
Neurocomputing 50 (2003) 461–472
www.elsevier.com/locate/neucom

A training algorithm for classi"cation of
high-dimensional data

Armando Vieiraa;b;∗, Nuno Barradasb;c
aISEP, Dep de Fisica, R. São Tom�e, 4200 Porto, Portugal, and Centro de F� sica Computacional,

Universidade Coimbra, 3000 Coimbra, Portugal
bInstituto Tecnol�ogico e Nuclear, Estrada Nacional 10, Apartado 21, 2686-953 Sacav�em, Portugal

cCentro de F�i sica Nuclear da Universidade de Lisboa, Av. Prof. Gama Pinto 2,
1699 Lisboa Codex, Portugal

Received 20 July 2001; accepted 11 May 2002

Abstract

We propose an algorithm for training multi layer preceptrons (MLP) for classi"cation prob-
lems, that we named hidden layer learning vector quantization. It consists of applying learning
vector quantization to the last hidden layer of a MLP and it gave very successful results on
problems containing a large number of correlated inputs. It was applied with excellent results
on classi"cation of Rutherford backscattering spectra and to a benchmark problem of image
recognition.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Classi"cation; Learning vector quantization; Hidden layer learning vector quantization; Feature
extraction; Rutherford backscattering

1. Introduction

The cornerstone of classi"cation algorithms is to extract relevant features from raw
data so that discrimination between classes can be easily performed. However, in many
cases these features are not easily identi"able and appropriate data transformations have
to be applied. Linear transformations, like Fourier transform or principal component
analysis, are easiest to perform, but may not be su<cient for some hard problems
like image recognition. For instance, it is known that the visual cortex uses heavy

∗ Corresponding author. ISEP, Dep de Fisica, R. Saõ Tom?e, 4200 Porto, Portugal. Tel.: +351-934561748.
E-mail address: asv@isep.ipp.pt (A. Vieira).

0925-2312/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925 -2312(02)00635 -5



462 A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472

pre-processing before presenting the light impulses to the brain, which is an indication
that features are extracted at intermediate layers of neurons [7].
Neural networks have been used in classi"cation problems with considerable success,

either with supervised or unsupervised learning [14]. A common approach for super-
vised learning is multi layer preceptrons (MLP) with a 1-of-c coding scheme, where
the number of outputs is the same as the number of classes [19]. To train the net, we
have to choose an error function and an error minimization algorithm. For the error
function, the sum of squares or the cross entropy, derived from the maximum likeli-
hood principle, are the most common. The backpropagation algorithm [13], or some
of its variants, are widely used for training. The network architecture and learning pa-
rameters can be obtained using an optimization procedure, like genetic algorithms, or
simply guesses based on some heuristics.
Several algorithms have been used for competitive learning, mainly in unsupervised

classi"cation problems [10]. Among them is learning vector quantization (LVQ) which
is a common approach to data clustering [9]. This algorithm projects the data onto a set
of representative vectors, called prototypes or code vectors, corresponding to each of
the classes into which the input space is divided. LVQ is a data compression technique
particularly useful for feature extraction in unsupervized learning. However, it usually
performs badly on supervized learning.
Although competitive for some problems, both MLP and LVQ are not very e<cient,

for instance, in problems with high-dimensional inputs or when patterns to be classi"ed
are similar, particularly when the inputs components are correlated.
The objective of this work is to propose a new algorithm to train MLP that is more

e<cient in de"ning decision surfaces in the feature space, thus achieving better results
in hard classi"cation problems. We apply it to the problem of Rutherford backscattering
(RBS) spectra classi"cation [17], and to other problems, including a benchmark test
of image recognition.

