208 and 2656 m/s, respectively.

A pulse in these plots, with a travel time t, corresponds to

waves that travel from the source to the reflector and then to

the receiver, along the same ray path inclination in relation

to the z-axis. The travel distance (L ) in this domain is

smaller because it corresponds to the projection of the initial

vertical path (d ) relative to the inclined path, giving a

distance L ¼ d sin½arccosðv=cÞ�: A fall in the apparent

velocity thus causes a better separation of the P, S and

Rayleigh waves. When the apparent velocity equals the

velocity of the P waves (see Fig. 7(a)), the waves traveling

at this velocity arrive at the various receivers at t ¼ 0:0 s;
and only the waves traveling at lower velocity, the S and

Rayleigh waves, survive in these time plots. Furthermore,

when the apparent velocity is assumed to be c ¼ 2656 m=s;
only the guided waves (Rayleigh waves) survive (see Fig.

7(b)).

7. Conclusions

The analytical functions developed and used to obtain the

3D displacement field in a solid stratum with a rigid base

were both interesting in themselves and useful when

incorporated as Greens functions in a BEM code to compute

the wave field in a 2D valley formation. These functions and

the BEM model were found to be efficient and helpful in the

context of seismic research.

Synthetic seismograms were built, following waves with

different apparent wave velocities along the z-axis of the 2D

valley. The responses obtained for a free-rigid elastic

formation exhibit a set of periodical pulses in the time

domain, caused by the multi-reflections between the free

surface and the rigid base. Initially, the wave fronts

associated with the body waves propagating away from

the source are circular, but as time develops they get flatter.

When a lateral inclined rigid boundary is introduced, the

original guided waves are reflected back after impinging on

this confinement. It produces the enhancement of the former

guided waves’ amplitude, particularly in the vicinity of the

confinement. However, the amplitude of the pulses

originated by the multi-reflections in the horizontal

boundaries decreases, more noticeably at receivers in the

vicinity of the lateral boundary. This fall in amplitude is due

to the null displacements imposed by its boundary

conditions and to its large reflective power. When the

lateral boundary is vertical, the amplitude of the wavefield

increases in the immediate vicinity of the lateral confine-

ment, owing to the diminished reflecting power of the

boundary.

When the valley formation is built with two lateral

boundaries, additional Rayleigh pulse reflections occur,

leading to the enhancement of the displacement field

amplitude at receivers in the vicinity of the lateral boundary.

Fig. 5. Frequency spectra responses associated with the vertical displace-

ments when the vertical load ðkz ¼ 0Þ is placed in an elastic formation

1200 m thick: (a) Model 1; (b) Model 2 (u ¼ 458); (c) Model 3 (u ¼ 458).
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Fig. 6. Vertical displacements when the vertical load ðkz ¼ 0Þ is placed in an elastic formation 400 m thick: (a) Model 1; (b) Model 2 (u ¼ 458); (c) Model 2

(u ¼ 908); (d) Model 3 (u ¼ 458).
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The finite lateral extent of the valley surface generates

additional surface waves at the edges, and resonance in a

lateral direction. These effects tend to increase both the

amplitude and the duration of the ground motion signatures.

As the thickness of the solid elastic formation decreases,

the amplitude of the wavefield increases and additional

guided surface waves appear. The decrease of the apparent

wave velocity along the axis of the valley allowed the

different wave types to be distinguished, particularly those

associated with the slower velocities.

Appendix A. The Green’s function for a 2.5D full-space
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in which the Hð2Þ
n ð…Þ are second Hankel functions of order n.

Appendix B. Definition of the Green’s functions for a
free-rigid layer

This appendix lists the system of equations required to

define the amplitude of the surface potentials.

Fig. 7. Vertical displacements at receivers placed in Model 3, when the solid elastic formation is 400:0 m thick and u ¼ 458 for different apparent velocities: (a)

c ¼ 4208 m=s; (b) c ¼ 2656 m=s:
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Load acting in the direction of the x-axis:
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Load acting in the direction of the z-axis:
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