2. RBS technique and data simulation

RBS is an ion beam analysis technique extensively used in laboratories for compo-
sitional analysis of thin "lms [16]. From the experimental data, one can extract the
elemental depth pro"le of thin "lms. Although this task is simple in principle, since
RBS is based on classical mechanics, it can be very time-consuming, and in prac-
tice some data are too hard to analyse with traditional methods. Recently, this task
was simpli"ed by the use of computational techniques that may lead to instantaneous
automated RBS analysis in a production line [2].
Among these techniques are arti"cial neural networks (ANN), recently applied on

RBS data analysis of Ge implanted in Si [3] and Er implanted in sapphire [4], with
good results. The data used for training consists of generated RBS spectra for all
conditions that are expect to occur in experiments. The space of implant, beam, and
detection parameters (training space) used was not uniform. Instead, more training
spectra were generated for the beam and detection conditions that are more common
in real experimental situations. We thus provide a larger amount of training examples



A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472 463

0.1 1 10 100 1000
0

50

100

150

200
(a)

 

N
um

be
r 

of
 c

as
es

Dose (1015 at/cm2)

0 1 2 3 4 5 6 7
0

50

100

150

200

250
(b)

Depth (1018 at/cm2)

N
um

be
r 

of
 c

as
es

Fig. 1. Dose and depth distribution considered for the RBS classes.

corresponding to common and di<cult cases. The training space used is shown in
Fig. 1.
In previous work, we notice that the reliability of using ANN for data interpretation

varies widely. The reason is that we have a large variety of spectra corresponding to
distinct conditions of implantation and data analysis. The implanted doses ranges in
three orders of magnitude, from 1× 1014 to 1× 1017 at=cm2, and the implanted depth
from 1 × 1017 to 7 × 1018 at=cm2. Since this represents a large diversity of samples
that may hinder data analysis, we decided to divide the data into three categories:
class 1, class 2 and class 3. Provided that we have a reliable classi"cation method to
discriminate these categories, a specialized ANN for each of these classes will certainly
reduce the interpretation error.
The spectra were classi"ed according to the following criteria: class 1—samples with

high Ge doses a Ge peak well separated from the Si background; class 2—Ge peak
superimposed to the Si signal; and "nally class 3—all other cases, that is, small Ge
dose with separated signals. Class 1 should be the easiest to analyse since the Ge peak
is large enough and well separated. Class 2 will be harder and class 3 the most di<cult
due to the small Ge signal with respect to the background noise. Fig. 1 presents the



464 A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472

0

5000

10000

15000

20000

0 20 40 60 80 100 120

Channel

Y
ie

ld

Class 1
Class 2
Class 3

Fig. 2. Representative spectrum for each of the three RBS classes.

distribution of relevant parameters used to build the training set for each of the three
classes. Notice the superposition of classes.
We should note that some spectra could not be clearly labeled as classes 1, 2 or

3. For instance, the transition from class 3 to class 1, which occurs when the Ge
peak is high enough with respect to noise level, is not abrupt but rather smooth. The
same occurs for spectra moving from class 2 to class 1, as partial superposition occurs
in some cases. In order to take into account these smooth transitions, we created
an identical database, but instead of classifying a spectrum into a unique class, we
estimated a class membership probability. This proved to be a better approach, leading
to a lower classi"cation error. Some typical spectra for each of the three classes are
presented in Fig. 2.

3. Classi�cation of RBS spectra with an MLP

The separation of spectra into the three classes considered is a di<cult task. For
instance, a spectrum from class 2 with a small dose is practically indistinguishable
from the spectra of class 3. The same ambiguity occurs between spectra of class 1
with low Ge doses and spectra of class 3 with relatively high doses.
First we used a MLP trained with backpropagation to classify the data. For the

inputs we choose the yield of 128 channels, normalized to the charge—solid angle
product, the beam energy and energy resolution, the angle of incidence, the scattering
angle and the pileup. We used the 1-of-c coding scheme, and therefore there are three
outputs—one for each class. We used a unipolar activation function.
The sum-of-squares error function is not the most appropriate for classi"cation prob-

lems since it was derived from maximum likelihood assumption of Gaussian distributed
target data. However, the 1-of-c coding scheme are binary, hence far from having a
Gaussian distribution. A better alternative is to use a cross-entropy error function, which



A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472 465

Table 1
Misclassi"cation errors for diLerent MLP architectures

ANN architecture Train set Test set

(I, 100, O) 20.99 39.01
(I, 250, O) 17.34 33.66
(I, 100, 80, O) 11.99 17.67
(I, 100, 50, 20, O) 13.99 17.01
(I, 100, 80, 50, O) 10.01 13.67
(I, 100, 80, 80, O) 9.33 15.67
(I, 100, 50, 100, O) 10.01 13.99
(I, 100, 80, 80, 50, O) 10.67 13.66
(I, 100, 80, 50, 30, 20, O) 12.67 17.67

for a two-class problem is [5]

E =−
∑
n

(tn ln yn + (1− tn) ln(1− yn)); (1)

where tn are the target values (0 or 1) and yn the actual outputs of the network. Using
a sigmoid output activation function, the error term applied to the output layer is just

�n = (yn − tn): (2)

The cross-entropy error function performs better than sum-of-squares when estimating
small probabilities. The use of the logistic activation function for the outputs allow us
to interpret their values as probabilities of presence to the corresponding classes [12].
Since we have a large number of examples to train an MLP, its speci"c architecture

is not determinant. We test several con"gurations with between 1 and 5 hidden layers,
and diLerent numbers of nodes in each hidden layer, using, respectively, 15,000 and
2000 generated spectra for training and test. In each set, one-third of the examples
belong to one of the three categories. The learning rate and the momentum were "xed
at 0.1 and 0.25, respectively. The results obtained are presented in Table 1.
With a single hidden layer the training and test error decreases when the number of

nodes increases from 100 to 250. However, the test error remains very large, indicating
that a single hidden layer may be ine<cient for classifying RBS spectra. Next, we
consider two hidden layers with 100 and 80 nodes, which leads to a decreasing in the
test and training error by a factor of two. Increasing the number of layers to three,
while decreasing the number of nodes, leads to slightly worse performance. We hence
kept two hidden layers and added one extra layer with 50 nodes, which led to a further
reduction in the test set error.
Increasing, further, the number of nodes of the third hidden layer to 80 decreases the

error in the training set, but the test set error becomes worse, indicating overtraining.
Increasing the number of layers does not have any improvement. We "nally chose the
architecture consisting of three hidden layers, with 100, 80 and 50 nodes which is the
ANN with the smallest test set error: 13.67%.
A comment should be made concerning the use of such a large ANN, with about

25,000 weights. It is known that an MLP with a single hidden layer is capable of



466 A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472

discriminating between arbitrary complex decision regions. However, in some di<cult
problems the inclusion of more hidden layers may achieve better results at the cost of
a longer training.

4. Hidden layer learning vector quantization (H-LVQ)

4.1. Learning vector quantization

Vector quantization is a data compression technique to encode a multidimensional
input signal into representative code vectors, one for each class in which we want to
discriminate the data. The code vector of each class ci is composed of a set of weights
w̃ci, obtained by competitive training. There are several training algorithms, but for
supervised LVQ an iterative process adjusts the weights, initially random, where the
increments are given by

Qw̃ci = (t)(̃x − w̃ci) if x̃∈ class ci;

Qw̃ci = 0 if x̃ �∈ class chi;
(3)

where (t) is the learning rate, which should decrease with iteration t to guarantee
convergence. We choose the following expression:

(t) = 0 × (0:1)t=NI ; (4)

where NI is the number of training examples presented to the network, and 0 ∈ [0; 1].

4.2. Hidden layer LVQ

During classi"cation, the role played by the hidden layers of MLP is to "nd the
weights of the "nal layer so as to produce an optimum discrimination of the classes of
input vectors by means of a linear transformation. Minimizing the error of this linear
discriminant requires that the input data undergo a non-linear transformation into the
space, spanned by the activations of the hidden units, in such a way as to maximize a
discriminant function.
The weights of the hidden layer of the MLP can be seen as intermediate processing

units to extract relevant features for classi"cation from the data. We may consider this
as a non-linear map of the form

h̃=M(̃x); (5)

where x̃ = x1; : : : ; xN is the vector of the inputs, N their number of attributes, and
h̃ = h1; : : : ; hNh the vector containing the outputs of the Nh nodes of a MLP hidden
layer.
This map may be very useful since it projects the input domain onto a lower di-

mensional space containing relevant features for classi"cation.
The method proposed here, and label H-LVQ, is implemented in three steps. First, a

speci"c MLP is previously trained for classi"cation. Second, supervised LVQ is applied
to the last hidden layer of the MLP to extract code vectors w̃ci corresponding to each



A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472 467

class ci in which data are to be classi"ed. Each example, x̃i, is classi"ed as belonging
to the class ck with the smallest Euclidean distance to the respective code vector:

k =min
j

‖w̃cj − h̃(̃x)‖; (6)

where ‖ · ‖ denotes the usual Euclidean distance. We should remark that by applying
LVQ to the output of the last hidden layer of the MLP, and not the raw data itself,
we are introducing a intermediate processing that should increase the discriminative
capabilities of LVQ.
The third step consists of retraining the MLP with the backpropagation algorithm

(see [12]), but with two important diLerences. First the error correction is applied
not to the output layer but directly to the last hidden layer, ignoring from now on
the output layer. The second diLerence is that the error applied is a function of the
diLerence between h̃(̃x) and the code vector weights, w̃ck , of the respective class ck to
which the input pattern x̃ belongs. Several expressions may be used, but we tested the
following:

E1 =
1
�

∑
i

(w̃ck − h̃(̃xi))�: (7)

To reduce the contribution of outliers the coe<cient � is set to small values (less
than 2). Note that for � = 2 Eq. (7) is just the sum-of-squares error.
In some cases it is useful to include an extra repulsive term in the error function

(3) to better separate the code vectors. Thus the error expression becomes

E2 =
∑
i




1
�
(w̃ci − h̃(̃xi))� − �

∑
cj �=ci

sgn(w̃cj − h̃(̃xi))
(w̃cj − h̃(̃xi))2


 ; (8)

where the parameter � should be small, compared to an unit. After training a new set
of code vectors, (w̃ci)new = w̃ci +Qw̃ci, is obtained according to the following training
scheme:

Qw̃ci = (t)(h(̃x)− w̃ci) if x̃∈ class ci;

Qw̃ci = 0 if x̃ �∈ class ci:
(9)

Steps two and three are repeated following an iterative process. The process stops
when a minimum classi"cation error on the test set is found.
The H-LVQ is basically a new method to rede"ne the decision boundaries. Instead

of de"ning a decision using a unique output, it may use all the information contained
on the hidden nodes to achieve a better class discrimination.
This method has the same di<culties as other approaches concerning the choice of

adequate learning parameters, namely setting the best neural net architecture, i.e., the
number of hidden layers and the number of nodes on each layer. The correct number
of nodes on the hidden layer depends on the complexity of the problem and cannot
be determined a priori. It should be as small as possible as training of the MLP and
the code vectors is more di<cult for large Nh. On the other hand, too few nodes on
the hidden layer may wash out important details and make impossible the separation
of classes by the network.



468 A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472

Finally, we should note that this method could also be used to perform feature
extraction on data. The nodes of the hidden layer with higher variance over all the
training data can be seen as the most important to classify the data, and thus being
considered as components of a feature vector. This is similar to principal component
analysis but with some advantages. First, we can consider not only linear, but also
non-linear combinations of the input components that have the greater variance, and
second, the mapping is obtained through a supervised training. This has the obvious
bene"t that the features extracted from the input are coupled to their relevance of the
determination of the outputs.
To understand why H-LVQ can be more e<cient than traditional MLP we will

consider the following example. Suppose we have two inputs, x1 and x2, diLering only
by a small quantity, �x = x2 − x1, to be classi"ed into two classes by a MLP with
a single output neuron y. To achieve a good class discrimination for the two inputs
we should have very diLerent outputs (one close to 0 and other close to 1). We can
estimate the capability of the network to discriminate similar inputs by computing its
sensitivity, S. Let us calculate the sensitivity of the output node, So:

So =
@y
@h
@h
@x

=
Nh∑
i=1

(
@y
@h

)
i
(Sh)i (10)

where h are the outputs of hidden layer, and Sh the sensitivity of the hidden layer with
respect to the input. If we use the sigmoid function, g, as the activation function, we
have (

@y
@h

)
i
= g′(wihi)wi = g(wihi)(1− g(wihi))wi; (11)

where wi are the weights connecting the hidden layer to the output. If x1 belongs to
class 1 and x2 to class 2, the absolute value of the argument in the sigmoid should be
large. Consequently its derivative should be small, as well as @y=@h. If this quantity
is smaller than 1, we conclude that the sensitivity of the output layer is smaller than
that of the last hidden layer: So ¡Sh. We conclude that, given a trained network, it is
preferable to use the values of the last hidden layer for classi"cation that directly the
output node.

5. Results

We tested our method in several problems. First we applied it to our main task,
classi"cation of RBS spectra, as it was described above. Then we applied it to a
benchmark problem of image recognition and to a problem of bankruptcy prediction.

5.1. Application of H-LVQ to RBS

H-LVQ was applied to the problem of classi"cation of the RBS spectra into three
categories, as mentioned in Section 2. We used the 50 nodes of the last MLP hidden



A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472 469

Table 2
Misclassi"cation errors on the test set for the best MLP. The total misclassi"cation error was 13.67%

NN \ real Class 1 Class 2 Class 3

Class 1 — 0.43 1.75
Class 2 2.16 — 0.77
Class 3 0.89 7.37 —

Table 3
Misclassi"cation errors with H-LVQ. The total misclassi"cation was 2.59%

NN \ real Class 1 Class 2 Class 3

Class 1 — 0.1 0
Class 2 0.63 — 0.23
Class 3 0.20 1.43 —

layer and selected the following learning parameters: 0 = 0:5; � = 2, and � = 0. The
results are presented in Tables 2 and 3.
After training with 100 epochs, we achieved a minimum error on the test set of

2.6%. This represents an improvement by more than "ve folds with respect to MLP.
The major error (1.4%) occurs for class 2 being misclassi"ed as class 3. The smaller
error (0.0%) was obtained for class 3 being misclassi"ed as class 1.
Next, we tested our method with the same parameters, except that we used a diLerent

number of hidden nodes Nh = 40, arriving at practically the same results. For Nh = 30
the test error in MLP was now noticeably higher (16.8%) and the performance of
H-LVQ also deteriorated (3.6% misclassi"ed).
We also applied H-LVQ on each of the two other hidden layers that compose the

MLP network: the "rst containing 100 nodes and the second with 80 nodes. In both
cases we found larger errors on the test set, particularly in the "rst hidden layer. This
should be expected since the "rst layers are only capable of implementing a number of
hyperplanes that split the feature space into disjoint open half-spaces, thus not being
able to describe the interior of the regions it de"nes.
Fig. 3 presents the code vectors corresponding to the three classes after training.

Notice that of the 50 components, all but about 8 had almost vanished. This means
that out of the 134 inputs, only about 8 of its non-linear combinations are eLectively
necessary to separate linearly the decision regions.
Moreover, the "nal code vectors for the 3 classes are weakly correlated, which is

very convenient to solve the problems of class membership overlapping. The capability
of H-LVQ to obtain such well-separated code vectors should be one of the reasons for
the good performance of this method.

5.2. Application to DNA helicases

This is a problem of electron microscopy image classi"cation. The objective of the
classi"cation is to characterize the structure of a representative hexametric helicase: the



470 A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472

0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Class 1

Class 2

Class 3

Fig. 3. Codebook vectors for the three classes after training. Note that only about 8 of the 50 nodes are
used to distinguish the classes.

large T antigen of Simian Virus 40. When observed in the electron microscope, large
T antigen preparations mainly show either a characteristic roughly circular view with a
stain penetrating region in the center (which we will call a top view) or a view with a
rectangular shape (side view). The training and test set for this problem are the same
as used in Ref. [11]. This set consists of 197 examples, divided into the training set
(78 examples), validating set (60) and testing set (59). Each example consists of 25
inputs (the 25 blocks of the image to be classi"ed), and the output: 0 for side view
and 1 for top view. The tests were carried out using our method.
The MLP architecture used for this problem has a single hidden layer containing 20

nodes. After training for 100 epochs, the number of cases in the test set misclassi"ed
was 6, that is a 10% error. Next we tested our method using the following learning
parameters: 0 = 0:5; � = 1:5, � = 0:1. After only 5 iterations, and in less than 1 s,
the number of misclassi"ed cases dropped to 2, which corresponds to an error of only
3.3%. Table 4 compares these results with that obtained by other authors [6]. We can
see that H-LVQ outperforms other methods, including simulated annealing.

5.3. Application to bankruptcy prediction

Detecting when a company is going to fail is a di<cult problem that requires a good
knowledge of the company [1,8]. Although this is a di<cult topic, it is of extreme
importance for the company’s shareholders. Traditionally carried out by accounting
experts using heuristic rules, lately this problem has also been tackled by automatic
methods, based on statistical and empirical analyses, or adaptive techniques such as
neural networks [15].



A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472 471

Table 4
H-LVQ applied to the benchmark problem of DNA Helicases

Method Misclassi"ed cases (test set)

QP 5
SA 5
GP-Prop II 4
MLP 6
H-LVQ 2

QP designates quick propagation, SA simulated annealing, GP-prop genetic programming optimized neural
network, MLP is the traditional multi layer preceptron.

In this case the sample consists of 450 non-"nancial companies, half of which boasted
of good "nancial health and the other half had failed. This last group corresponds to
those companies that had suspended payments or had declared legal bankruptcy, in
accordance with Spanish Law. Healthy companies were randomly selected among a set
of 150,000.
The dependent variable takes a value either 1, in the case of legal failure, or 0, for a

healthy "rm. We used 20 quantitative independent variables, as described in Ref. [18].
We trained an MLP containing a single hidden layer of 10 nodes, and a single output
node, with the usual 1-of-c coding scheme. After 100 epochs, a minimum misclassi"-
cation error on the test set of 21% (24 miss-classi"ed cases out of 114) was reached.
H-LVQ was applied with learning parameters 0 = 0:5 and � = 2. After only 10

iterations, a minimum error on the test set of 14% was reached. This result should be
compared with a minimum test error of 18%, achieved by a genetic optimized MLP
consisting of an intermediate layer of 30 neurons.

5.4. Application to other problems

We used H-LVQ on other benchmark problem: predict the onset of diabetes on
patients based on eight measured parameters [20]. The training data consists of 658
examples and cross validation were used. The test set for each run consists of 10% of
the data. We used an MLP with a single hidden layer with 10 neurons, and after 100
epochs the average train set error was 24%. We then trained the MLP with H-LVQ
using the following set of training parameters 0 = 0:5; � = 1:3; �= 0. The minimum
error found was 26%, thus a worse result. We tested diLerent architectures with two
hidden layers without gaining any improvement.
These poor results may be due to the fact that code vectors are very similar—their

internal product is 0.12. The internal product of the prototypes of a two class problem
may be used as a measure to quantify the class separability. When this value is small
the separation is hard.

6. Conclusions

We presented a new algorithm for training MLP on classi"cation problems, that we
designated H-LVQ. It proved to be very e<cient not only for classi"cation of RBS



472 A. Vieira, N. Barradas / Neurocomputing 50 (2003) 461–472

spectra, but also on other di<cult problems, although in some cases we found no
advantages over traditional MLP.
We conclude that the method presented is more indicated for problems with a large

number of correlated inputs requiring signi"cant pre-processing transformations where
signi"cant gains over other methods can be obtained.

Acknowledgements

We would like to thank P. Castillo and the Geneura group, from University of
Granada for sharing the data and results of DNA helicases and bankruptcy prediction.
The support of the International Atomic Energy Agency under Research Contract
No. 11317=R1=Regular Budget Fund is gratefully acknowledged.

References

[1] E.I. Altman, J. Banking Account. Finance 8 (1984) 171.
[2] N.P. Barradas, C. Jeynes, R. Webb, Appl. Phys. Lett. 71 (1997) 291.
[3] N.P. Barradas, A. Vieira, Phys. Rev. E 62 (2000) 5818.
[4] N.P. Barradas, A. Vieira, E. Alves, Nucl. Instrum. Methods B 108 (2001) 175–177.
[5] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1997.
[6] P.A. Castillo, J. Gonz?alez, J.J. Merelo, A. Prieto, V. Rivas, G. Romero, Neurocomputing 35 (2000)

149.
[7] P.S. Churchland, T.J. Sejnowski, The Computational Brain, MIT Press, Cambridge, MA, 1992.
[8] A.I. Dimitras, S.H. Zanaki, C. Zopounidis, European J. Oper. Res. 90 (1996) 487.
[9] T. Kohonen, Self-Organization and Associative Memory, Springer, Berlin, 1989.
[10] B. Kosko, Neural Networks for Signal Processing, Prentice-Hall, Englewood CliLs, NJ, 1992.
[11] J.J. Merelo, A. Prieto, F. Mor?an, R. Marabini, J.M. Carazo, Neural Process. Lett. 8 (1998) 55.
[12] D.E. Rumelharb, R. Durbin, R. Golden, Y. Chauvin, in: D.E. Rumelharb, Y. Chauvin (Eds.),

Backpropagation: Theory, Architectures, and Applications, Vol. 1, Lawrence Erlbaum, Hillsdale, NJ,
1995.

[13] D.E. Rumelharb, G.E. Hinton, R.J. Williams, in: D.E. Rumelharb, J.L. McClelland (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge,
MA, 1986, p. 318.

[14] S.S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood CliLs, NJ, 1994.
[15] K.Y. Tam, M.Y. Kiang, Management Sci. 38 (7) (1992) 926.
[16] J.R. Tesmer, M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, MRS, Pittsburgh,

1995.
[17] A. Vieira, N.P. Barradas, Nucl. Instrum. Methods B 170 (2000) 235.
[18] P.A. Castillo, J.M. de La Torre, J.J. Merelo, I. Roman, in: 24th Annual Congress European Accounting

Association, Athens, April 2001, p. 182.
[19] H. White, Neural Comput. 1 (1989) 425.
[20] http://www.kdnuggets.com/datasets/index.html.

http://www.kdnuggets.com/datasets/index.html

	A training algorithm for classification of high-dimensional data
	Introduction
	RBS technique and data simulation
	Classification of RBS spectra with an MLP
	Hidden layer learning vector quantization (H-LVQ)
	Learning vector quantization
	Hidden layer LVQ

	Results
	Application of H-LVQ to RBS
	Application to DNA helicases
	Application to bankruptcy prediction
	Application to other problems

	Conclusions
	Acknowledgements
	References


